| /* |
| * This is <linux/capability.h> |
| * |
| * Andrew G. Morgan <morgan@kernel.org> |
| * Alexander Kjeldaas <astor@guardian.no> |
| * with help from Aleph1, Roland Buresund and Andrew Main. |
| * |
| * See here for the libcap library ("POSIX draft" compliance): |
| * |
| * ftp://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.6/ |
| */ |
| #ifndef _LINUX_CAPABILITY_H |
| #define _LINUX_CAPABILITY_H |
| |
| #include <uapi/linux/capability.h> |
| |
| |
| #define _KERNEL_CAPABILITY_VERSION _LINUX_CAPABILITY_VERSION_3 |
| #define _KERNEL_CAPABILITY_U32S _LINUX_CAPABILITY_U32S_3 |
| |
| extern int file_caps_enabled; |
| |
| typedef struct kernel_cap_struct { |
| __u32 cap[_KERNEL_CAPABILITY_U32S]; |
| } kernel_cap_t; |
| |
| /* exact same as vfs_cap_data but in cpu endian and always filled completely */ |
| struct cpu_vfs_cap_data { |
| __u32 magic_etc; |
| kernel_cap_t permitted; |
| kernel_cap_t inheritable; |
| }; |
| |
| #define _USER_CAP_HEADER_SIZE (sizeof(struct __user_cap_header_struct)) |
| #define _KERNEL_CAP_T_SIZE (sizeof(kernel_cap_t)) |
| |
| |
| struct file; |
| struct inode; |
| struct dentry; |
| struct user_namespace; |
| |
| struct user_namespace *current_user_ns(void); |
| |
| extern const kernel_cap_t __cap_empty_set; |
| extern const kernel_cap_t __cap_init_eff_set; |
| |
| /* |
| * Internal kernel functions only |
| */ |
| |
| #define CAP_FOR_EACH_U32(__capi) \ |
| for (__capi = 0; __capi < _KERNEL_CAPABILITY_U32S; ++__capi) |
| |
| /* |
| * CAP_FS_MASK and CAP_NFSD_MASKS: |
| * |
| * The fs mask is all the privileges that fsuid==0 historically meant. |
| * At one time in the past, that included CAP_MKNOD and CAP_LINUX_IMMUTABLE. |
| * |
| * It has never meant setting security.* and trusted.* xattrs. |
| * |
| * We could also define fsmask as follows: |
| * 1. CAP_FS_MASK is the privilege to bypass all fs-related DAC permissions |
| * 2. The security.* and trusted.* xattrs are fs-related MAC permissions |
| */ |
| |
| # define CAP_FS_MASK_B0 (CAP_TO_MASK(CAP_CHOWN) \ |
| | CAP_TO_MASK(CAP_MKNOD) \ |
| | CAP_TO_MASK(CAP_DAC_OVERRIDE) \ |
| | CAP_TO_MASK(CAP_DAC_READ_SEARCH) \ |
| | CAP_TO_MASK(CAP_FOWNER) \ |
| | CAP_TO_MASK(CAP_FSETID)) |
| |
| # define CAP_FS_MASK_B1 (CAP_TO_MASK(CAP_MAC_OVERRIDE)) |
| |
| #if _KERNEL_CAPABILITY_U32S != 2 |
| # error Fix up hand-coded capability macro initializers |
| #else /* HAND-CODED capability initializers */ |
| |
| #define CAP_LAST_U32 ((_KERNEL_CAPABILITY_U32S) - 1) |
| #define CAP_LAST_U32_VALID_MASK (CAP_TO_MASK(CAP_LAST_CAP + 1) -1) |
| |
| # define CAP_EMPTY_SET ((kernel_cap_t){{ 0, 0 }}) |
| # define CAP_FULL_SET ((kernel_cap_t){{ ~0, CAP_LAST_U32_VALID_MASK }}) |
| # define CAP_FS_SET ((kernel_cap_t){{ CAP_FS_MASK_B0 \ |
| | CAP_TO_MASK(CAP_LINUX_IMMUTABLE), \ |
| CAP_FS_MASK_B1 } }) |
| # define CAP_NFSD_SET ((kernel_cap_t){{ CAP_FS_MASK_B0 \ |
| | CAP_TO_MASK(CAP_SYS_RESOURCE), \ |
| CAP_FS_MASK_B1 } }) |
| |
| #endif /* _KERNEL_CAPABILITY_U32S != 2 */ |
| |
| # define cap_clear(c) do { (c) = __cap_empty_set; } while (0) |
| |
| #define cap_raise(c, flag) ((c).cap[CAP_TO_INDEX(flag)] |= CAP_TO_MASK(flag)) |
| #define cap_lower(c, flag) ((c).cap[CAP_TO_INDEX(flag)] &= ~CAP_TO_MASK(flag)) |
| #define cap_raised(c, flag) ((c).cap[CAP_TO_INDEX(flag)] & CAP_TO_MASK(flag)) |
| |
| #define CAP_BOP_ALL(c, a, b, OP) \ |
| do { \ |
| unsigned __capi; \ |
| CAP_FOR_EACH_U32(__capi) { \ |
| c.cap[__capi] = a.cap[__capi] OP b.cap[__capi]; \ |
| } \ |
| } while (0) |
| |
| #define CAP_UOP_ALL(c, a, OP) \ |
| do { \ |
| unsigned __capi; \ |
| CAP_FOR_EACH_U32(__capi) { \ |
| c.cap[__capi] = OP a.cap[__capi]; \ |
| } \ |
| } while (0) |
| |
| static inline kernel_cap_t cap_combine(const kernel_cap_t a, |
| const kernel_cap_t b) |
| { |
| kernel_cap_t dest; |
| CAP_BOP_ALL(dest, a, b, |); |
| return dest; |
| } |
| |
| static inline kernel_cap_t cap_intersect(const kernel_cap_t a, |
