| /* |
| * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README |
| */ |
| |
| /* |
| * Written by Anatoly P. Pinchuk pap@namesys.botik.ru |
| * Programm System Institute |
| * Pereslavl-Zalessky Russia |
| */ |
| |
| #include <linux/time.h> |
| #include <linux/string.h> |
| #include <linux/pagemap.h> |
| #include "reiserfs.h" |
| #include <linux/buffer_head.h> |
| #include <linux/quotaops.h> |
| |
| /* Does the buffer contain a disk block which is in the tree. */ |
| inline int B_IS_IN_TREE(const struct buffer_head *bh) |
| { |
| |
| RFALSE(B_LEVEL(bh) > MAX_HEIGHT, |
| "PAP-1010: block (%b) has too big level (%z)", bh, bh); |
| |
| return (B_LEVEL(bh) != FREE_LEVEL); |
| } |
| |
| /* to get item head in le form */ |
| inline void copy_item_head(struct item_head *to, |
| const struct item_head *from) |
| { |
| memcpy(to, from, IH_SIZE); |
| } |
| |
| /* |
| * k1 is pointer to on-disk structure which is stored in little-endian |
| * form. k2 is pointer to cpu variable. For key of items of the same |
| * object this returns 0. |
| * Returns: -1 if key1 < key2 |
| * 0 if key1 == key2 |
| * 1 if key1 > key2 |
| */ |
| inline int comp_short_keys(const struct reiserfs_key *le_key, |
| const struct cpu_key *cpu_key) |
| { |
| __u32 n; |
| n = le32_to_cpu(le_key->k_dir_id); |
| if (n < cpu_key->on_disk_key.k_dir_id) |
| return -1; |
| if (n > cpu_key->on_disk_key.k_dir_id) |
| return 1; |
| n = le32_to_cpu(le_key->k_objectid); |
| if (n < cpu_key->on_disk_key.k_objectid) |
| return -1; |
| if (n > cpu_key->on_disk_key.k_objectid) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * k1 is pointer to on-disk structure which is stored in little-endian |
| * form. k2 is pointer to cpu variable. |
| * Compare keys using all 4 key fields. |
| * Returns: -1 if key1 < key2 0 |
| * if key1 = key2 1 if key1 > key2 |
| */ |
| static inline int comp_keys(const struct reiserfs_key *le_key, |
| const struct cpu_key *cpu_key) |
| { |
| int retval; |
| |
| retval = comp_short_keys(le_key, cpu_key); |
| if (retval) |
| return retval; |
| if (le_key_k_offset(le_key_version(le_key), le_key) < |
| cpu_key_k_offset(cpu_key)) |
| return -1; |
| if (le_key_k_offset(le_key_version(le_key), le_key) > |
| cpu_key_k_offset(cpu_key)) |
| return 1; |
| |
| if (cpu_key->key_length == 3) |
| return 0; |
| |
| /* this part is needed only when tail conversion is in progress */ |
| if (le_key_k_type(le_key_version(le_key), le_key) < |
| cpu_key_k_type(cpu_key)) |
| return -1; |
| |
| if (le_key_k_type(le_key_version(le_key), le_key) > |
| cpu_key_k_type(cpu_key)) |
| return 1; |
| |
| return 0; |
| } |
| |
| inline int comp_short_le_keys(const struct reiserfs_key *key1, |
| const struct reiserfs_key *key2) |
| { |
| __u32 *k1_u32, *k2_u32; |
| int key_length = REISERFS_SHORT_KEY_LEN; |
| |
| k1_u32 = (__u32 *) key1; |
| k2_u32 = (__u32 *) key2; |
| for (; key_length--; ++k1_u32, ++k2_u32) { |
| if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32)) |
| return -1; |
| if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from) |
| { |
| int version; |
| to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id); |
| to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid); |
| |
| /* find out version of the key */ |
| version = le_key_version(from); |
| to->version = version; |
| to->on_disk_key.k_offset = le_key_k_offset(version, from); |
| to->on_disk_key.k_type = le_key_k_type(version, from); |
| } |
| |
| /* |
| * this does not say which one is bigger, it only returns 1 if keys |
| * are not equal, 0 otherwise |
| */ |
| inline int comp_le_keys(const struct reiserfs_key *k1, |
| const struct reiserfs_key *k2) |
| { |
| return memcmp(k1, k2, sizeof(struct reiserfs_key)); |
| } |
| |
| /************************************************************************** |
| * Binary search toolkit function * |
| * Search for an item in the array by the item key * |
| * Returns: 1 if found, 0 if not found; * |
| * *pos = number of the searched element if found, else the * |
| * number of the first element that is larger than key. * |
| **************************************************************************/ |
| /* |
| * For those not familiar with binary search: lbound is the leftmost item |
| * that it could be, rbound the rightmost item that it could be. We examine |
| * the item halfway between lbound and rbound, and that tells us either |
| * that we can increase lbound, or decrease rbound, or that we have found it, |
| * or if lbound <= rbound that there are no possible items, and we have not |
| * found it. With each examination we cut the number of possible items it |
| * could be by one more than half rounded down, or we find it. |
| */ |
| static inline int bin_search(const void *key, /* Key to search for. */ |
| const void *base, /* First item in the array. */ |
| int num, /* Number of items in the array. */ |
| /* |
| * Item size in the array. searched. Lest the |
| * reader be confused, note that this is crafted |
| * as a general function, and when it is applied |
| * specifically to the array of item headers in a |
| * node, width is actually the item header size |
| * not the item size. |
| */ |
| int width, |
| int *pos /* Number of the searched for element. */ |
| ) |
| { |
| int rbound, lbound, j; |
| |
| for (j = ((rbound = num - 1) + (lbound = 0)) / 2; |
| lbound <= rbound; j = (rbound + lbound) / 2) |
| switch (comp_keys |
| ((struct reiserfs_key *)((char *)base + j * width), |
| (struct cpu_key *)key)) { |
| case -1: |
| lbound = j + 1; |
| continue; |
| case 1: |
| rbound = j - 1; |
| continue; |
| case 0: |
| *pos = j; |
| return ITEM_FOUND; /* Key found in the array. */ |
| } |
| |
| /* |
| * bin_search did not find given key, it returns position of key, |
| * that is minimal and greater than the given one. |
| */ |
| *pos = lbound; |
| return ITEM_NOT_FOUND; |
| } |
| |
| |
| /* Minimal possible key. It is never in the tree. */ |
| const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} }; |
| |
| /* Maximal possible key. It is never in the tree. */ |
| static const struct reiserfs_key MAX_KEY = { |
| cpu_to_le32(0xffffffff), |
| cpu_to_le32(0xffffffff), |
| {{cpu_to_le32(0xffffffff), |
| cpu_to_le32(0xffffffff)},} |
| }; |
| |
| /* |
| * Get delimiting key of the buffer by looking for it in the buffers in the |
| * path, starting from the bottom of the path, and going upwards. We must |
| * check the path's validity at each step. If the key is not in the path, |
| * there is no delimiting key in the tree (buffer is first or last buffer |
| * in tree), and in this case we return a special key, either MIN_KEY or |
| * MAX_KEY. |
| */ |
| static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path, |
| const struct super_block *sb) |
| { |
| int position, path_offset = chk_path->path_length; |
| struct buffer_head *parent; |
| |
| RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, |
| "PAP-5010: invalid offset in the path"); |
| |
| /* While not higher in path than first element. */ |
| while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { |
| |
| RFALSE(!buffer_uptodate |
| (PATH_OFFSET_PBUFFER(chk_path, path_offset)), |
| "PAP-5020: parent is not uptodate"); |
| |
| /* Parent at the path is not in the tree now. */ |
| if (!B_IS_IN_TREE |
| (parent = |
| PATH_OFFSET_PBUFFER(chk_path, path_offset))) |
| return &MAX_KEY; |
| /* Check whether position in the parent is correct. */ |
| if ((position = |
| PATH_OFFSET_POSITION(chk_path, |
| path_offset)) > |
| B_NR_ITEMS(parent)) |
| return &MAX_KEY; |
| /* Check whether parent at the path really points to the child. */ |
| if (B_N_CHILD_NUM(parent, position) != |
| PATH_OFFSET_PBUFFER(chk_path, |
| path_offset + 1)->b_blocknr) |
| return &MAX_KEY; |
| /* |
| * Return delimiting key if position in the parent |
| * is not equal to zero. |
| */ |
| if (position) |
| return internal_key(parent, position - 1); |
| } |
| /* Return MIN_KEY if we are in the root of the buffer tree. */ |
| if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> |
| b_blocknr == SB_ROOT_BLOCK(sb)) |
| return &MIN_KEY; |
| return &MAX_KEY; |
| } |
| |
| /* Get delimiting key of the buffer at the path and its right neighbor. */ |
| inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path, |
| const struct super_block *sb) |
| { |
| int position, path_offset = chk_path->path_length; |
| struct buffer_head *parent; |
| |
| RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, |
| "PAP-5030: invalid offset in the path"); |
| |
