blob: 7528316b37442803bcd73430acce1369a339c325 [file] [log] [blame]
/*
* (C) Copyright 2003-2005
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* This file is based on mpc4200fec.c,
* (C) Copyright Motorola, Inc., 2000
*/
#include <common.h>
#include <mach/mpc5xxx.h>
#include <malloc.h>
#include <net.h>
#include <init.h>
#include <miidev.h>
#include <driver.h>
#include <mach/sdma.h>
#include <mach/fec.h>
#include <mach/clocks.h>
#include <miidev.h>
#include "fec_mpc5200.h"
#define CONFIG_PHY_ADDR 1 /* FIXME */
typedef struct {
uint8_t data[1500]; /* actual data */
int length; /* actual length */
int used; /* buffer in use or not */
uint8_t head[16]; /* MAC header(6 + 6 + 2) + 2(aligned) */
} NBUF;
/*
* MII-interface related functions
*/
static int fec5xxx_miidev_read(struct mii_device *mdev, int phyAddr, int regAddr)
{
struct eth_device *edev = mdev->edev;
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)edev->priv;
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
int timeout = 0xffff;
/*
* reading from any PHY's register is done by properly
* programming the FEC's MII data register.
*/
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
fec->eth->mii_data = (FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | phy | reg);
/*
* wait for the related interrupt
*/
while ((timeout--) && (!(fec->eth->ievent & FEC_IEVENT_MII))) ;
if (timeout == 0) {
debug("Read MDIO failed...\n");
return -1;
}
/*
* clear mii interrupt bit
*/
fec->eth->ievent = FEC_IEVENT_MII;
/*
* it's now safe to read the PHY's register
*/
return fec->eth->mii_data;
}
static int fec5xxx_miidev_write(struct mii_device *mdev, int phyAddr,
int regAddr, int data)
{
struct eth_device *edev = mdev->edev;
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)edev->priv;
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
int timeout = 0xffff;
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
fec->eth->mii_data = (FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
FEC_MII_DATA_TA | phy | reg | data);
/*
* wait for the MII interrupt
*/
while ((timeout--) && (!(fec->eth->ievent & FEC_IEVENT_MII))) ;
if (timeout == 0) {
debug("Write MDIO failed...\n");
return -1;
}
/*
* clear MII interrupt bit
*/
fec->eth->ievent = FEC_IEVENT_MII;
return 0;
}
static int mpc5xxx_fec_rbd_init(mpc5xxx_fec_priv *fec)
{
int ix;
char *data;
static int once = 0;
for (ix = 0; ix < FEC_RBD_NUM; ix++) {
if (!once) {
data = (char *)malloc(FEC_MAX_PKT_SIZE);
if (data == NULL) {
printf ("RBD INIT FAILED\n");
return -1;
}
fec->rbdBase[ix].dataPointer = (uint32_t)data;
}
fec->rbdBase[ix].status = FEC_RBD_EMPTY;
fec->rbdBase[ix].dataLength = 0;
}
once ++;
/*
* have the last RBD to close the ring
*/
fec->rbdBase[ix - 1].status |= FEC_RBD_WRAP;
fec->rbdIndex = 0;
return 0;
}
static void mpc5xxx_fec_tbd_init(mpc5xxx_fec_priv *fec)
{
int ix;
for (ix = 0; ix < FEC_TBD_NUM; ix++) {
fec->tbdBase[ix].status = 0;
}
/*
* Have the last TBD to close the ring
*/
fec->tbdBase[ix - 1].status |= FEC_TBD_WRAP;
/*
* Initialize some indices
*/
fec->tbdIndex = 0;
fec->usedTbdIndex = 0;
fec->cleanTbdNum = FEC_TBD_NUM;
}
static void mpc5xxx_fec_rbd_clean(mpc5xxx_fec_priv *fec, volatile FEC_RBD * pRbd)
{
/*
* Reset buffer descriptor as empty
*/
if ((fec->rbdIndex) == (FEC_RBD_NUM - 1))
pRbd->status = (FEC_RBD_WRAP | FEC_RBD_EMPTY);
else
pRbd->status = FEC_RBD_EMPTY;
pRbd->dataLength = 0;
