| /* |
| * super.c |
| * |
| * Copyright (c) 1999 Al Smith |
| * |
| * Portions derived from work (c) 1995,1996 Christian Vogelgsang. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/exportfs.h> |
| #include <linux/slab.h> |
| #include <linux/buffer_head.h> |
| #include <linux/vfs.h> |
| |
| #include "efs.h" |
| #include <linux/efs_vh.h> |
| #include <linux/efs_fs_sb.h> |
| |
| static int efs_statfs(struct dentry *dentry, struct kstatfs *buf); |
| static int efs_fill_super(struct super_block *s, void *d, int silent); |
| |
| static struct dentry *efs_mount(struct file_system_type *fs_type, |
| int flags, const char *dev_name, void *data) |
| { |
| return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super); |
| } |
| |
| static void efs_kill_sb(struct super_block *s) |
| { |
| struct efs_sb_info *sbi = SUPER_INFO(s); |
| kill_block_super(s); |
| kfree(sbi); |
| } |
| |
| static struct file_system_type efs_fs_type = { |
| .owner = THIS_MODULE, |
| .name = "efs", |
| .mount = efs_mount, |
| .kill_sb = efs_kill_sb, |
| .fs_flags = FS_REQUIRES_DEV, |
| }; |
| MODULE_ALIAS_FS("efs"); |
| |
| static struct pt_types sgi_pt_types[] = { |
| {0x00, "SGI vh"}, |
| {0x01, "SGI trkrepl"}, |
| {0x02, "SGI secrepl"}, |
| {0x03, "SGI raw"}, |
| {0x04, "SGI bsd"}, |
| {SGI_SYSV, "SGI sysv"}, |
| {0x06, "SGI vol"}, |
| {SGI_EFS, "SGI efs"}, |
| {0x08, "SGI lv"}, |
| {0x09, "SGI rlv"}, |
| {0x0A, "SGI xfs"}, |
| {0x0B, "SGI xfslog"}, |
| {0x0C, "SGI xlv"}, |
| {0x82, "Linux swap"}, |
| {0x83, "Linux native"}, |
| {0, NULL} |
| }; |
| |
| |
| static struct kmem_cache * efs_inode_cachep; |
| |
| static struct inode *efs_alloc_inode(struct super_block *sb) |
| { |
| struct efs_inode_info *ei; |
| ei = kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL); |
| if (!ei) |
| return NULL; |
| return &ei->vfs_inode; |
| } |
| |
| static void efs_i_callback(struct rcu_head *head) |
| { |
| struct inode *inode = container_of(head, struct inode, i_rcu); |
| kmem_cache_free(efs_inode_cachep, INODE_INFO(inode)); |
| } |
| |
| static void efs_destroy_inode(struct inode *inode) |
| { |
| call_rcu(&inode->i_rcu, efs_i_callback); |
| } |
| |
| static void init_once(void *foo) |
| { |
| struct efs_inode_info *ei = (struct efs_inode_info *) foo; |
| |
| inode_init_once(&ei->vfs_inode); |
| } |
| |
| static int __init init_inodecache(void) |
| { |
| efs_inode_cachep = kmem_cache_create("efs_inode_cache", |
| sizeof(struct efs_inode_info), |
| 0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, |
| init_once); |
| if (efs_inode_cachep == NULL) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void destroy_inodecache(void) |
| { |
| /* |
| * Make sure all delayed rcu free inodes are flushed before we |
| * destroy cache. |
| */ |
| rcu_barrier(); |
| kmem_cache_destroy(efs_inode_cachep); |
| } |
| |
| static int efs_remount(struct super_block *sb, int *flags, char *data) |
| { |
| sync_filesystem(sb); |
| *flags |= MS_RDONLY; |
| return 0; |
| } |
| |
| static const struct super_operations efs_superblock_operations = { |
| .alloc_inode = efs_alloc_inode, |
| .destroy_inode = efs_destroy_inode, |
| .statfs = efs_statfs, |
| .remount_fs = efs_remount, |
| }; |
| |
| static const struct export_operations efs_export_ops = { |
| .fh_to_dentry = efs_fh_to_dentry, |
| .fh_to_parent = efs_fh_to_parent, |
| .get_parent = efs_get_parent, |
| }; |
| |
| static int __init init_efs_fs(void) { |
| int err; |
| pr_info(EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n"); |
| err = init_inodecache(); |
| if (err) |
| goto out1; |
| err = register_filesystem(&efs_fs_type); |
| if (err) |
| goto out; |
| return 0; |
| out: |
| destroy_inodecache(); |
| out1: |
| return err; |
| } |
| |
| static void __exit exit_efs_fs(void) { |
| unregister_filesystem(&efs_fs_type); |
| destroy_inodecache(); |
| } |
| |
| module_init(init_efs_fs) |
| module_exit(exit_efs_fs) |
| |
| static efs_block_t efs_validate_vh(struct volume_header *vh) { |
| int i; |
| __be32 cs, *ui; |
| int csum; |
| efs_block_t sblock = 0; /* shuts up gcc */ |
| struct pt_types *pt_entry; |
| int pt_type, slice = -1; |
| |
| if (be32_to_cpu(vh->vh_magic) != VHMAGIC) { |
| /* |
| * assume that we're dealing with a partition and allow |
| * read_super() to try and detect a valid superblock |
| * on the next block. |
| */ |
| return 0; |
| } |
| |
| ui = ((__be32 *) (vh + 1)) - 1; |
| for(csum = 0; ui >= ((__be32 *) vh);) { |
| cs = *ui--; |
| csum += be32_to_cpu(cs); |
| } |
| if (csum) { |
| pr_warn("SGI disklabel: checksum bad, label corrupted\n"); |
| return 0; |
| } |
| |
| #ifdef DEBUG |
| pr_debug("bf: \"%16s\"\n", vh->vh_bootfile); |
| |