| while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { |
| |
| RFALSE(!buffer_uptodate |
| (PATH_OFFSET_PBUFFER(chk_path, path_offset)), |
| "PAP-5040: parent is not uptodate"); |
| |
| /* Parent at the path is not in the tree now. */ |
| if (!B_IS_IN_TREE |
| (parent = |
| PATH_OFFSET_PBUFFER(chk_path, path_offset))) |
| return &MIN_KEY; |
| /* Check whether position in the parent is correct. */ |
| if ((position = |
| PATH_OFFSET_POSITION(chk_path, |
| path_offset)) > |
| B_NR_ITEMS(parent)) |
| return &MIN_KEY; |
| /* |
| * Check whether parent at the path really points |
| * to the child. |
| */ |
| if (B_N_CHILD_NUM(parent, position) != |
| PATH_OFFSET_PBUFFER(chk_path, |
| path_offset + 1)->b_blocknr) |
| return &MIN_KEY; |
| |
| /* |
| * Return delimiting key if position in the parent |
| * is not the last one. |
| */ |
| if (position != B_NR_ITEMS(parent)) |
| return internal_key(parent, position); |
| } |
| |
| /* Return MAX_KEY if we are in the root of the buffer tree. */ |
| if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> |
| b_blocknr == SB_ROOT_BLOCK(sb)) |
| return &MAX_KEY; |
| return &MIN_KEY; |
| } |
| |
| /* |
| * Check whether a key is contained in the tree rooted from a buffer at a path. |
| * This works by looking at the left and right delimiting keys for the buffer |
| * in the last path_element in the path. These delimiting keys are stored |
| * at least one level above that buffer in the tree. If the buffer is the |
| * first or last node in the tree order then one of the delimiting keys may |
| * be absent, and in this case get_lkey and get_rkey return a special key |
| * which is MIN_KEY or MAX_KEY. |
| */ |
| static inline int key_in_buffer( |
| /* Path which should be checked. */ |
| struct treepath *chk_path, |
| /* Key which should be checked. */ |
| const struct cpu_key *key, |
| struct super_block *sb |
| ) |
| { |
| |
| RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET |
| || chk_path->path_length > MAX_HEIGHT, |
| "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", |
| key, chk_path->path_length); |
| RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev, |
| "PAP-5060: device must not be NODEV"); |
| |
| if (comp_keys(get_lkey(chk_path, sb), key) == 1) |
| /* left delimiting key is bigger, that the key we look for */ |
| return 0; |
| /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */ |
| if (comp_keys(get_rkey(chk_path, sb), key) != 1) |
| /* key must be less than right delimitiing key */ |
| return 0; |
| return 1; |
| } |
| |
| int reiserfs_check_path(struct treepath *p) |
| { |
| RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, |
| "path not properly relsed"); |
| return 0; |
| } |
| |
| /* |
| * Drop the reference to each buffer in a path and restore |
| * dirty bits clean when preparing the buffer for the log. |
| * This version should only be called from fix_nodes() |
| */ |
| void pathrelse_and_restore(struct super_block *sb, |
| struct treepath *search_path) |
| { |
| int path_offset = search_path->path_length; |
| |
| RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, |
| "clm-4000: invalid path offset"); |
| |
| while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { |
| struct buffer_head *bh; |
| bh = PATH_OFFSET_PBUFFER(search_path, path_offset--); |
| reiserfs_restore_prepared_buffer(sb, bh); |
| brelse(bh); |
| } |
| search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; |
| } |
| |
| /* Drop the reference to each buffer in a path */ |
| void pathrelse(struct treepath *search_path) |
| { |
| int path_offset = search_path->path_length; |
| |
| RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, |
| "PAP-5090: invalid path offset"); |
| |
| while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) |
| brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--)); |
| |
| search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; |
| } |
| |
| static int is_leaf(char *buf, int blocksize, struct buffer_head *bh) |
| { |
| struct block_head *blkh; |
| struct item_head *ih; |
| int used_space; |
| int prev_location; |
| int i; |
| int nr; |
| |
| blkh = (struct block_head *)buf; |
| if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { |
| reiserfs_warning(NULL, "reiserfs-5080", |
| "this should be caught earlier"); |
| return 0; |
| } |
| |
| nr = blkh_nr_item(blkh); |
| if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { |
| /* item number is too big or too small */ |
| reiserfs_warning(NULL, "reiserfs-5081", |
| "nr_item seems wrong: %z", bh); |
| return 0; |
| } |
| ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; |
| used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih)); |
| |
| /* free space does not match to calculated amount of use space */ |
| if (used_space != blocksize - blkh_free_space(blkh)) { |
| reiserfs_warning(NULL, "reiserfs-5082", |
| "free space seems wrong: %z", bh); |
| return 0; |
| } |
| /* |
| * FIXME: it is_leaf will hit performance too much - we may have |
| * return 1 here |
| */ |
| |
| /* check tables of item heads */ |
| ih = (struct item_head *)(buf + BLKH_SIZE); |
| prev_location = blocksize; |
| for (i = 0; i < nr; i++, ih++) { |
| if (le_ih_k_type(ih) == TYPE_ANY) { |
| reiserfs_warning(NULL, "reiserfs-5083", |
| "wrong item type for item %h", |
| ih); |
| return 0; |
| } |
| if (ih_location(ih) >= blocksize |
| || ih_location(ih) < IH_SIZE * nr) { |
| reiserfs_warning(NULL, "reiserfs-5084", |
| "item location seems wrong: %h", |
| ih); |
| return 0; |
| } |
| if (ih_item_len(ih) < 1 |
| || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) { |
| reiserfs_warning(NULL, "reiserfs-5085", |
| "item length seems wrong: %h", |
| ih); |
| return 0; |
| } |
| if (prev_location - ih_location(ih) != ih_item_len(ih)) { |
| reiserfs_warning(NULL, "reiserfs-5086", |
| "item location seems wrong " |
| "(second one): %h", ih); |
| return 0; |
| } |
| prev_location = ih_location(ih); |
| } |
| |
| /* one may imagine many more checks */ |
| return 1; |
| } |
| |
| /* returns 1 if buf looks like an internal node, 0 otherwise */ |
| static int is_internal(char *buf, int blocksize, struct buffer_head *bh) |
| { |
| struct block_head *blkh; |
| int nr; |
| int used_space; |
| |
| blkh = (struct block_head *)buf; |
| nr = blkh_level(blkh); |
| if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { |
| /* this level is not possible for internal nodes */ |
| reiserfs_warning(NULL, "reiserfs-5087", |
| "this should be caught earlier"); |
| return 0; |
| } |
| |
| nr = blkh_nr_item(blkh); |
| /* for internal which is not root we might check min number of keys */ |
| if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { |
| reiserfs_warning(NULL, "reiserfs-5088", |
| "number of key seems wrong: %z", bh); |
| return 0; |
| } |
| |
| used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); |
| if (used_space != blocksize - blkh_free_space(blkh)) { |
| reiserfs_warning(NULL, "reiserfs-5089", |
| "free space seems wrong: %z", bh); |
| return 0; |
| } |
| |
| /* one may imagine many more checks */ |
| return 1; |
| } |
| |
| /* |
| * make sure that bh contains formatted node of reiserfs tree of |
| * 'level'-th level |
| */ |
| static int is_tree_node(struct buffer_head *bh, int level) |
| { |
| if (B_LEVEL(bh) != level) { |
| reiserfs_warning(NULL, "reiserfs-5090", "node level %d does " |
| "not match to the expected one %d", |
| B_LEVEL(bh), level); |
| return 0; |
| } |
| if (level == DISK_LEAF_NODE_LEVEL) |
| return is_leaf(bh->b_data, bh->b_size, bh); |
| |
| return is_internal(bh->b_data, bh->b_size, bh); |
| } |
| |
| #define SEARCH_BY_KEY_READA 16 |
| |
| /* |
| * The function is NOT SCHEDULE-SAFE! |
| * It might unlock the write lock if we needed to wait for a block |
| * to be read. Note that in this case it won't recover the lock to avoid |
| * high contention resulting from too much lock requests, especially |
| * the caller (search_by_key) will perform other schedule-unsafe |
| * operations just after calling this function. |
| * |
| * @return depth of lock to be restored after read completes |
| */ |
| static int search_by_key_reada(struct super_block *s, |
| struct buffer_head **bh, |
| b_blocknr_t *b, int num) |
| { |
| int i, j; |
| int depth = -1; |
| |
| for (i = 0; i < num; i++) { |
| bh[i] = sb_getblk(s, b[i]); |
| } |
| /* |
| * We are going to read some blocks on which we |
| * have a reference. It's safe, though we might be |
| * reading blocks concurrently changed if we release |
| * the lock. But it's still fine because we check later |