/*
* Now, we have an empty RxBD, restart the SmartDMA receive task
*/
SDMA_TASK_ENABLE(FEC_RECV_TASK_NO);
/*
* Increment BD count
*/
fec->rbdIndex = (fec->rbdIndex + 1) % FEC_RBD_NUM;
}
static void mpc5xxx_fec_tbd_scrub(mpc5xxx_fec_priv *fec)
{
volatile FEC_TBD *pUsedTbd;
/*
* process all the consumed TBDs
*/
while (fec->cleanTbdNum < FEC_TBD_NUM) {
pUsedTbd = &fec->tbdBase[fec->usedTbdIndex];
if (pUsedTbd->status & FEC_TBD_READY) {
debug("Cannot clean TBD %d, in use\n", fec->cleanTbdNum);
return;
}
/*
* clean this buffer descriptor
*/
if (fec->usedTbdIndex == (FEC_TBD_NUM - 1))
pUsedTbd->status = FEC_TBD_WRAP;
else
pUsedTbd->status = 0;
/*
* update some indeces for a correct handling of the TBD ring
*/
fec->cleanTbdNum++;
fec->usedTbdIndex = (fec->usedTbdIndex + 1) % FEC_TBD_NUM;
}
}
static int mpc5xxx_fec_get_ethaddr(struct eth_device *dev, unsigned char *mac)
{
/* no eeprom */
return -1;
}
static int mpc5xxx_fec_set_ethaddr(struct eth_device *dev, unsigned char *mac)
{
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
uint8_t currByte; /* byte for which to compute the CRC */
int byte; /* loop - counter */
int bit; /* loop - counter */
uint32_t crc = 0xffffffff; /* initial value */
/*
* The algorithm used is the following:
* we loop on each of the six bytes of the provided address,
* and we compute the CRC by left-shifting the previous
* value by one position, so that each bit in the current
* byte of the address may contribute the calculation. If
* the latter and the MSB in the CRC are different, then
* the CRC value so computed is also ex-ored with the
* "polynomium generator". The current byte of the address
* is also shifted right by one bit at each iteration.
* This is because the CRC generatore in hardware is implemented
* as a shift-register with as many ex-ores as the radixes
* in the polynomium. This suggests that we represent the
* polynomiumm itself as a 32-bit constant.
*/
for (byte = 0; byte < 6; byte++) {
currByte = mac[byte];
for (bit = 0; bit < 8; bit++) {
if ((currByte & 0x01) ^ (crc & 0x01)) {
crc >>= 1;
crc = crc ^ 0xedb88320;
} else {
crc >>= 1;
}
currByte >>= 1;
}
}
crc = crc >> 26;
/*
* Set individual hash table register
*/
if (crc >= 32) {
fec->eth->iaddr1 = (1 << (crc - 32));
fec->eth->iaddr2 = 0;
} else {
fec->eth->iaddr1 = 0;
fec->eth->iaddr2 = (1 << crc);
}
/*
* Set physical address
*/
fec->eth->paddr1 = (mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3];
fec->eth->paddr2 = (mac[4] << 24) + (mac[5] << 16) + 0x8808;
return 0;
}
static int mpc5xxx_fec_init(struct eth_device *dev)
{
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
struct mpc5xxx_sdma *sdma = (struct mpc5xxx_sdma *)MPC5XXX_SDMA;
debug("mpc5xxx_fec_init... Begin\n");
/*
* Initialize RxBD/TxBD rings
*/
mpc5xxx_fec_rbd_init(fec);
mpc5xxx_fec_tbd_init(fec);
/*
* Clear FEC-Lite interrupt event register(IEVENT)
*/
fec->eth->ievent = 0xffffffff;
/*
* Set interrupt mask register
*/
fec->eth->imask = 0x00000000;
/*
* Set FEC-Lite receive control register(R_CNTRL):
*/
if (fec->xcv_type == SEVENWIRE) {
/*
* Frame length=1518; 7-wire mode
*/
fec->eth->r_cntrl = 0x05ee0020; /*0x05ee0000;FIXME */
} else {
/*
* Frame length=1518; MII mode;
*/
fec->eth->r_cntrl = 0x05ee0024; /*0x05ee0004;FIXME */
}
if (fec->xcv_type != SEVENWIRE) {
/*
* Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
* and do not drop the Preamble.