| for(i = 0; i < NVDIR; i++) { |
| int j; |
| char name[VDNAMESIZE+1]; |
| |
| for(j = 0; j < VDNAMESIZE; j++) { |
| name[j] = vh->vh_vd[i].vd_name[j]; |
| } |
| name[j] = (char) 0; |
| |
| if (name[0]) { |
| pr_debug("vh: %8s block: 0x%08x size: 0x%08x\n", |
| name, (int) be32_to_cpu(vh->vh_vd[i].vd_lbn), |
| (int) be32_to_cpu(vh->vh_vd[i].vd_nbytes)); |
| } |
| } |
| #endif |
| |
| for(i = 0; i < NPARTAB; i++) { |
| pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type); |
| for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) { |
| if (pt_type == pt_entry->pt_type) break; |
| } |
| #ifdef DEBUG |
| if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) { |
| pr_debug("pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n", |
| i, (int)be32_to_cpu(vh->vh_pt[i].pt_firstlbn), |
| (int)be32_to_cpu(vh->vh_pt[i].pt_nblks), |
| pt_type, (pt_entry->pt_name) ? |
| pt_entry->pt_name : "unknown"); |
| } |
| #endif |
| if (IS_EFS(pt_type)) { |
| sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn); |
| slice = i; |
| } |
| } |
| |
| if (slice == -1) { |
| pr_notice("partition table contained no EFS partitions\n"); |
| #ifdef DEBUG |
| } else { |
| pr_info("using slice %d (type %s, offset 0x%x)\n", slice, |
| (pt_entry->pt_name) ? pt_entry->pt_name : "unknown", |
| sblock); |
| #endif |
| } |
| return sblock; |
| } |
| |
| static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) { |
| |
| if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic))) |
| return -1; |
| |
| sb->fs_magic = be32_to_cpu(super->fs_magic); |
| sb->total_blocks = be32_to_cpu(super->fs_size); |
| sb->first_block = be32_to_cpu(super->fs_firstcg); |
| sb->group_size = be32_to_cpu(super->fs_cgfsize); |
| sb->data_free = be32_to_cpu(super->fs_tfree); |
| sb->inode_free = be32_to_cpu(super->fs_tinode); |
| sb->inode_blocks = be16_to_cpu(super->fs_cgisize); |
| sb->total_groups = be16_to_cpu(super->fs_ncg); |
| |
| return 0; |
| } |
| |
| static int efs_fill_super(struct super_block *s, void *d, int silent) |
| { |
| struct efs_sb_info *sb; |
| struct buffer_head *bh; |
| struct inode *root; |
| |
| sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL); |
| if (!sb) |
| return -ENOMEM; |
| s->s_fs_info = sb; |
| |
| s->s_magic = EFS_SUPER_MAGIC; |
| if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) { |
| pr_err("device does not support %d byte blocks\n", |
| EFS_BLOCKSIZE); |
| return -EINVAL; |
| } |
| |
| /* read the vh (volume header) block */ |
| bh = sb_bread(s, 0); |
| |
| if (!bh) { |
| pr_err("cannot read volume header\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * if this returns zero then we didn't find any partition table. |
| * this isn't (yet) an error - just assume for the moment that |
| * the device is valid and go on to search for a superblock. |
| */ |
| sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data); |
| brelse(bh); |
| |
| if (sb->fs_start == -1) { |
| return -EINVAL; |
| } |
| |
| bh = sb_bread(s, sb->fs_start + EFS_SUPER); |
| if (!bh) { |
| pr_err("cannot read superblock\n"); |
| return -EINVAL; |
| } |
| |
| if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) { |
| #ifdef DEBUG |
| pr_warn("invalid superblock at block %u\n", |
| sb->fs_start + EFS_SUPER); |
| #endif |
| brelse(bh); |
| return -EINVAL; |
| } |
| brelse(bh); |
| |
| if (!(s->s_flags & MS_RDONLY)) { |
| #ifdef DEBUG |
| pr_info("forcing read-only mode\n"); |
| #endif |
| s->s_flags |= MS_RDONLY; |
| } |
| s->s_op = &efs_superblock_operations; |
| s->s_export_op = &efs_export_ops; |
| root = efs_iget(s, EFS_ROOTINODE); |
| if (IS_ERR(root)) { |
| pr_err("get root inode failed\n"); |
| return PTR_ERR(root); |
| } |
| |
| s->s_root = d_make_root(root); |
| if (!(s->s_root)) { |
| pr_err("get root dentry failed\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) { |
| struct super_block *sb = dentry->d_sb; |
| struct efs_sb_info *sbi = SUPER_INFO(sb); |
| u64 id = huge_encode_dev(sb->s_bdev->bd_dev); |
| |
| buf->f_type = EFS_SUPER_MAGIC; /* efs magic number */ |
| buf->f_bsize = EFS_BLOCKSIZE; /* blocksize */ |
| buf->f_blocks = sbi->total_groups * /* total data blocks */ |
| (sbi->group_size - sbi->inode_blocks); |
| buf->f_bfree = sbi->data_free; /* free data blocks */ |
| buf->f_bavail = sbi->data_free; /* free blocks for non-root */ |
| buf->f_files = sbi->total_groups * /* total inodes */ |
| sbi->inode_blocks * |
| (EFS_BLOCKSIZE / sizeof(struct efs_dinode)); |
| buf->f_ffree = sbi->inode_free; /* free inodes */ |
| buf->f_fsid.val[0] = (u32)id; |
| buf->f_fsid.val[1] = (u32)(id >> 32); |
| buf->f_namelen = EFS_MAXNAMELEN; /* max filename length */ |
| |
| return 0; |
| } |
| |