| * if the tree changed |
| */ |
| for (j = 0; j < i; j++) { |
| /* |
| * note, this needs attention if we are getting rid of the BKL |
| * you have to make sure the prepared bit isn't set on this |
| * buffer |
| */ |
| if (!buffer_uptodate(bh[j])) { |
| if (depth == -1) |
| depth = reiserfs_write_unlock_nested(s); |
| ll_rw_block(READA, 1, bh + j); |
| } |
| brelse(bh[j]); |
| } |
| return depth; |
| } |
| |
| /* |
| * This function fills up the path from the root to the leaf as it |
| * descends the tree looking for the key. It uses reiserfs_bread to |
| * try to find buffers in the cache given their block number. If it |
| * does not find them in the cache it reads them from disk. For each |
| * node search_by_key finds using reiserfs_bread it then uses |
| * bin_search to look through that node. bin_search will find the |
| * position of the block_number of the next node if it is looking |
| * through an internal node. If it is looking through a leaf node |
| * bin_search will find the position of the item which has key either |
| * equal to given key, or which is the maximal key less than the given |
| * key. search_by_key returns a path that must be checked for the |
| * correctness of the top of the path but need not be checked for the |
| * correctness of the bottom of the path |
| */ |
| /* |
| * search_by_key - search for key (and item) in stree |
| * @sb: superblock |
| * @key: pointer to key to search for |
| * @search_path: Allocated and initialized struct treepath; Returned filled |
| * on success. |
| * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to |
| * stop at leaf level. |
| * |
| * The function is NOT SCHEDULE-SAFE! |
| */ |
| int search_by_key(struct super_block *sb, const struct cpu_key *key, |
| struct treepath *search_path, int stop_level) |
| { |
| b_blocknr_t block_number; |
| int expected_level; |
| struct buffer_head *bh; |
| struct path_element *last_element; |
| int node_level, retval; |
| int right_neighbor_of_leaf_node; |
| int fs_gen; |
| struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; |
| b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA]; |
| int reada_count = 0; |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| int repeat_counter = 0; |
| #endif |
| |
| PROC_INFO_INC(sb, search_by_key); |
| |
| /* |
| * As we add each node to a path we increase its count. This means |
| * that we must be careful to release all nodes in a path before we |
| * either discard the path struct or re-use the path struct, as we |
| * do here. |
| */ |
| |
| pathrelse(search_path); |
| |
| right_neighbor_of_leaf_node = 0; |
| |
| /* |
| * With each iteration of this loop we search through the items in the |
| * current node, and calculate the next current node(next path element) |
| * for the next iteration of this loop.. |
| */ |
| block_number = SB_ROOT_BLOCK(sb); |
| expected_level = -1; |
| while (1) { |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| if (!(++repeat_counter % 50000)) |
| reiserfs_warning(sb, "PAP-5100", |
| "%s: there were %d iterations of " |
| "while loop looking for key %K", |
| current->comm, repeat_counter, |
| key); |
| #endif |
| |
| /* prep path to have another element added to it. */ |
| last_element = |
| PATH_OFFSET_PELEMENT(search_path, |
| ++search_path->path_length); |
| fs_gen = get_generation(sb); |
| |
| /* |
| * Read the next tree node, and set the last element |
| * in the path to have a pointer to it. |
| */ |
| if ((bh = last_element->pe_buffer = |
| sb_getblk(sb, block_number))) { |
| |
| /* |
| * We'll need to drop the lock if we encounter any |
| * buffers that need to be read. If all of them are |
| * already up to date, we don't need to drop the lock. |
| */ |
| int depth = -1; |
| |
| if (!buffer_uptodate(bh) && reada_count > 1) |
| depth = search_by_key_reada(sb, reada_bh, |
| reada_blocks, reada_count); |
| |
| if (!buffer_uptodate(bh) && depth == -1) |
| depth = reiserfs_write_unlock_nested(sb); |
| |
| ll_rw_block(READ, 1, &bh); |
| wait_on_buffer(bh); |
| |
| if (depth != -1) |
| reiserfs_write_lock_nested(sb, depth); |
| if (!buffer_uptodate(bh)) |
| goto io_error; |
| } else { |
| io_error: |
| search_path->path_length--; |
| pathrelse(search_path); |
| return IO_ERROR; |
| } |
| reada_count = 0; |
| if (expected_level == -1) |
| expected_level = SB_TREE_HEIGHT(sb); |
| expected_level--; |
| |
| /* |
| * It is possible that schedule occurred. We must check |
| * whether the key to search is still in the tree rooted |
| * from the current buffer. If not then repeat search |
| * from the root. |
| */ |
| if (fs_changed(fs_gen, sb) && |
| (!B_IS_IN_TREE(bh) || |
| B_LEVEL(bh) != expected_level || |
| !key_in_buffer(search_path, key, sb))) { |
| PROC_INFO_INC(sb, search_by_key_fs_changed); |
| PROC_INFO_INC(sb, search_by_key_restarted); |
| PROC_INFO_INC(sb, |
| sbk_restarted[expected_level - 1]); |
| pathrelse(search_path); |
| |
| /* |
| * Get the root block number so that we can |
| * repeat the search starting from the root. |
| */ |
| block_number = SB_ROOT_BLOCK(sb); |
| expected_level = -1; |
| right_neighbor_of_leaf_node = 0; |
| |
| /* repeat search from the root */ |
| continue; |
| } |
| |
| /* |
| * only check that the key is in the buffer if key is not |
| * equal to the MAX_KEY. Latter case is only possible in |
| * "finish_unfinished()" processing during mount. |
| */ |
| RFALSE(comp_keys(&MAX_KEY, key) && |
| !key_in_buffer(search_path, key, sb), |
| "PAP-5130: key is not in the buffer"); |
| #ifdef CONFIG_REISERFS_CHECK |
| if (REISERFS_SB(sb)->cur_tb) { |
| print_cur_tb("5140"); |
| reiserfs_panic(sb, "PAP-5140", |
| "schedule occurred in do_balance!"); |
| } |
| #endif |
| |
| /* |
| * make sure, that the node contents look like a node of |
| * certain level |
| */ |
| if (!is_tree_node(bh, expected_level)) { |
| reiserfs_error(sb, "vs-5150", |
| "invalid format found in block %ld. " |
| "Fsck?", bh->b_blocknr); |
| pathrelse(search_path); |
| return IO_ERROR; |
| } |
| |
| /* ok, we have acquired next formatted node in the tree */ |
| node_level = B_LEVEL(bh); |
| |
| PROC_INFO_BH_STAT(sb, bh, node_level - 1); |
| |
| RFALSE(node_level < stop_level, |
| "vs-5152: tree level (%d) is less than stop level (%d)", |
| node_level, stop_level); |
| |
| retval = bin_search(key, item_head(bh, 0), |
| B_NR_ITEMS(bh), |
| (node_level == |
| DISK_LEAF_NODE_LEVEL) ? IH_SIZE : |
| KEY_SIZE, |
| &last_element->pe_position); |
| if (node_level == stop_level) { |
| return retval; |
| } |
| |
| /* we are not in the stop level */ |
| /* |
| * item has been found, so we choose the pointer which |
| * is to the right of the found one |
| */ |
| if (retval == ITEM_FOUND) |
| last_element->pe_position++; |
| |
| /* |
| * if item was not found we choose the position which is to |
| * the left of the found item. This requires no code, |
| * bin_search did it already. |
| */ |
| |
| /* |
| * So we have chosen a position in the current node which is |
| * an internal node. Now we calculate child block number by |
| * position in the node. |
| */ |
| block_number = |
| B_N_CHILD_NUM(bh, last_element->pe_position); |
| |
| /* |
| * if we are going to read leaf nodes, try for read |
| * ahead as well |
| */ |
| if ((search_path->reada & PATH_READA) && |
| node_level == DISK_LEAF_NODE_LEVEL + 1) { |
| int pos = last_element->pe_position; |
| int limit = B_NR_ITEMS(bh); |
| struct reiserfs_key *le_key; |
| |
| if (search_path->reada & PATH_READA_BACK) |
| limit = 0; |
| while (reada_count < SEARCH_BY_KEY_READA) { |
| if (pos == limit) |
| break; |
| reada_blocks[reada_count++] = |
| B_N_CHILD_NUM(bh, pos); |
| if (search_path->reada & PATH_READA_BACK) |
| pos--; |
| else |
| pos++; |
| |
| /* |
| * check to make sure we're in the same object |
| */ |
| le_key = internal_key(bh, pos); |
| if (le32_to_cpu(le_key->k_objectid) != |
| key->on_disk_key.k_objectid) { |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| /* |
| * Form the path to an item and position in this item which contains |
| * file byte defined by key. If there is no such item |
| * corresponding to the key, we point the path to the item with |
| * maximal key less than key, and *pos_in_item is set to one |
| * past the last entry/byte in the item. If searching for entry in a |
| * directory item, and it is not found, *pos_in_item is set to one |
| * entry more than the entry with maximal key which is less than the |
| * sought key. |
| * |
| * Note that if there is no entry in this same node which is one more, |