*/
fec->eth->mii_speed = (((get_ipb_clock() >> 20) / 5) << 1); /* No MII for 7-wire mode */
}
/*
* Set Opcode/Pause Duration Register
*/
fec->eth->op_pause = 0x00010020; /*FIXME 0xffff0020; */
/*
* Set Rx FIFO alarm and granularity value
*/
fec->eth->rfifo_cntrl = 0x0c000000
| (fec->eth->rfifo_cntrl & ~0x0f000000);
fec->eth->rfifo_alarm = 0x0000030c;
if (fec->eth->rfifo_status & 0x00700000 ) {
debug("mpc5xxx_fec_init() RFIFO error\n");
}
/*
* Set Tx FIFO granularity value
*/
fec->eth->tfifo_cntrl = 0x0c000000
| (fec->eth->tfifo_cntrl & ~0x0f000000);
debug("tfifo_status: 0x%08x\n", fec->eth->tfifo_status);
debug("tfifo_alarm: 0x%08x\n", fec->eth->tfifo_alarm);
/*
* Set transmit fifo watermark register(X_WMRK), default = 64
*/
fec->eth->tfifo_alarm = 0x00000080;
fec->eth->x_wmrk = 0x2;
/*
* Set multicast address filter
*/
fec->eth->gaddr1 = 0x00000000;
fec->eth->gaddr2 = 0x00000000;
/*
* Turn ON cheater FSM: ????
*/
fec->eth->xmit_fsm = 0x03000000;
/*
* Set priority of different initiators
*/
sdma->IPR0 = 7; /* always */
sdma->IPR3 = 6; /* Eth RX */
sdma->IPR4 = 5; /* Eth Tx */
/*
* Clear SmartDMA task interrupt pending bits
*/
SDMA_CLEAR_IEVENT(FEC_RECV_TASK_NO);
/*
* Initialize SmartDMA parameters stored in SRAM
*/
*(volatile int *)FEC_TBD_BASE = (int)fec->tbdBase;
*(volatile int *)FEC_RBD_BASE = (int)fec->rbdBase;
*(volatile int *)FEC_TBD_NEXT = (int)fec->tbdBase;
*(volatile int *)FEC_RBD_NEXT = (int)fec->rbdBase;
debug("mpc5xxx_fec_init... Done \n");
if (fec->xcv_type != SEVENWIRE)
miidev_restart_aneg(&fec->miidev);
return 0;
}
static int mpc5xxx_fec_open(struct eth_device *edev)
{
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)edev->priv;
#if defined(CONFIG_MPC5200)
struct mpc5xxx_sdma *sdma = (struct mpc5xxx_sdma *)MPC5XXX_SDMA;
/*
* Turn off COMM bus prefetch in the MGT5200 BestComm. It doesn't
* work w/ the current receive task.
*/
sdma->PtdCntrl |= 0x00000001;
#endif
fec->eth->x_cntrl = 0x00000000; /* half-duplex, heartbeat disabled */
/*
* Enable FEC-Lite controller
*/
fec->eth->ecntrl |= 0x00000006;
/*
* Enable SmartDMA receive task
*/
SDMA_TASK_ENABLE(FEC_RECV_TASK_NO);
if (fec->xcv_type != SEVENWIRE) {
miidev_wait_aneg(&fec->miidev);
miidev_print_status(&fec->miidev);
}
return 0;
}
static void mpc5xxx_fec_halt(struct eth_device *dev)
{
#if defined(CONFIG_MPC5200)
struct mpc5xxx_sdma *sdma = (struct mpc5xxx_sdma *)MPC5XXX_SDMA;
#endif
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
int counter = 0xffff;
/*
* issue graceful stop command to the FEC transmitter if necessary
*/
fec->eth->x_cntrl |= 0x00000001;
/*
* wait for graceful stop to register
*/
while ((counter--) && (!(fec->eth->ievent & FEC_IEVENT_GRA))) ;
/*
* Disable SmartDMA tasks
*/
SDMA_TASK_DISABLE (FEC_XMIT_TASK_NO);
SDMA_TASK_DISABLE (FEC_RECV_TASK_NO);
#if defined(CONFIG_MPC5200)
/*
* Turn on COMM bus prefetch in the MGT5200 BestComm after we're
* done. It doesn't work w/ the current receive task.
