blob: ae137fb978b73571c8fea82192e96c8159e2a584 [file] [log] [blame]
/***************************************************************************
*
* Copyright (C) 2007-2008 SMSC
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*****************************************************************************/
#include <common.h>
#include <command.h>
#include <init.h>
#include <net.h>
#include <usb/usb.h>
#include <usb/usbnet.h>
#include <malloc.h>
#include <asm/byteorder.h>
#include <errno.h>
#include <miidev.h>
#include "smsc95xx.h"
#define SMSC_CHIPNAME "smsc95xx"
#define SMSC_DRIVER_VERSION "1.0.4"
#define HS_USB_PKT_SIZE (512)
#define FS_USB_PKT_SIZE (64)
#define DEFAULT_HS_BURST_CAP_SIZE (16 * 1024 + 5 * HS_USB_PKT_SIZE)
#define DEFAULT_FS_BURST_CAP_SIZE (6 * 1024 + 33 * FS_USB_PKT_SIZE)
#define DEFAULT_BULK_IN_DELAY (0x00002000)
#define MAX_SINGLE_PACKET_SIZE (2048)
#define LAN95XX_EEPROM_MAGIC (0x9500)
#define EEPROM_MAC_OFFSET (0x01)
#define DEFAULT_TX_CSUM_ENABLE (1)
#define DEFAULT_RX_CSUM_ENABLE (1)
#define SMSC95XX_INTERNAL_PHY_ID (1)
#define SMSC95XX_TX_OVERHEAD (8)
#define SMSC95XX_TX_OVERHEAD_CSUM (12)
#define ETH_ALEN 6
#define NET_IP_ALIGN 2
#define ETH_FRAME_LEN 1514 /* Max. octets in frame sans FCS */
#define ETH_P_8021Q 0x8100 /* 802.1Q VLAN Extended Header */
#define netdev_warn(x, fmt, arg...) printf(fmt, ##arg)
#ifdef DEBUG
#define netif_dbg(x, y, z, fmt, arg...) printf(fmt, ##arg)
#else
#define netif_dbg(x, y, z, fmt, arg...) do {} while(0)
#endif
#define FLOW_CTRL_RX 0x02
struct smsc95xx_priv {
u32 mac_cr;
int use_tx_csum;
int use_rx_csum;
};
static int turbo_mode = 0;
static int smsc95xx_read_reg(struct usbnet *dev, u32 index, u32 *data)
{
int ret;
ret = usb_control_msg(dev->udev, usb_rcvctrlpipe(dev->udev, 0),
USB_VENDOR_REQUEST_READ_REGISTER,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
00, index, data, 4, USB_CTRL_GET_TIMEOUT);
if (ret < 0)
netdev_warn(dev->net, "Failed to read register index 0x%08x\n", index);
le32_to_cpus(data);
debug("%s: 0x%08x 0x%08x\n", __func__, index, *data);
return ret;
}
static int smsc95xx_write_reg(struct usbnet *dev, u32 index, u32 data)
{
int ret;
cpu_to_le32s(&data);
ret = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0),
USB_VENDOR_REQUEST_WRITE_REGISTER,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
00, index, &data, 4, USB_CTRL_SET_TIMEOUT);
if (ret < 0)
netdev_warn(dev->net, "Failed to write register index 0x%08x\n", index);
debug("%s: 0x%08x 0x%08x\n", __func__, index, data);
return ret;
}
/* Loop until the read is completed with timeout
* called with phy_mutex held */
static int smsc95xx_phy_wait_not_busy(struct usbnet *dev)
{
u32 val;
int timeout = 1000;
do {
smsc95xx_read_reg(dev, MII_ADDR, &val);
if (!(val & MII_BUSY_))
return 0;
udelay(100);
} while (--timeout);
return -EIO;
}
static int smsc95xx_mdio_read(struct mii_device *mdev, int phy_id, int idx)
{
struct eth_device *eth = mdev->edev;
struct usbnet *dev = eth->priv;
u32 val, addr;
/* confirm MII not busy */
if (smsc95xx_phy_wait_not_busy(dev)) {
netdev_warn(dev->net, "MII is busy in smsc95xx_mdio_read\n");
return -EIO;
}
/* set the address, index & direction (read from PHY) */
addr = (phy_id << 11) | (idx << 6) | MII_READ_;
smsc95xx_write_reg(dev, MII_ADDR, addr);