| * then we point to an imaginary entry. for direct items, the |
| * position is in units of bytes, for indirect items the position is |
| * in units of blocknr entries, for directory items the position is in |
| * units of directory entries. |
| */ |
| /* The function is NOT SCHEDULE-SAFE! */ |
| int search_for_position_by_key(struct super_block *sb, |
| /* Key to search (cpu variable) */ |
| const struct cpu_key *p_cpu_key, |
| /* Filled up by this function. */ |
| struct treepath *search_path) |
| { |
| struct item_head *p_le_ih; /* pointer to on-disk structure */ |
| int blk_size; |
| loff_t item_offset, offset; |
| struct reiserfs_dir_entry de; |
| int retval; |
| |
| /* If searching for directory entry. */ |
| if (is_direntry_cpu_key(p_cpu_key)) |
| return search_by_entry_key(sb, p_cpu_key, search_path, |
| &de); |
| |
| /* If not searching for directory entry. */ |
| |
| /* If item is found. */ |
| retval = search_item(sb, p_cpu_key, search_path); |
| if (retval == IO_ERROR) |
| return retval; |
| if (retval == ITEM_FOUND) { |
| |
| RFALSE(!ih_item_len |
| (item_head |
| (PATH_PLAST_BUFFER(search_path), |
| PATH_LAST_POSITION(search_path))), |
| "PAP-5165: item length equals zero"); |
| |
| pos_in_item(search_path) = 0; |
| return POSITION_FOUND; |
| } |
| |
| RFALSE(!PATH_LAST_POSITION(search_path), |
| "PAP-5170: position equals zero"); |
| |
| /* Item is not found. Set path to the previous item. */ |
| p_le_ih = |
| item_head(PATH_PLAST_BUFFER(search_path), |
| --PATH_LAST_POSITION(search_path)); |
| blk_size = sb->s_blocksize; |
| |
| if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key)) |
| return FILE_NOT_FOUND; |
| |
| /* FIXME: quite ugly this far */ |
| |
| item_offset = le_ih_k_offset(p_le_ih); |
| offset = cpu_key_k_offset(p_cpu_key); |
| |
| /* Needed byte is contained in the item pointed to by the path. */ |
| if (item_offset <= offset && |
| item_offset + op_bytes_number(p_le_ih, blk_size) > offset) { |
| pos_in_item(search_path) = offset - item_offset; |
| if (is_indirect_le_ih(p_le_ih)) { |
| pos_in_item(search_path) /= blk_size; |
| } |
| return POSITION_FOUND; |
| } |
| |
| /* |
| * Needed byte is not contained in the item pointed to by the |
| * path. Set pos_in_item out of the item. |
| */ |
| if (is_indirect_le_ih(p_le_ih)) |
| pos_in_item(search_path) = |
| ih_item_len(p_le_ih) / UNFM_P_SIZE; |
| else |
| pos_in_item(search_path) = ih_item_len(p_le_ih); |
| |
| return POSITION_NOT_FOUND; |
| } |
| |
| /* Compare given item and item pointed to by the path. */ |
| int comp_items(const struct item_head *stored_ih, const struct treepath *path) |
| { |
| struct buffer_head *bh = PATH_PLAST_BUFFER(path); |
| struct item_head *ih; |
| |
| /* Last buffer at the path is not in the tree. */ |
| if (!B_IS_IN_TREE(bh)) |
| return 1; |
| |
| /* Last path position is invalid. */ |
| if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh)) |
| return 1; |
| |
| /* we need only to know, whether it is the same item */ |
| ih = tp_item_head(path); |
| return memcmp(stored_ih, ih, IH_SIZE); |
| } |
| |
| /* unformatted nodes are not logged anymore, ever. This is safe now */ |
| #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) |
| |
| /* block can not be forgotten as it is in I/O or held by someone */ |
| #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) |
| |
| /* prepare for delete or cut of direct item */ |
| static inline int prepare_for_direct_item(struct treepath *path, |
| struct item_head *le_ih, |
| struct inode *inode, |
| loff_t new_file_length, int *cut_size) |
| { |
| loff_t round_len; |
| |
| if (new_file_length == max_reiserfs_offset(inode)) { |
| /* item has to be deleted */ |
| *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| return M_DELETE; |
| } |
| /* new file gets truncated */ |
| if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) { |
| round_len = ROUND_UP(new_file_length); |
| /* this was new_file_length < le_ih ... */ |
| if (round_len < le_ih_k_offset(le_ih)) { |
| *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| return M_DELETE; /* Delete this item. */ |
| } |
| /* Calculate first position and size for cutting from item. */ |
| pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1); |
| *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); |
| |
| return M_CUT; /* Cut from this item. */ |
| } |
| |
| /* old file: items may have any length */ |
| |
| if (new_file_length < le_ih_k_offset(le_ih)) { |
| *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| return M_DELETE; /* Delete this item. */ |
| } |
| |
| /* Calculate first position and size for cutting from item. */ |
| *cut_size = -(ih_item_len(le_ih) - |
| (pos_in_item(path) = |
| new_file_length + 1 - le_ih_k_offset(le_ih))); |
| return M_CUT; /* Cut from this item. */ |
| } |
| |
| static inline int prepare_for_direntry_item(struct treepath *path, |
| struct item_head *le_ih, |
| struct inode *inode, |
| loff_t new_file_length, |
| int *cut_size) |
| { |
| if (le_ih_k_offset(le_ih) == DOT_OFFSET && |
| new_file_length == max_reiserfs_offset(inode)) { |
| RFALSE(ih_entry_count(le_ih) != 2, |
| "PAP-5220: incorrect empty directory item (%h)", le_ih); |
| *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| /* Delete the directory item containing "." and ".." entry. */ |
| return M_DELETE; |
| } |
| |
| if (ih_entry_count(le_ih) == 1) { |
| /* |
| * Delete the directory item such as there is one record only |
| * in this item |
| */ |
| *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| return M_DELETE; |
| } |
| |
| /* Cut one record from the directory item. */ |
| *cut_size = |
| -(DEH_SIZE + |
| entry_length(get_last_bh(path), le_ih, pos_in_item(path))); |
| return M_CUT; |
| } |
| |
| #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1) |
| |
| /* |
| * If the path points to a directory or direct item, calculate mode |
| * and the size cut, for balance. |
| * If the path points to an indirect item, remove some number of its |
| * unformatted nodes. |
| * In case of file truncate calculate whether this item must be |
| * deleted/truncated or last unformatted node of this item will be |
| * converted to a direct item. |
| * This function returns a determination of what balance mode the |
| * calling function should employ. |
| */ |
| static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, |
| struct inode *inode, |
| struct treepath *path, |
| const struct cpu_key *item_key, |
| /* |
| * Number of unformatted nodes |
| * which were removed from end |
| * of the file. |
| */ |
| int *removed, |
| int *cut_size, |
| /* MAX_KEY_OFFSET in case of delete. */ |
| unsigned long long new_file_length |
| ) |
| { |
| struct super_block *sb = inode->i_sb; |
| struct item_head *p_le_ih = tp_item_head(path); |
| struct buffer_head *bh = PATH_PLAST_BUFFER(path); |
| |
| BUG_ON(!th->t_trans_id); |
| |
| /* Stat_data item. */ |
| if (is_statdata_le_ih(p_le_ih)) { |
| |
| RFALSE(new_file_length != max_reiserfs_offset(inode), |
| "PAP-5210: mode must be M_DELETE"); |
| |
| *cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); |
| return M_DELETE; |
| } |
| |
| /* Directory item. */ |
| if (is_direntry_le_ih(p_le_ih)) |
| return prepare_for_direntry_item(path, p_le_ih, inode, |
| new_file_length, |
| cut_size); |
| |
| /* Direct item. */ |
| if (is_direct_le_ih(p_le_ih)) |
| return prepare_for_direct_item(path, p_le_ih, inode, |
| new_file_length, cut_size); |
| |
| /* Case of an indirect item. */ |
| { |
| int blk_size = sb->s_blocksize; |
| struct item_head s_ih; |
| int need_re_search; |
| int delete = 0; |
| int result = M_CUT; |
| int pos = 0; |
| |
| if ( new_file_length == max_reiserfs_offset (inode) ) { |
| /* |
| * prepare_for_delete_or_cut() is called by |
| * reiserfs_delete_item() |
| */ |
| new_file_length = 0; |
| delete = 1; |
| } |
| |
| do { |
| need_re_search = 0; |
| *cut_size = 0; |
| bh = PATH_PLAST_BUFFER(path); |
| copy_item_head(&s_ih, tp_item_head(path)); |
| pos = I_UNFM_NUM(&s_ih); |
| |
| while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) { |
| __le32 *unfm; |
| __u32 block; |
| |
| /* |
| * Each unformatted block deletion may involve |
| * one additional bitmap block into the transaction, |
| * thereby the initial journal space reservation |
| * might not be enough. |
| */ |
| if (!delete && (*cut_size) != 0 && |
| reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) |
| break; |
| |
| unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1; |
| block = get_block_num(unfm, 0); |