*/
sdma->PtdCntrl &= ~0x00000001;
#endif
/*
* Disable the Ethernet Controller
*/
fec->eth->ecntrl &= 0xfffffffd;
/*
* Clear FIFO status registers
*/
fec->eth->rfifo_status &= 0x00700000;
fec->eth->tfifo_status &= 0x00700000;
// fec->eth->reset_cntrl = 0x01000000;
debug("Ethernet task stopped\n");
}
#ifdef DEBUG_FIFO
static void tfifo_print(char *devname, mpc5xxx_fec_priv *fec)
{
if ((fec->eth->tfifo_lrf_ptr != fec->eth->tfifo_lwf_ptr)
|| (fec->eth->tfifo_rdptr != fec->eth->tfifo_wrptr)) {
printf("ecntrl: 0x%08x\n", fec->eth->ecntrl);
printf("ievent: 0x%08x\n", fec->eth->ievent);
printf("x_status: 0x%08x\n", fec->eth->x_status);
printf("tfifo: status 0x%08x\n", fec->eth->tfifo_status);
printf(" control 0x%08x\n", fec->eth->tfifo_cntrl);
printf(" lrfp 0x%08x\n", fec->eth->tfifo_lrf_ptr);
printf(" lwfp 0x%08x\n", fec->eth->tfifo_lwf_ptr);
printf(" alarm 0x%08x\n", fec->eth->tfifo_alarm);
printf(" readptr 0x%08x\n", fec->eth->tfifo_rdptr);
printf(" writptr 0x%08x\n", fec->eth->tfifo_wrptr);
}
}
static void rfifo_print(char *devname, mpc5xxx_fec_priv *fec)
{
if ((fec->eth->rfifo_lrf_ptr != fec->eth->rfifo_lwf_ptr)
|| (fec->eth->rfifo_rdptr != fec->eth->rfifo_wrptr)) {
printf("ecntrl: 0x%08x\n", fec->eth->ecntrl);
printf("ievent: 0x%08x\n", fec->eth->ievent);
printf("x_status: 0x%08x\n", fec->eth->x_status);
printf("rfifo: status 0x%08x\n", fec->eth->rfifo_status);
printf(" control 0x%08x\n", fec->eth->rfifo_cntrl);
printf(" lrfp 0x%08x\n", fec->eth->rfifo_lrf_ptr);
printf(" lwfp 0x%08x\n", fec->eth->rfifo_lwf_ptr);
printf(" alarm 0x%08x\n", fec->eth->rfifo_alarm);
printf(" readptr 0x%08x\n", fec->eth->rfifo_rdptr);
printf(" writptr 0x%08x\n", fec->eth->rfifo_wrptr);
}
}
#endif /* DEBUG_FIFO */
static int mpc5xxx_fec_send(struct eth_device *dev, void *eth_data,
int data_length)
{
/*
* This routine transmits one frame. This routine only accepts
* 6-byte Ethernet addresses.
*/
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
volatile FEC_TBD *pTbd;
#ifdef DEBUG_FIFO
debug_fifo("tbd status: 0x%04x\n", fec->tbdBase[0].status);
tfifo_print(dev->name, fec);
#endif
/*
* Clear Tx BD ring at first
*/
mpc5xxx_fec_tbd_scrub(fec);
/*
* Check for valid length of data.
*/
if ((data_length > 1500) || (data_length <= 0)) {
return -1;
}
/*
* Check the number of vacant TxBDs.
*/
if (fec->cleanTbdNum < 1) {
printf("No available TxBDs ...\n");
return -1;
}
/*
* Get the first TxBD to send the mac header
*/
pTbd = &fec->tbdBase[fec->tbdIndex];
pTbd->dataLength = data_length;
pTbd->dataPointer = (uint32_t)eth_data;
pTbd->status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
fec->tbdIndex = (fec->tbdIndex + 1) % FEC_TBD_NUM;
/*
* Kick the MII i/f
*/
if (fec->xcv_type != SEVENWIRE) {
uint16_t phyStatus;
phyStatus = fec5xxx_miidev_read(&fec->miidev, 0, 0x1);
}
/*
* Enable SmartDMA transmit task
*/
// tfifo_print(dev->name, fec);
SDMA_TASK_ENABLE (FEC_XMIT_TASK_NO);
// tfifo_print(dev->name, fec);
fec->cleanTbdNum -= 1;
/*
* wait until frame is sent .