if (smsc95xx_phy_wait_not_busy(dev)) {
netdev_warn(dev->net, "Timed out reading MII reg %02X\n", idx);
return -EIO;
}
smsc95xx_read_reg(dev, MII_DATA, &val);
return val & 0xffff;
}
static int smsc95xx_mdio_write(struct mii_device *mdev, int phy_id, int idx,
int regval)
{
struct eth_device *eth = mdev->edev;
struct usbnet *dev = eth->priv;
u32 val, addr;
/* confirm MII not busy */
if (smsc95xx_phy_wait_not_busy(dev)) {
netdev_warn(dev->net, "MII is busy in smsc95xx_mdio_write\n");
return -EBUSY;
}
val = regval;
smsc95xx_write_reg(dev, MII_DATA, val);
/* set the address, index & direction (write to PHY) */
addr = (phy_id << 11) | (idx << 6) | MII_WRITE_;
smsc95xx_write_reg(dev, MII_ADDR, addr);
if (smsc95xx_phy_wait_not_busy(dev))
netdev_warn(dev->net, "Timed out writing MII reg %02X\n", idx);
return 0;
}
static int smsc95xx_wait_eeprom(struct usbnet *dev)
{
int timeout = 1000;
u32 val;
do {
smsc95xx_read_reg(dev, E2P_CMD, &val);
if (!(val & E2P_CMD_BUSY_) || (val & E2P_CMD_TIMEOUT_))
break;
udelay(100);
} while (--timeout);
if (val & (E2P_CMD_TIMEOUT_ | E2P_CMD_BUSY_)) {
netdev_warn(dev->net, "EEPROM read operation timeout\n");
return -EIO;
}
return 0;
}
static int smsc95xx_eeprom_confirm_not_busy(struct usbnet *dev)
{
int timeout = 1000;
u32 val;
do {
smsc95xx_read_reg(dev, E2P_CMD, &val);
if (!(val & E2P_CMD_BUSY_))
return 0;
udelay(100);
} while (--timeout);
netdev_warn(dev->net, "EEPROM is busy\n");
return -EIO;
}
static int smsc95xx_read_eeprom(struct usbnet *dev, u32 offset, u32 length,
u8 *data)
{
u32 val;
int i, ret;
ret = smsc95xx_eeprom_confirm_not_busy(dev);
if (ret)
return ret;
for (i = 0; i < length; i++) {
val = E2P_CMD_BUSY_ | E2P_CMD_READ_ | (offset & E2P_CMD_ADDR_);
smsc95xx_write_reg(dev, E2P_CMD, val);
ret = smsc95xx_wait_eeprom(dev);
if (ret < 0)
return ret;
smsc95xx_read_reg(dev, E2P_DATA, &val);
data[i] = val & 0xFF;
offset++;
}
return 0;
}
#define GPIO_CFG_GPEN_ (0xff000000)
#define GPIO_CFG_GPO0_EN_ (0x01000000)
#define GPIO_CFG_GPTYPE (0x00ff0000)
#define GPIO_CFG_GPO0_TYPE (0x00010000)
#define GPIO_CFG_GPDIR_ (0x0000ff00)
#define GPIO_CFG_GPO0_DIR_ (0x00000100)
#define GPIO_CFG_GPDATA_ (0x000000ff)
#define GPIO_CFG_GPO0_DATA_ (0x00000001)
#define LED_GPIO_CFG_FDX_LED (0x00010000)
#define LED_GPIO_CFG_GPBUF_08_ (0x00000100)
#define LED_GPIO_CFG_GPDIR_08_ (0x00000010)
#define LED_GPIO_CFG_GPDATA_08_ (0x00000001)
#define LED_GPIO_CFG_GPCTL_LED_ (0x00000001)
#if 0
static int smsc95xx_enable_gpio(struct usbnet *dev, int gpio, int type)
{
int ret = -1;
u32 val, reg;
int dir_shift, enable_shift, type_shift;
if (gpio < 8) {
reg = GPIO_CFG;
enable_shift = 24 + gpio;
type_shift = 16 + gpio;
dir_shift = 8 + gpio;
} else {
gpio -= 8;
reg = LED_GPIO_CFG;
enable_shift = 16 + gpio * 4;
type_shift = 8 + gpio;
dir_shift = 4 + gpio;
}
ret = smsc95xx_read_reg(dev, reg, &val);
if (ret < 0)
return ret;
val &= ~(1 << enable_shift);
if (type)
val &= ~(1 << type_shift);
else
val |= (1 << type_shift);
val |= (1 << dir_shift);
ret = smsc95xx_write_reg(dev, reg, val);
return ret < 0 ? ret : 0;
}
static int smsc95xx_gpio_set_value(struct usbnet *dev, int gpio, int value)
{
int ret = -1;
u32 tmp, reg;
if (gpio > 10)
return -EINVAL;
smsc95xx_enable_gpio(dev, gpio, 0);
if (gpio < 8) {
reg = GPIO_CFG;
} else {
reg = LED_GPIO_CFG;