| |
| if (block != 0) { |
| reiserfs_prepare_for_journal(sb, bh, 1); |
| put_block_num(unfm, 0, 0); |
| journal_mark_dirty(th, bh); |
| reiserfs_free_block(th, inode, block, 1); |
| } |
| |
| reiserfs_cond_resched(sb); |
| |
| if (item_moved (&s_ih, path)) { |
| need_re_search = 1; |
| break; |
| } |
| |
| pos --; |
| (*removed)++; |
| (*cut_size) -= UNFM_P_SIZE; |
| |
| if (pos == 0) { |
| (*cut_size) -= IH_SIZE; |
| result = M_DELETE; |
| break; |
| } |
| } |
| /* |
| * a trick. If the buffer has been logged, this will |
| * do nothing. If we've broken the loop without logging |
| * it, it will restore the buffer |
| */ |
| reiserfs_restore_prepared_buffer(sb, bh); |
| } while (need_re_search && |
| search_for_position_by_key(sb, item_key, path) == POSITION_FOUND); |
| pos_in_item(path) = pos * UNFM_P_SIZE; |
| |
| if (*cut_size == 0) { |
| /* |
| * Nothing was cut. maybe convert last unformatted node to the |
| * direct item? |
| */ |
| result = M_CONVERT; |
| } |
| return result; |
| } |
| } |
| |
| /* Calculate number of bytes which will be deleted or cut during balance */ |
| static int calc_deleted_bytes_number(struct tree_balance *tb, char mode) |
| { |
| int del_size; |
| struct item_head *p_le_ih = tp_item_head(tb->tb_path); |
| |
| if (is_statdata_le_ih(p_le_ih)) |
| return 0; |
| |
| del_size = |
| (mode == |
| M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0]; |
| if (is_direntry_le_ih(p_le_ih)) { |
| /* |
| * return EMPTY_DIR_SIZE; We delete emty directories only. |
| * we can't use EMPTY_DIR_SIZE, as old format dirs have a |
| * different empty size. ick. FIXME, is this right? |
| */ |
| return del_size; |
| } |
| |
| if (is_indirect_le_ih(p_le_ih)) |
| del_size = (del_size / UNFM_P_SIZE) * |
| (PATH_PLAST_BUFFER(tb->tb_path)->b_size); |
| return del_size; |
| } |
| |
| static void init_tb_struct(struct reiserfs_transaction_handle *th, |
| struct tree_balance *tb, |
| struct super_block *sb, |
| struct treepath *path, int size) |
| { |
| |
| BUG_ON(!th->t_trans_id); |
| |
| memset(tb, '\0', sizeof(struct tree_balance)); |
| tb->transaction_handle = th; |
| tb->tb_sb = sb; |
| tb->tb_path = path; |
| PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; |
| PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; |
| tb->insert_size[0] = size; |
| } |
| |
| void padd_item(char *item, int total_length, int length) |
| { |
| int i; |
| |
| for (i = total_length; i > length;) |
| item[--i] = 0; |
| } |
| |
| #ifdef REISERQUOTA_DEBUG |
| char key2type(struct reiserfs_key *ih) |
| { |
| if (is_direntry_le_key(2, ih)) |
| return 'd'; |
| if (is_direct_le_key(2, ih)) |
| return 'D'; |
| if (is_indirect_le_key(2, ih)) |
| return 'i'; |
| if (is_statdata_le_key(2, ih)) |
| return 's'; |
| return 'u'; |
| } |
| |
| char head2type(struct item_head *ih) |
| { |
| if (is_direntry_le_ih(ih)) |
| return 'd'; |
| if (is_direct_le_ih(ih)) |
| return 'D'; |
| if (is_indirect_le_ih(ih)) |
| return 'i'; |
| if (is_statdata_le_ih(ih)) |
| return 's'; |
| return 'u'; |
| } |
| #endif |
| |
| /* |
| * Delete object item. |
| * th - active transaction handle |
| * path - path to the deleted item |
| * item_key - key to search for the deleted item |
| * indode - used for updating i_blocks and quotas |
| * un_bh - NULL or unformatted node pointer |
| */ |
| int reiserfs_delete_item(struct reiserfs_transaction_handle *th, |
| struct treepath *path, const struct cpu_key *item_key, |
| struct inode *inode, struct buffer_head *un_bh) |
| { |
| struct super_block *sb = inode->i_sb; |
| struct tree_balance s_del_balance; |
| struct item_head s_ih; |
| struct item_head *q_ih; |
| int quota_cut_bytes; |
| int ret_value, del_size, removed; |
| int depth; |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| char mode; |
| int iter = 0; |
| #endif |
| |
| BUG_ON(!th->t_trans_id); |
| |
| init_tb_struct(th, &s_del_balance, sb, path, |
| 0 /*size is unknown */ ); |
| |
| while (1) { |
| removed = 0; |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| iter++; |
| mode = |
| #endif |
| prepare_for_delete_or_cut(th, inode, path, |
| item_key, &removed, |
| &del_size, |
| max_reiserfs_offset(inode)); |
| |
| RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); |
| |
| copy_item_head(&s_ih, tp_item_head(path)); |
| s_del_balance.insert_size[0] = del_size; |
| |
| ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); |
| if (ret_value != REPEAT_SEARCH) |
| break; |
| |
| PROC_INFO_INC(sb, delete_item_restarted); |
| |
| /* file system changed, repeat search */ |
| ret_value = |
| search_for_position_by_key(sb, item_key, path); |
| if (ret_value == IO_ERROR) |
| break; |
| if (ret_value == FILE_NOT_FOUND) { |
| reiserfs_warning(sb, "vs-5340", |
| "no items of the file %K found", |
| item_key); |
| break; |
| } |
| } /* while (1) */ |
| |
| if (ret_value != CARRY_ON) { |
| unfix_nodes(&s_del_balance); |
| return 0; |
| } |
| |
| /* reiserfs_delete_item returns item length when success */ |
| ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); |
| q_ih = tp_item_head(path); |
| quota_cut_bytes = ih_item_len(q_ih); |
| |
| /* |
| * hack so the quota code doesn't have to guess if the file has a |
| * tail. On tail insert, we allocate quota for 1 unformatted node. |
| * We test the offset because the tail might have been |
| * split into multiple items, and we only want to decrement for |
| * the unfm node once |
| */ |
| if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) { |
| if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) { |
| quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; |
| } else { |
| quota_cut_bytes = 0; |
| } |
| } |
| |
| if (un_bh) { |
| int off; |
| char *data; |
| |
| /* |
| * We are in direct2indirect conversion, so move tail contents |
| * to the unformatted node |
| */ |
| /* |
| * note, we do the copy before preparing the buffer because we |
| * don't care about the contents of the unformatted node yet. |
| * the only thing we really care about is the direct item's |
| * data is in the unformatted node. |
| * |
| * Otherwise, we would have to call |
| * reiserfs_prepare_for_journal on the unformatted node, |
| * which might schedule, meaning we'd have to loop all the |
| * way back up to the start of the while loop. |
| * |
| * The unformatted node must be dirtied later on. We can't be |
| * sure here if the entire tail has been deleted yet. |
| * |
| * un_bh is from the page cache (all unformatted nodes are |
| * from the page cache) and might be a highmem page. So, we |
| * can't use un_bh->b_data. |
| * -clm |
| */ |
| |
| data = kmap_atomic(un_bh->b_page); |
| off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1)); |
| memcpy(data + off, |
| ih_item_body(PATH_PLAST_BUFFER(path), &s_ih), |
| ret_value); |
| kunmap_atomic(data); |
| } |
| |
| /* Perform balancing after all resources have been collected at once. */ |
| do_balance(&s_del_balance, NULL, NULL, M_DELETE); |
| |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(sb, REISERFS_DEBUG_CODE, |
| "reiserquota delete_item(): freeing %u, id=%u type=%c", |
| quota_cut_bytes, inode->i_uid, head2type(&s_ih)); |
| #endif |
| depth = reiserfs_write_unlock_nested(inode->i_sb); |
| dquot_free_space_nodirty(inode, quota_cut_bytes); |
| reiserfs_write_lock_nested(inode->i_sb, depth); |
| |
| /* Return deleted body length */ |
| return ret_value; |
| } |
| |
| /* |
| * Summary Of Mechanisms For Handling Collisions Between Processes: |
| * |
| * deletion of the body of the object is performed by iput(), with the |
| * result that if multiple processes are operating on a file, the |
| * deletion of the body of the file is deferred until the last process |
| * that has an open inode performs its iput(). |
| * |
| * writes and truncates are protected from collisions by use of |
| * semaphores. |
| * |
| * creates, linking, and mknod are protected from collisions with other |
| * processes by making the reiserfs_add_entry() the last step in the |
| * creation, and then rolling back all changes if there was a collision. |
| * - Hans |
| */ |
| |
| /* this deletes item which never gets split */ |
| void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, |
| struct inode *inode, struct reiserfs_key *key) |
| { |
| struct super_block *sb = th->t_super; |
| struct tree_balance tb; |
| INITIALIZE_PATH(path); |
| int item_len = 0; |
| int tb_init = 0; |
| struct cpu_key cpu_key; |
| int retval; |
| int quota_cut_bytes = 0; |
| |
| BUG_ON(!th->t_trans_id); |
| |
| le_key2cpu_key(&cpu_key, key); |
