blob: 275edb4c52cf7aacc7df6bca73cda7671e938e7e [file] [log] [blame]
 /* * This file is derived from crc32.c from the zlib-1.1.3 distribution * by Jean-loup Gailly and Mark Adler. */ /* crc32.c -- compute the CRC-32 of a data stream * Copyright (C) 1995-1998 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #ifdef __BAREBOX__ /* Shut down "ANSI does not permit..." warnings */ #include #endif #ifdef CONFIG_DYNAMIC_CRC_TABLE static int crc_table_empty = 1; static ulong crc_table[256]; static void make_crc_table(void); /* Generate a table for a byte-wise 32-bit CRC calculation on the polynomial: x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. Polynomials over GF(2) are represented in binary, one bit per coefficient, with the lowest powers in the most significant bit. Then adding polynomials is just exclusive-or, and multiplying a polynomial by x is a right shift by one. If we call the above polynomial p, and represent a byte as the polynomial q, also with the lowest power in the most significant bit (so the byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, where a mod b means the remainder after dividing a by b. This calculation is done using the shift-register method of multiplying and taking the remainder. The register is initialized to zero, and for each incoming bit, x^32 is added mod p to the register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x (which is shifting right by one and adding x^32 mod p if the bit shifted out is a one). We start with the highest power (least significant bit) of q and repeat for all eight bits of q. The table is simply the CRC of all possible eight bit values. This is all the information needed to generate CRC's on data a byte at a time for all combinations of CRC register values and incoming bytes. */ static void make_crc_table(void) { ulong c; int n, k; ulong poly; /* polynomial exclusive-or pattern */ /* terms of polynomial defining this crc (except x^32): */ static const char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* make exclusive-or pattern from polynomial (0xedb88320L) */ poly = 0L; for (n = 0; n < sizeof(p)/sizeof(char); n++) poly |= 1L << (31 - p[n]); for (n = 0; n < 256; n++) { c = (ulong)n; for (k = 0; k < 8; k++) c = c & 1 ? poly ^ (c >> 1) : c >> 1; crc_table[n] = c; } crc_table_empty = 0; } #else /* ======================================================================== * Table of CRC-32's of all single-byte values (made by make_crc_table) */ static const ulong crc_table[256] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; #endif /* ========================================================================= */ #define DO1(buf) crc = crc_table[((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8); #define DO2(buf) DO1(buf); DO1(buf); #define DO4(buf) DO2(buf); DO2(buf); #define DO8(buf) DO4(buf); DO4(buf); /* ========================================================================= */ uint32_t crc32(uint32_t crc, const void *_buf, unsigned int len) { const unsigned char *buf = _buf; #ifdef CONFIG_DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif crc = crc ^ 0xffffffffL; while (len >= 8) { DO8(buf); len -= 8; } if (len) do { DO1(buf); } while (--len); return crc ^ 0xffffffffL; } #ifdef __BAREBOX__ EXPORT_SYMBOL(crc32); #endif /* No ones complement version. JFFS2 (and other things ?) * don't use ones compliment in their CRC calculations. */ uint32_t crc32_no_comp(uint32_t crc, const void *_buf, unsigned int len) { const unsigned char *buf = _buf; #ifdef CONFIG_DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif while (len >= 8) { DO8(buf); len -= 8; } if (len) do { DO1(buf); } while (--len); return crc; }