gpio -= 8;
}
ret = smsc95xx_read_reg(dev, reg, &tmp);
if (ret < 0)
return ret;
if (value)
tmp |= 1 << gpio;
else
tmp &= ~(1 << gpio);
ret = smsc95xx_write_reg(dev, reg, tmp);
return ret < 0 ? ret : 0;
}
#endif
static void smsc95xx_set_multicast(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
u32 hash_hi = 0;
u32 hash_lo = 0;
netif_dbg(dev, drv, dev->net, "receive own packets only\n");
pdata->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
/* Initiate async writes, as we can't wait for completion here */
smsc95xx_write_reg(dev, HASHH, hash_hi);
smsc95xx_write_reg(dev, HASHL, hash_lo);
smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr);
}
/* Enable or disable Tx & Rx checksum offload engines */
static int smsc95xx_set_csums(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
u32 read_buf;
int ret = smsc95xx_read_reg(dev, COE_CR, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read COE_CR: %d\n", ret);
return ret;
}
if (pdata->use_tx_csum)
read_buf |= Tx_COE_EN_;
else
read_buf &= ~Tx_COE_EN_;
if (pdata->use_rx_csum)
read_buf |= Rx_COE_EN_;
else
read_buf &= ~Rx_COE_EN_;
ret = smsc95xx_write_reg(dev, COE_CR, read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write COE_CR: %d\n", ret);
return ret;
}
netif_dbg(dev, hw, dev->net, "COE_CR = 0x%08x\n", read_buf);
return 0;
}
static int smsc95xx_set_ethaddr(struct eth_device *edev, unsigned char *adr)
{
struct usbnet *udev = container_of(edev, struct usbnet, edev);
u32 addr_lo = adr[0] | adr[1] << 8 |
adr[2] << 16 | adr[3] << 24;
u32 addr_hi = adr[4] | adr[5] << 8;
int ret;
ret = smsc95xx_write_reg(udev, ADDRL, addr_lo);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write ADDRL: %d\n", ret);
return ret;
}
ret = smsc95xx_write_reg(udev, ADDRH, addr_hi);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write ADDRH: %d\n", ret);
return ret;
}
return 0;
}
static int smsc95xx_get_ethaddr(struct eth_device *edev, unsigned char *adr)
{
struct usbnet *udev = container_of(edev, struct usbnet, edev);
/* try reading mac address from EEPROM */
if (smsc95xx_read_eeprom(udev, EEPROM_MAC_OFFSET, ETH_ALEN,
adr) == 0) {
return 0;
}
return -EINVAL;
}
/* starts the TX path */
static void smsc95xx_start_tx_path(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
u32 reg_val;
/* Enable Tx at MAC */
pdata->mac_cr |= MAC_CR_TXEN_;
smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr);
/* Enable Tx at SCSRs */
reg_val = TX_CFG_ON_;
smsc95xx_write_reg(dev, TX_CFG, reg_val);
}
/* Starts the Receive path */
static void smsc95xx_start_rx_path(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
pdata->mac_cr |= MAC_CR_RXEN_;
smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr);
}
static int smsc95xx_phy_initialize(struct usbnet *dev)
{
int timeout = 0;
int phy_id = 1; /* FIXME */
uint16_t val, bmcr;
/* Initialize MII structure */
dev->miidev.read = smsc95xx_mdio_read;
dev->miidev.write = smsc95xx_mdio_write;
dev->miidev.address = 1; /* FIXME: asix_get_phy_addr(dev); */
dev->miidev.flags = 0;
dev->miidev.edev = &dev->edev;
// dev->miidev.name = dev->edev.name;
/* reset phy and wait for reset to complete */
smsc95xx_mdio_write(&dev->miidev, phy_id, MII_BMCR, BMCR_RESET);
do {
udelay(10 * 1000);
bmcr = smsc95xx_mdio_read(&dev->miidev, phy_id, MII_BMCR);