| |
| while (1) { |
| retval = search_item(th->t_super, &cpu_key, &path); |
| if (retval == IO_ERROR) { |
| reiserfs_error(th->t_super, "vs-5350", |
| "i/o failure occurred trying " |
| "to delete %K", &cpu_key); |
| break; |
| } |
| if (retval != ITEM_FOUND) { |
| pathrelse(&path); |
| /* |
| * No need for a warning, if there is just no free |
| * space to insert '..' item into the |
| * newly-created subdir |
| */ |
| if (! |
| ((unsigned long long) |
| GET_HASH_VALUE(le_key_k_offset |
| (le_key_version(key), key)) == 0 |
| && (unsigned long long) |
| GET_GENERATION_NUMBER(le_key_k_offset |
| (le_key_version(key), |
| key)) == 1)) |
| reiserfs_warning(th->t_super, "vs-5355", |
| "%k not found", key); |
| break; |
| } |
| if (!tb_init) { |
| tb_init = 1; |
| item_len = ih_item_len(tp_item_head(&path)); |
| init_tb_struct(th, &tb, th->t_super, &path, |
| -(IH_SIZE + item_len)); |
| } |
| quota_cut_bytes = ih_item_len(tp_item_head(&path)); |
| |
| retval = fix_nodes(M_DELETE, &tb, NULL, NULL); |
| if (retval == REPEAT_SEARCH) { |
| PROC_INFO_INC(th->t_super, delete_solid_item_restarted); |
| continue; |
| } |
| |
| if (retval == CARRY_ON) { |
| do_balance(&tb, NULL, NULL, M_DELETE); |
| /* |
| * Should we count quota for item? (we don't |
| * count quotas for save-links) |
| */ |
| if (inode) { |
| int depth; |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, |
| "reiserquota delete_solid_item(): freeing %u id=%u type=%c", |
| quota_cut_bytes, inode->i_uid, |
| key2type(key)); |
| #endif |
| depth = reiserfs_write_unlock_nested(sb); |
| dquot_free_space_nodirty(inode, |
| quota_cut_bytes); |
| reiserfs_write_lock_nested(sb, depth); |
| } |
| break; |
| } |
| |
| /* IO_ERROR, NO_DISK_SPACE, etc */ |
| reiserfs_warning(th->t_super, "vs-5360", |
| "could not delete %K due to fix_nodes failure", |
| &cpu_key); |
| unfix_nodes(&tb); |
| break; |
| } |
| |
| reiserfs_check_path(&path); |
| } |
| |
| int reiserfs_delete_object(struct reiserfs_transaction_handle *th, |
| struct inode *inode) |
| { |
| int err; |
| inode->i_size = 0; |
| BUG_ON(!th->t_trans_id); |
| |
| /* for directory this deletes item containing "." and ".." */ |
| err = |
| reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ ); |
| if (err) |
| return err; |
| |
| #if defined( USE_INODE_GENERATION_COUNTER ) |
| if (!old_format_only(th->t_super)) { |
| __le32 *inode_generation; |
| |
| inode_generation = |
| &REISERFS_SB(th->t_super)->s_rs->s_inode_generation; |
| le32_add_cpu(inode_generation, 1); |
| } |
| /* USE_INODE_GENERATION_COUNTER */ |
| #endif |
| reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); |
| |
| return err; |
| } |
| |
| static void unmap_buffers(struct page *page, loff_t pos) |
| { |
| struct buffer_head *bh; |
| struct buffer_head *head; |
| struct buffer_head *next; |
| unsigned long tail_index; |
| unsigned long cur_index; |
| |
| if (page) { |
| if (page_has_buffers(page)) { |
| tail_index = pos & (PAGE_CACHE_SIZE - 1); |
| cur_index = 0; |
| head = page_buffers(page); |
| bh = head; |
| do { |
| next = bh->b_this_page; |
| |
| /* |
| * we want to unmap the buffers that contain |
| * the tail, and all the buffers after it |
| * (since the tail must be at the end of the |
| * file). We don't want to unmap file data |
| * before the tail, since it might be dirty |
| * and waiting to reach disk |
| */ |
| cur_index += bh->b_size; |
| if (cur_index > tail_index) { |
| reiserfs_unmap_buffer(bh); |
| } |
| bh = next; |
| } while (bh != head); |
| } |
| } |
| } |
| |
| static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th, |
| struct inode *inode, |
| struct page *page, |
| struct treepath *path, |
| const struct cpu_key *item_key, |
| loff_t new_file_size, char *mode) |
| { |
| struct super_block *sb = inode->i_sb; |
| int block_size = sb->s_blocksize; |
| int cut_bytes; |
| BUG_ON(!th->t_trans_id); |
| BUG_ON(new_file_size != inode->i_size); |
| |
| /* |
| * the page being sent in could be NULL if there was an i/o error |
| * reading in the last block. The user will hit problems trying to |
| * read the file, but for now we just skip the indirect2direct |
| */ |
| if (atomic_read(&inode->i_count) > 1 || |
| !tail_has_to_be_packed(inode) || |
| !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) { |
| /* leave tail in an unformatted node */ |
| *mode = M_SKIP_BALANCING; |
| cut_bytes = |
| block_size - (new_file_size & (block_size - 1)); |
| pathrelse(path); |
| return cut_bytes; |
| } |
| |
| /* Perform the conversion to a direct_item. */ |
| return indirect2direct(th, inode, page, path, item_key, |
| new_file_size, mode); |
| } |
| |
| /* |
| * we did indirect_to_direct conversion. And we have inserted direct |
| * item successesfully, but there were no disk space to cut unfm |
| * pointer being converted. Therefore we have to delete inserted |
| * direct item(s) |
| */ |
| static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th, |
| struct inode *inode, struct treepath *path) |
| { |
| struct cpu_key tail_key; |
| int tail_len; |
| int removed; |
| BUG_ON(!th->t_trans_id); |
| |
| make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); |
| tail_key.key_length = 4; |
| |
| tail_len = |
| (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; |
| while (tail_len) { |
| /* look for the last byte of the tail */ |
| if (search_for_position_by_key(inode->i_sb, &tail_key, path) == |
| POSITION_NOT_FOUND) |
| reiserfs_panic(inode->i_sb, "vs-5615", |
| "found invalid item"); |
| RFALSE(path->pos_in_item != |
| ih_item_len(tp_item_head(path)) - 1, |
| "vs-5616: appended bytes found"); |
| PATH_LAST_POSITION(path)--; |
| |
| removed = |
| reiserfs_delete_item(th, path, &tail_key, inode, |
| NULL /*unbh not needed */ ); |
| RFALSE(removed <= 0 |
| || removed > tail_len, |
| "vs-5617: there was tail %d bytes, removed item length %d bytes", |
| tail_len, removed); |
| tail_len -= removed; |
| set_cpu_key_k_offset(&tail_key, |
| cpu_key_k_offset(&tail_key) - removed); |
| } |
| reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct " |
| "conversion has been rolled back due to " |
| "lack of disk space"); |
| mark_inode_dirty(inode); |
| } |
| |
| /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ |
| int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, |
| struct treepath *path, |
| struct cpu_key *item_key, |
| struct inode *inode, |
| struct page *page, loff_t new_file_size) |
| { |
| struct super_block *sb = inode->i_sb; |
| /* |
| * Every function which is going to call do_balance must first |
| * create a tree_balance structure. Then it must fill up this |
| * structure by using the init_tb_struct and fix_nodes functions. |
| * After that we can make tree balancing. |
| */ |
| struct tree_balance s_cut_balance; |
| struct item_head *p_le_ih; |
| int cut_size = 0; /* Amount to be cut. */ |
| int ret_value = CARRY_ON; |
| int removed = 0; /* Number of the removed unformatted nodes. */ |
| int is_inode_locked = 0; |
| char mode; /* Mode of the balance. */ |
| int retval2 = -1; |
| int quota_cut_bytes; |
| loff_t tail_pos = 0; |
| int depth; |
| |
| BUG_ON(!th->t_trans_id); |
| |
| init_tb_struct(th, &s_cut_balance, inode->i_sb, path, |
| cut_size); |
| |
| /* |
| * Repeat this loop until we either cut the item without needing |
| * to balance, or we fix_nodes without schedule occurring |
| */ |
| while (1) { |
| /* |
| * Determine the balance mode, position of the first byte to |
| * be cut, and size to be cut. In case of the indirect item |
| * free unformatted nodes which are pointed to by the cut |
| * pointers. |
| */ |
| |
| mode = |
| prepare_for_delete_or_cut(th, inode, path, |
| item_key, &removed, |
| &cut_size, new_file_size); |
| if (mode == M_CONVERT) { |
| /* |
| * convert last unformatted node to direct item or |
| * leave tail in the unformatted node |
| */ |
| RFALSE(ret_value != CARRY_ON, |
| "PAP-5570: can not convert twice"); |
| |
| ret_value = |
| maybe_indirect_to_direct(th, inode, page, |
| path, item_key, |
| new_file_size, &mode); |
| if (mode == M_SKIP_BALANCING) |
| /* tail has been left in the unformatted node */ |
| return ret_value; |
| |
| is_inode_locked = 1; |
| |
| /* |
| * removing of last unformatted node will |
| * change value we have to return to truncate. |
| * Save it |
| */ |
| retval2 = ret_value; |
| |
| /* |
| * So, we have performed the first part of the |
| * conversion: |
| * inserting the new direct item. Now we are |
| * removing the last unformatted node pointer. |
| * Set key to search for it. |