| const kernel_cap_t b) |
| { |
| kernel_cap_t dest; |
| CAP_BOP_ALL(dest, a, b, &); |
| return dest; |
| } |
| |
| static inline kernel_cap_t cap_drop(const kernel_cap_t a, |
| const kernel_cap_t drop) |
| { |
| kernel_cap_t dest; |
| CAP_BOP_ALL(dest, a, drop, &~); |
| return dest; |
| } |
| |
| static inline kernel_cap_t cap_invert(const kernel_cap_t c) |
| { |
| kernel_cap_t dest; |
| CAP_UOP_ALL(dest, c, ~); |
| return dest; |
| } |
| |
| static inline int cap_isclear(const kernel_cap_t a) |
| { |
| unsigned __capi; |
| CAP_FOR_EACH_U32(__capi) { |
| if (a.cap[__capi] != 0) |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * Check if "a" is a subset of "set". |
| * return 1 if ALL of the capabilities in "a" are also in "set" |
| * cap_issubset(0101, 1111) will return 1 |
| * return 0 if ANY of the capabilities in "a" are not in "set" |
| * cap_issubset(1111, 0101) will return 0 |
| */ |
| static inline int cap_issubset(const kernel_cap_t a, const kernel_cap_t set) |
| { |
| kernel_cap_t dest; |
| dest = cap_drop(a, set); |
| return cap_isclear(dest); |
| } |
| |
| /* Used to decide between falling back on the old suser() or fsuser(). */ |
| |
| static inline int cap_is_fs_cap(int cap) |
| { |
| const kernel_cap_t __cap_fs_set = CAP_FS_SET; |
| return !!(CAP_TO_MASK(cap) & __cap_fs_set.cap[CAP_TO_INDEX(cap)]); |
| } |
| |
| static inline kernel_cap_t cap_drop_fs_set(const kernel_cap_t a) |
| { |
| const kernel_cap_t __cap_fs_set = CAP_FS_SET; |
| return cap_drop(a, __cap_fs_set); |
| } |
| |
| static inline kernel_cap_t cap_raise_fs_set(const kernel_cap_t a, |
| const kernel_cap_t permitted) |
| { |
| const kernel_cap_t __cap_fs_set = CAP_FS_SET; |
| return cap_combine(a, |
| cap_intersect(permitted, __cap_fs_set)); |
| } |
| |
| static inline kernel_cap_t cap_drop_nfsd_set(const kernel_cap_t a) |
| { |
| const kernel_cap_t __cap_fs_set = CAP_NFSD_SET; |
| return cap_drop(a, __cap_fs_set); |
| } |
| |
| static inline kernel_cap_t cap_raise_nfsd_set(const kernel_cap_t a, |
| const kernel_cap_t permitted) |
| { |
| const kernel_cap_t __cap_nfsd_set = CAP_NFSD_SET; |
| return cap_combine(a, |
| cap_intersect(permitted, __cap_nfsd_set)); |
| } |
| |
| #ifdef CONFIG_MULTIUSER |
| extern bool has_capability(struct task_struct *t, int cap); |
| extern bool has_ns_capability(struct task_struct *t, |
| struct user_namespace *ns, int cap); |
| extern bool has_capability_noaudit(struct task_struct *t, int cap); |
| extern bool has_ns_capability_noaudit(struct task_struct *t, |
| struct user_namespace *ns, int cap); |
| extern bool capable(int cap); |
| extern bool ns_capable(struct user_namespace *ns, int cap); |
| extern bool ns_capable_noaudit(struct user_namespace *ns, int cap); |
| #else |
| static inline bool has_capability(struct task_struct *t, int cap) |
| { |
| return true; |
| } |
| static inline bool has_ns_capability(struct task_struct *t, |
| struct user_namespace *ns, int cap) |
| { |
| return true; |
| } |
| static inline bool has_capability_noaudit(struct task_struct *t, int cap) |
| { |
| return true; |
| } |
| static inline bool has_ns_capability_noaudit(struct task_struct *t, |
| struct user_namespace *ns, int cap) |
| { |
| return true; |
| } |
| static inline bool capable(int cap) |
| { |
| return true; |
| } |
| static inline bool ns_capable(struct user_namespace *ns, int cap) |
| { |
| return true; |
| } |
| static inline bool ns_capable_noaudit(struct user_namespace *ns, int cap) |
| { |
| return true; |
| } |
| #endif /* CONFIG_MULTIUSER */ |
| extern bool capable_wrt_inode_uidgid(const struct inode *inode, int cap); |
| extern bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap); |
| |
| /* audit system wants to get cap info from files as well */ |
| extern int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps); |
| |
| #endif /* !_LINUX_CAPABILITY_H */ |