timeout++;
} while ((bmcr & MII_BMCR) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout on PHY Reset");
return -EIO;
}
smsc95xx_mdio_write(&dev->miidev, phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
/* read to clear */
val = smsc95xx_mdio_read(&dev->miidev, phy_id, PHY_INT_SRC);
smsc95xx_mdio_write(&dev->miidev, phy_id, PHY_INT_MASK,
PHY_INT_MASK_DEFAULT_);
netif_dbg(dev, ifup, dev->net, "phy initialised successfully\n");
return 0;
}
static int smsc95xx_reset(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
u32 read_buf, write_buf, burst_cap = 0;
int ret = 0, timeout;
netif_dbg(dev, ifup, dev->net, "entering %s\n", __func__);
write_buf = HW_CFG_LRST_;
ret = smsc95xx_write_reg(dev, HW_CFG, write_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write HW_CFG_LRST_ bit in HW_CFG register, ret = %d\n",
ret);
return ret;
}
timeout = 0;
do {
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
udelay(1000 * 10);
timeout++;
} while ((read_buf & HW_CFG_LRST_) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout waiting for completion of Lite Reset\n");
return ret;
}
write_buf = PM_CTL_PHY_RST_;
ret = smsc95xx_write_reg(dev, PM_CTRL, write_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write PM_CTRL: %d\n", ret);
return ret;
}
timeout = 0;
do {
ret = smsc95xx_read_reg(dev, PM_CTRL, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PM_CTRL: %d\n", ret);
return ret;
}
udelay(1000 * 10);
timeout++;
} while ((read_buf & PM_CTL_PHY_RST_) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout waiting for PHY Reset\n");
return ret;
}
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net,
"Read Value from HW_CFG : 0x%08x\n", read_buf);
read_buf |= HW_CFG_BIR_;
ret = smsc95xx_write_reg(dev, HW_CFG, read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write HW_CFG_BIR_ bit in HW_CFG register, ret = %d\n",
ret);
return ret;
}
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net,
"Read Value from HW_CFG after writing HW_CFG_BIR_: 0x%08x\n",
read_buf);
if (!turbo_mode) {
burst_cap = 0;
dev->rx_urb_size = MAX_SINGLE_PACKET_SIZE;
} else if (0) { /* highspeed */
burst_cap = DEFAULT_HS_BURST_CAP_SIZE / HS_USB_PKT_SIZE;
dev->rx_urb_size = DEFAULT_HS_BURST_CAP_SIZE;
} else {
burst_cap = DEFAULT_FS_BURST_CAP_SIZE / FS_USB_PKT_SIZE;
dev->rx_urb_size = DEFAULT_FS_BURST_CAP_SIZE;
}
netif_dbg(dev, ifup, dev->net,
"rx_urb_size=%ld\n", (ulong)dev->rx_urb_size);
ret = smsc95xx_write_reg(dev, BURST_CAP, burst_cap);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write BURST_CAP: %d\n", ret);
return ret;
}
ret = smsc95xx_read_reg(dev, BURST_CAP, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read BURST_CAP: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net,
"Read Value from BURST_CAP after writing: 0x%08x\n",
read_buf);
read_buf = DEFAULT_BULK_IN_DELAY;
ret = smsc95xx_write_reg(dev, BULK_IN_DLY, read_buf);
if (ret < 0) {
netdev_warn(dev->net, "ret = %d\n", ret);
return ret;
}
ret = smsc95xx_read_reg(dev, BULK_IN_DLY, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read BULK_IN_DLY: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net,
"Read Value from BULK_IN_DLY after writing: 0x%08x\n",
read_buf);
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net,
"Read Value from HW_CFG: 0x%08x\n", read_buf);