| */ |
| set_cpu_key_k_type(item_key, TYPE_INDIRECT); |
| item_key->key_length = 4; |
| new_file_size -= |
| (new_file_size & (sb->s_blocksize - 1)); |
| tail_pos = new_file_size; |
| set_cpu_key_k_offset(item_key, new_file_size + 1); |
| if (search_for_position_by_key |
| (sb, item_key, |
| path) == POSITION_NOT_FOUND) { |
| print_block(PATH_PLAST_BUFFER(path), 3, |
| PATH_LAST_POSITION(path) - 1, |
| PATH_LAST_POSITION(path) + 1); |
| reiserfs_panic(sb, "PAP-5580", "item to " |
| "convert does not exist (%K)", |
| item_key); |
| } |
| continue; |
| } |
| if (cut_size == 0) { |
| pathrelse(path); |
| return 0; |
| } |
| |
| s_cut_balance.insert_size[0] = cut_size; |
| |
| ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL); |
| if (ret_value != REPEAT_SEARCH) |
| break; |
| |
| PROC_INFO_INC(sb, cut_from_item_restarted); |
| |
| ret_value = |
| search_for_position_by_key(sb, item_key, path); |
| if (ret_value == POSITION_FOUND) |
| continue; |
| |
| reiserfs_warning(sb, "PAP-5610", "item %K not found", |
| item_key); |
| unfix_nodes(&s_cut_balance); |
| return (ret_value == IO_ERROR) ? -EIO : -ENOENT; |
| } /* while */ |
| |
| /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */ |
| if (ret_value != CARRY_ON) { |
| if (is_inode_locked) { |
| /* |
| * FIXME: this seems to be not needed: we are always |
| * able to cut item |
| */ |
| indirect_to_direct_roll_back(th, inode, path); |
| } |
| if (ret_value == NO_DISK_SPACE) |
| reiserfs_warning(sb, "reiserfs-5092", |
| "NO_DISK_SPACE"); |
| unfix_nodes(&s_cut_balance); |
| return -EIO; |
| } |
| |
| /* go ahead and perform balancing */ |
| |
| RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode"); |
| |
| /* Calculate number of bytes that need to be cut from the item. */ |
| quota_cut_bytes = |
| (mode == |
| M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance. |
| insert_size[0]; |
| if (retval2 == -1) |
| ret_value = calc_deleted_bytes_number(&s_cut_balance, mode); |
| else |
| ret_value = retval2; |
| |
| /* |
| * For direct items, we only change the quota when deleting the last |
| * item. |
| */ |
| p_le_ih = tp_item_head(s_cut_balance.tb_path); |
| if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) { |
| if (mode == M_DELETE && |
| (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) == |
| 1) { |
| /* FIXME: this is to keep 3.5 happy */ |
| REISERFS_I(inode)->i_first_direct_byte = U32_MAX; |
| quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; |
| } else { |
| quota_cut_bytes = 0; |
| } |
| } |
| #ifdef CONFIG_REISERFS_CHECK |
| if (is_inode_locked) { |
| struct item_head *le_ih = |
| tp_item_head(s_cut_balance.tb_path); |
| /* |
| * we are going to complete indirect2direct conversion. Make |
| * sure, that we exactly remove last unformatted node pointer |
| * of the item |
| */ |
| if (!is_indirect_le_ih(le_ih)) |
| reiserfs_panic(sb, "vs-5652", |
| "item must be indirect %h", le_ih); |
| |
| if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) |
| reiserfs_panic(sb, "vs-5653", "completing " |
| "indirect2direct conversion indirect " |
| "item %h being deleted must be of " |
| "4 byte long", le_ih); |
| |
| if (mode == M_CUT |
| && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { |
| reiserfs_panic(sb, "vs-5654", "can not complete " |
| "indirect2direct conversion of %h " |
| "(CUT, insert_size==%d)", |
| le_ih, s_cut_balance.insert_size[0]); |
| } |
| /* |
| * it would be useful to make sure, that right neighboring |
| * item is direct item of this file |
| */ |
| } |
| #endif |
| |
| do_balance(&s_cut_balance, NULL, NULL, mode); |
| if (is_inode_locked) { |
| /* |
| * we've done an indirect->direct conversion. when the |
| * data block was freed, it was removed from the list of |
| * blocks that must be flushed before the transaction |
| * commits, make sure to unmap and invalidate it |
| */ |
| unmap_buffers(page, tail_pos); |
| REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; |
| } |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| "reiserquota cut_from_item(): freeing %u id=%u type=%c", |
| quota_cut_bytes, inode->i_uid, '?'); |
| #endif |
| depth = reiserfs_write_unlock_nested(sb); |
| dquot_free_space_nodirty(inode, quota_cut_bytes); |
| reiserfs_write_lock_nested(sb, depth); |
| return ret_value; |
| } |
| |
| static void truncate_directory(struct reiserfs_transaction_handle *th, |
| struct inode *inode) |
| { |
| BUG_ON(!th->t_trans_id); |
| if (inode->i_nlink) |
| reiserfs_error(inode->i_sb, "vs-5655", "link count != 0"); |
| |
| set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET); |
| set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY); |
| reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); |
| reiserfs_update_sd(th, inode); |
| set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET); |
| set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA); |
| } |
| |
| /* |
| * Truncate file to the new size. Note, this must be called with a |
| * transaction already started |
| */ |
| int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, |
| struct inode *inode, /* ->i_size contains new size */ |
| struct page *page, /* up to date for last block */ |
| /* |
| * when it is called by file_release to convert |
| * the tail - no timestamps should be updated |
| */ |
| int update_timestamps |
| ) |
| { |
| INITIALIZE_PATH(s_search_path); /* Path to the current object item. */ |
| struct item_head *p_le_ih; /* Pointer to an item header. */ |
| |
| /* Key to search for a previous file item. */ |
| struct cpu_key s_item_key; |
| loff_t file_size, /* Old file size. */ |
| new_file_size; /* New file size. */ |
| int deleted; /* Number of deleted or truncated bytes. */ |
| int retval; |
| int err = 0; |
| |
| BUG_ON(!th->t_trans_id); |
| if (! |
| (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) |
| || S_ISLNK(inode->i_mode))) |
| return 0; |
| |
| /* deletion of directory - no need to update timestamps */ |
| if (S_ISDIR(inode->i_mode)) { |
| truncate_directory(th, inode); |
| return 0; |
| } |
| |
| /* Get new file size. */ |
| new_file_size = inode->i_size; |
| |
| /* FIXME: note, that key type is unimportant here */ |
| make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode), |
| TYPE_DIRECT, 3); |
| |
| retval = |
| search_for_position_by_key(inode->i_sb, &s_item_key, |
| &s_search_path); |
| if (retval == IO_ERROR) { |
| reiserfs_error(inode->i_sb, "vs-5657", |
| "i/o failure occurred trying to truncate %K", |
| &s_item_key); |
| err = -EIO; |
| goto out; |
| } |
| if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { |
| reiserfs_error(inode->i_sb, "PAP-5660", |
| "wrong result %d of search for %K", retval, |
| &s_item_key); |
| |
| err = -EIO; |
| goto out; |
| } |
| |
| s_search_path.pos_in_item--; |
| |
| /* Get real file size (total length of all file items) */ |
| p_le_ih = tp_item_head(&s_search_path); |
| if (is_statdata_le_ih(p_le_ih)) |
| file_size = 0; |
| else { |
| loff_t offset = le_ih_k_offset(p_le_ih); |
| int bytes = |
| op_bytes_number(p_le_ih, inode->i_sb->s_blocksize); |
| |
| /* |
| * this may mismatch with real file size: if last direct item |
| * had no padding zeros and last unformatted node had no free |
| * space, this file would have this file size |
| */ |
| file_size = offset + bytes - 1; |
| } |
| /* |
| * are we doing a full truncate or delete, if so |
| * kick in the reada code |
| */ |
| if (new_file_size == 0) |
| s_search_path.reada = PATH_READA | PATH_READA_BACK; |
| |
| if (file_size == 0 || file_size < new_file_size) { |
| goto update_and_out; |
| } |
| |
| /* Update key to search for the last file item. */ |
| set_cpu_key_k_offset(&s_item_key, file_size); |
| |
| do { |
| /* Cut or delete file item. */ |
| deleted = |
| reiserfs_cut_from_item(th, &s_search_path, &s_item_key, |
| inode, page, new_file_size); |
| if (deleted < 0) { |
| reiserfs_warning(inode->i_sb, "vs-5665", |
| "reiserfs_cut_from_item failed"); |
| reiserfs_check_path(&s_search_path); |
| return 0; |
| } |
| |
| RFALSE(deleted > file_size, |
| "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", |
| deleted, file_size, &s_item_key); |
| |
| /* Change key to search the last file item. */ |
| file_size -= deleted; |
| |
| set_cpu_key_k_offset(&s_item_key, file_size); |
| |
| /* |
| * While there are bytes to truncate and previous |
| * file item is presented in the tree. |
| */ |
| |
| /* |
| * This loop could take a really long time, and could log |
| * many more blocks than a transaction can hold. So, we do |