*/
while (pTbd->status & FEC_TBD_READY) {
/* FIXME: Timeout */
}
return 0;
}
static int mpc5xxx_fec_recv(struct eth_device *dev)
{
/*
* This command pulls one frame from the card
*/
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
volatile FEC_RBD *pRbd = &fec->rbdBase[fec->rbdIndex];
unsigned long ievent;
int frame_length, len = 0;
NBUF *frame;
uchar buff[FEC_MAX_PKT_SIZE];
/*
* Check if any critical events have happened
*/
ievent = fec->eth->ievent;
fec->eth->ievent = ievent;
if (ievent & (FEC_IEVENT_BABT | FEC_IEVENT_XFIFO_ERROR |
FEC_IEVENT_RFIFO_ERROR)) {
/* BABT, Rx/Tx FIFO errors */
mpc5xxx_fec_halt(dev);
mpc5xxx_fec_init(dev);
return 0;
}
if (ievent & FEC_IEVENT_HBERR) {
/* Heartbeat error */
fec->eth->x_cntrl |= 0x00000001;
}
if (ievent & FEC_IEVENT_GRA) {
/* Graceful stop complete */
if (fec->eth->x_cntrl & 0x00000001) {
mpc5xxx_fec_halt(dev);
fec->eth->x_cntrl &= ~0x00000001;
mpc5xxx_fec_init(dev);
}
}
if (!(pRbd->status & FEC_RBD_EMPTY)) {
if ((pRbd->status & FEC_RBD_LAST) && !(pRbd->status & FEC_RBD_ERR) &&
((pRbd->dataLength - 4) > 14)) {
/*
* Get buffer address and size
*/
frame = (NBUF *)pRbd->dataPointer;
frame_length = pRbd->dataLength - 4;
#ifdef DEBUG_RX_HEADER
{
int i;
printf("recv data hdr:");
for (i = 0; i < 14; i++)
printf("%02x ", *(frame->head + i));
printf("\n");
}
#endif
/*
* Fill the buffer and pass it to upper layers
*/
memcpy(buff, frame->head, 14);
memcpy(buff + 14, frame->data, frame_length);
net_receive(buff, frame_length);
len = frame_length;
}
/*
* Reset buffer descriptor as empty
*/
mpc5xxx_fec_rbd_clean(fec, pRbd);
}
SDMA_CLEAR_IEVENT (FEC_RECV_TASK_NO);
return len;
}
int mpc5xxx_fec_probe(struct device_d *dev)
{
struct mpc5xxx_fec_platform_data *pdata = (struct mpc5xxx_fec_platform_data *)dev->platform_data;
struct eth_device *edev;
mpc5xxx_fec_priv *fec;
edev = (struct eth_device *)xmalloc(sizeof(struct eth_device));
dev->type_data = edev;
fec = (mpc5xxx_fec_priv *)xmalloc(sizeof(*fec));
edev->priv = fec;
edev->open = mpc5xxx_fec_open,
edev->init = mpc5xxx_fec_init,
edev->send = mpc5xxx_fec_send,
edev->recv = mpc5xxx_fec_recv,
edev->halt = mpc5xxx_fec_halt,
edev->get_ethaddr = mpc5xxx_fec_get_ethaddr,
edev->set_ethaddr = mpc5xxx_fec_set_ethaddr,
fec->eth = (ethernet_regs *)dev->map_base;
fec->tbdBase = (FEC_TBD *)FEC_BD_BASE;
fec->rbdBase = (FEC_RBD *)(FEC_BD_BASE + FEC_TBD_NUM * sizeof(FEC_TBD));
fec->xcv_type = pdata->xcv_type;
loadtask(0, 2);
if (fec->xcv_type != SEVENWIRE) {
fec->miidev.read = fec5xxx_miidev_read;
fec->miidev.write = fec5xxx_miidev_write;
fec->miidev.address = CONFIG_PHY_ADDR;
fec->miidev.flags = pdata->xcv_type == MII10 ? MIIDEV_FORCE_10 : 0;
fec->miidev.edev = edev;
mii_register(&fec->miidev);
}
eth_register(edev);
return 0;
}
static struct driver_d mpc5xxx_driver = {
.name = "fec_mpc5xxx",
.probe = mpc5xxx_fec_probe,
};
static int mpc5xxx_fec_register(void)
{
register_driver(&mpc5xxx_driver);
return 0;
}
device_initcall(mpc5xxx_fec_register);