if (turbo_mode)
read_buf |= (HW_CFG_MEF_ | HW_CFG_BCE_);
read_buf &= ~HW_CFG_RXDOFF_;
/* set Rx data offset=2, Make IP header aligns on word boundary. */
read_buf |= NET_IP_ALIGN << 9;
ret = smsc95xx_write_reg(dev, HW_CFG, read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write HW_CFG register, ret=%d\n",
ret);
return ret;
}
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net,
"Read Value from HW_CFG after writing: 0x%08x\n", read_buf);
write_buf = 0xFFFFFFFF;
ret = smsc95xx_write_reg(dev, INT_STS, write_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write INT_STS register, ret=%d\n",
ret);
return ret;
}
ret = smsc95xx_read_reg(dev, ID_REV, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read ID_REV: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "ID_REV = 0x%08x\n", read_buf);
/* Configure GPIO pins as LED outputs */
write_buf = LED_GPIO_CFG_SPD_LED | LED_GPIO_CFG_LNK_LED |
LED_GPIO_CFG_FDX_LED;
ret = smsc95xx_write_reg(dev, LED_GPIO_CFG, write_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write LED_GPIO_CFG register, ret=%d\n",
ret);
return ret;
}
/* Init Tx */
write_buf = 0;
ret = smsc95xx_write_reg(dev, FLOW, write_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FLOW: %d\n", ret);
return ret;
}
read_buf = AFC_CFG_DEFAULT;
ret = smsc95xx_write_reg(dev, AFC_CFG, read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write AFC_CFG: %d\n", ret);
return ret;
}
/* Don't need mac_cr_lock during initialisation */
ret = smsc95xx_read_reg(dev, MAC_CR, &pdata->mac_cr);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_CR: %d\n", ret);
return ret;
}
/* Init Rx */
/* Set Vlan */
write_buf = (u32)ETH_P_8021Q;
ret = smsc95xx_write_reg(dev, VLAN1, write_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write VAN1: %d\n", ret);
return ret;
}
ret = smsc95xx_set_csums(dev);
if (ret < 0) {
netdev_warn(dev->net, "Failed to set csum offload: %d\n", ret);
return ret;
}
smsc95xx_set_multicast(dev);
if (smsc95xx_phy_initialize(dev) < 0)
return -EIO;
ret = smsc95xx_read_reg(dev, INT_EP_CTL, &read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read INT_EP_CTL: %d\n", ret);
return ret;
}
/* enable PHY interrupts */
read_buf |= INT_EP_CTL_PHY_INT_;
ret = smsc95xx_write_reg(dev, INT_EP_CTL, read_buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write INT_EP_CTL: %d\n", ret);
return ret;
}
smsc95xx_start_tx_path(dev);
smsc95xx_start_rx_path(dev);
netif_dbg(dev, ifup, dev->net, "%s: return 0\n", __func__);
return 0;
}
static struct usbnet *usbnet_global;
static int smsc95xx_bind(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = NULL;
int ret;
printf(SMSC_CHIPNAME " v" SMSC_DRIVER_VERSION "\n");
ret = usbnet_get_endpoints(dev);
if (ret < 0) {
netdev_warn(dev->net, "usbnet_get_endpoints failed: %d\n", ret);
return ret;
}
dev->data[0] = (unsigned long)malloc(sizeof(struct smsc95xx_priv));
pdata = (struct smsc95xx_priv *)(dev->data[0]);
if (!pdata) {
netdev_warn(dev->net, "Unable to allocate struct smsc95xx_priv\n");
return -ENOMEM;
}
pdata->use_tx_csum = DEFAULT_TX_CSUM_ENABLE;
pdata->use_rx_csum = DEFAULT_RX_CSUM_ENABLE;
/* Init all registers */
ret = smsc95xx_reset(dev);
dev->edev.get_ethaddr = smsc95xx_get_ethaddr;
dev->edev.set_ethaddr = smsc95xx_set_ethaddr;