| * a polite journal end here, and if the transaction needs |
| * ending, we make sure the file is consistent before ending |
| * the current trans and starting a new one |
| */ |
| if (journal_transaction_should_end(th, 0) || |
| reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { |
| pathrelse(&s_search_path); |
| |
| if (update_timestamps) { |
| inode->i_mtime = CURRENT_TIME_SEC; |
| inode->i_ctime = CURRENT_TIME_SEC; |
| } |
| reiserfs_update_sd(th, inode); |
| |
| err = journal_end(th); |
| if (err) |
| goto out; |
| err = journal_begin(th, inode->i_sb, |
| JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ; |
| if (err) |
| goto out; |
| reiserfs_update_inode_transaction(inode); |
| } |
| } while (file_size > ROUND_UP(new_file_size) && |
| search_for_position_by_key(inode->i_sb, &s_item_key, |
| &s_search_path) == POSITION_FOUND); |
| |
| RFALSE(file_size > ROUND_UP(new_file_size), |
| "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d", |
| new_file_size, file_size, s_item_key.on_disk_key.k_objectid); |
| |
| update_and_out: |
| if (update_timestamps) { |
| /* this is truncate, not file closing */ |
| inode->i_mtime = CURRENT_TIME_SEC; |
| inode->i_ctime = CURRENT_TIME_SEC; |
| } |
| reiserfs_update_sd(th, inode); |
| |
| out: |
| pathrelse(&s_search_path); |
| return err; |
| } |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| /* this makes sure, that we __append__, not overwrite or add holes */ |
| static void check_research_for_paste(struct treepath *path, |
| const struct cpu_key *key) |
| { |
| struct item_head *found_ih = tp_item_head(path); |
| |
| if (is_direct_le_ih(found_ih)) { |
| if (le_ih_k_offset(found_ih) + |
| op_bytes_number(found_ih, |
| get_last_bh(path)->b_size) != |
| cpu_key_k_offset(key) |
| || op_bytes_number(found_ih, |
| get_last_bh(path)->b_size) != |
| pos_in_item(path)) |
| reiserfs_panic(NULL, "PAP-5720", "found direct item " |
| "%h or position (%d) does not match " |
| "to key %K", found_ih, |
| pos_in_item(path), key); |
| } |
| if (is_indirect_le_ih(found_ih)) { |
| if (le_ih_k_offset(found_ih) + |
| op_bytes_number(found_ih, |
| get_last_bh(path)->b_size) != |
| cpu_key_k_offset(key) |
| || I_UNFM_NUM(found_ih) != pos_in_item(path) |
| || get_ih_free_space(found_ih) != 0) |
| reiserfs_panic(NULL, "PAP-5730", "found indirect " |
| "item (%h) or position (%d) does not " |
| "match to key (%K)", |
| found_ih, pos_in_item(path), key); |
| } |
| } |
| #endif /* config reiserfs check */ |
| |
| /* |
| * Paste bytes to the existing item. |
| * Returns bytes number pasted into the item. |
| */ |
| int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, |
| /* Path to the pasted item. */ |
| struct treepath *search_path, |
| /* Key to search for the needed item. */ |
| const struct cpu_key *key, |
| /* Inode item belongs to */ |
| struct inode *inode, |
| /* Pointer to the bytes to paste. */ |
| const char *body, |
| /* Size of pasted bytes. */ |
| int pasted_size) |
| { |
| struct super_block *sb = inode->i_sb; |
| struct tree_balance s_paste_balance; |
| int retval; |
| int fs_gen; |
| int depth; |
| |
| BUG_ON(!th->t_trans_id); |
| |
| fs_gen = get_generation(inode->i_sb); |
| |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| "reiserquota paste_into_item(): allocating %u id=%u type=%c", |
| pasted_size, inode->i_uid, |
| key2type(&key->on_disk_key)); |
| #endif |
| |
| depth = reiserfs_write_unlock_nested(sb); |
| retval = dquot_alloc_space_nodirty(inode, pasted_size); |
| reiserfs_write_lock_nested(sb, depth); |
| if (retval) { |
| pathrelse(search_path); |
| return retval; |
| } |
| init_tb_struct(th, &s_paste_balance, th->t_super, search_path, |
| pasted_size); |
| #ifdef DISPLACE_NEW_PACKING_LOCALITIES |
| s_paste_balance.key = key->on_disk_key; |
| #endif |
| |
| /* DQUOT_* can schedule, must check before the fix_nodes */ |
| if (fs_changed(fs_gen, inode->i_sb)) { |
| goto search_again; |
| } |
| |
| while ((retval = |
| fix_nodes(M_PASTE, &s_paste_balance, NULL, |
| body)) == REPEAT_SEARCH) { |
| search_again: |
| /* file system changed while we were in the fix_nodes */ |
| PROC_INFO_INC(th->t_super, paste_into_item_restarted); |
| retval = |
| search_for_position_by_key(th->t_super, key, |
| search_path); |
| if (retval == IO_ERROR) { |
| retval = -EIO; |
| goto error_out; |
| } |
| if (retval == POSITION_FOUND) { |
| reiserfs_warning(inode->i_sb, "PAP-5710", |
| "entry or pasted byte (%K) exists", |
| key); |
| retval = -EEXIST; |
| goto error_out; |
| } |
| #ifdef CONFIG_REISERFS_CHECK |
| check_research_for_paste(search_path, key); |
| #endif |
| } |
| |
| /* |
| * Perform balancing after all resources are collected by fix_nodes, |
| * and accessing them will not risk triggering schedule. |
| */ |
| if (retval == CARRY_ON) { |
| do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE); |
| return 0; |
| } |
| retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; |
| error_out: |
| /* this also releases the path */ |
| unfix_nodes(&s_paste_balance); |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| "reiserquota paste_into_item(): freeing %u id=%u type=%c", |
| pasted_size, inode->i_uid, |
| key2type(&key->on_disk_key)); |
| #endif |
| depth = reiserfs_write_unlock_nested(sb); |
| dquot_free_space_nodirty(inode, pasted_size); |
| reiserfs_write_lock_nested(sb, depth); |
| return retval; |
| } |
| |
| /* |
| * Insert new item into the buffer at the path. |
| * th - active transaction handle |
| * path - path to the inserted item |
| * ih - pointer to the item header to insert |
| * body - pointer to the bytes to insert |
| */ |
| int reiserfs_insert_item(struct reiserfs_transaction_handle *th, |
| struct treepath *path, const struct cpu_key *key, |
| struct item_head *ih, struct inode *inode, |
| const char *body) |
| { |
| struct tree_balance s_ins_balance; |
| int retval; |
| int fs_gen = 0; |
| int quota_bytes = 0; |
| |
| BUG_ON(!th->t_trans_id); |
| |
| if (inode) { /* Do we count quotas for item? */ |
| int depth; |
| fs_gen = get_generation(inode->i_sb); |
| quota_bytes = ih_item_len(ih); |
| |
| /* |
| * hack so the quota code doesn't have to guess |
| * if the file has a tail, links are always tails, |
| * so there's no guessing needed |
| */ |
| if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih)) |
| quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE; |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| "reiserquota insert_item(): allocating %u id=%u type=%c", |
| quota_bytes, inode->i_uid, head2type(ih)); |
| #endif |
| /* |
| * We can't dirty inode here. It would be immediately |
| * written but appropriate stat item isn't inserted yet... |
| */ |
| depth = reiserfs_write_unlock_nested(inode->i_sb); |
| retval = dquot_alloc_space_nodirty(inode, quota_bytes); |
| reiserfs_write_lock_nested(inode->i_sb, depth); |
| if (retval) { |
| pathrelse(path); |
| return retval; |
| } |
| } |
| init_tb_struct(th, &s_ins_balance, th->t_super, path, |
| IH_SIZE + ih_item_len(ih)); |
| #ifdef DISPLACE_NEW_PACKING_LOCALITIES |
| s_ins_balance.key = key->on_disk_key; |
| #endif |
| /* |
| * DQUOT_* can schedule, must check to be sure calling |
| * fix_nodes is safe |
| */ |
| if (inode && fs_changed(fs_gen, inode->i_sb)) { |
| goto search_again; |
| } |
| |
| while ((retval = |
| fix_nodes(M_INSERT, &s_ins_balance, ih, |
| body)) == REPEAT_SEARCH) { |
| search_again: |
| /* file system changed while we were in the fix_nodes */ |
| PROC_INFO_INC(th->t_super, insert_item_restarted); |
| retval = search_item(th->t_super, key, path); |
| if (retval == IO_ERROR) { |
| retval = -EIO; |
| goto error_out; |
| } |
| if (retval == ITEM_FOUND) { |
| reiserfs_warning(th->t_super, "PAP-5760", |
| "key %K already exists in the tree", |
| key); |
| retval = -EEXIST; |
| goto error_out; |
| } |
| } |
| |
| /* make balancing after all resources will be collected at a time */ |
| if (retval == CARRY_ON) { |
| do_balance(&s_ins_balance, ih, body, M_INSERT); |
| return 0; |
| } |
| |
| retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; |
| error_out: |
| /* also releases the path */ |
| unfix_nodes(&s_ins_balance); |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, |
| "reiserquota insert_item(): freeing %u id=%u type=%c", |
| quota_bytes, inode->i_uid, head2type(ih)); |
| #endif |
| if (inode) { |
| int depth = reiserfs_write_unlock_nested(inode->i_sb); |
| dquot_free_space_nodirty(inode, quota_bytes); |
| reiserfs_write_lock_nested(inode->i_sb, depth); |
| } |
| return retval; |
| } |