mii_register(&dev->miidev);
return 0;
}
static void smsc95xx_unbind(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
if (pdata) {
netif_dbg(dev, ifdown, dev->net, "free pdata\n");
free(pdata);
pdata = NULL;
dev->data[0] = 0;
}
usbnet_global = NULL;
}
static int smsc95xx_rx_fixup(struct usbnet *dev, void *buf, int len)
{
while (len > 0) {
u32 header, align_count;
unsigned char *packet;
u16 size;
memcpy(&header, buf, sizeof(header));
le32_to_cpus(&header);
buf += 4 + NET_IP_ALIGN;
len -= 4 + NET_IP_ALIGN;
packet = buf;
/* get the packet length */
size = (u16)((header & RX_STS_FL_) >> 16);
align_count = (4 - ((size + NET_IP_ALIGN) % 4)) % 4;
if (header & RX_STS_ES_) {
netif_dbg(dev, rx_err, dev->net,
"Error header=0x%08x\n", header);
} else {
/* ETH_FRAME_LEN + 4(CRC) + 2(COE) + 4(Vlan) */
if (size > (ETH_FRAME_LEN + 12)) {
netif_dbg(dev, rx_err, dev->net,
"size err header=0x%08x\n", header);
return 0;
}
/* last frame in this batch */
if (len == size) {
net_receive(buf, len - 4);
return 1;
}
net_receive(packet, len - 4);
}
len -= size;
/* padding bytes before the next frame starts */
if (len)
len -= align_count;
}
if (len < 0) {
netdev_warn(dev->net, "invalid rx length<0 %d\n", len);
return 0;
}
return 1;
}
#if 0
static u32 smsc95xx_calc_csum_preamble(struct sk_buff *skb)
{
int len = skb->data - skb->head;
u16 high_16 = (u16)(skb->csum_offset + skb->csum_start - len);
u16 low_16 = (u16)(skb->csum_start - len);
return (high_16 << 16) | low_16;
}
#endif
static int smsc95xx_tx_fixup(struct usbnet *dev,
void *buf, int len,
void *nbuf, int *nlen)
{
u32 tx_cmd_a, tx_cmd_b;
tx_cmd_a = (u32)(len) | TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_;
cpu_to_le32s(&tx_cmd_a);
memcpy(nbuf, &tx_cmd_a, 4);
tx_cmd_b = (u32)(len);
cpu_to_le32s(&tx_cmd_b);
memcpy(nbuf + 4, &tx_cmd_b, 4);
memcpy(nbuf + 8, buf, len);
*nlen = len + 8;
return 0;
}
static struct driver_info smsc95xx_info = {
.description = "smsc95xx USB 2.0 Ethernet",
.bind = smsc95xx_bind,
.unbind = smsc95xx_unbind,
.rx_fixup = smsc95xx_rx_fixup,
.tx_fixup = smsc95xx_tx_fixup,
};
static const struct usb_device_id products[] = {
{
/* SMSC9500 USB Ethernet Device */
USB_DEVICE(0x0424, 0x9500),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9505 USB Ethernet Device */
USB_DEVICE(0x0424, 0x9505),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9500A USB Ethernet Device */
USB_DEVICE(0x0424, 0x9E00),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9505A USB Ethernet Device */
USB_DEVICE(0x0424, 0x9E01),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9512/9514 USB Hub & Ethernet Device */
USB_DEVICE(0x0424, 0xec00),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9500 USB Ethernet Device (SAL10) */
USB_DEVICE(0x0424, 0x9900),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9505 USB Ethernet Device (SAL10) */
USB_DEVICE(0x0424, 0x9901),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9500A USB Ethernet Device (SAL10) */
USB_DEVICE(0x0424, 0x9902),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9505A USB Ethernet Device (SAL10) */
USB_DEVICE(0x0424, 0x9903),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9512/9514 USB Hub & Ethernet Device (SAL10) */
USB_DEVICE(0x0424, 0x9904),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9500A USB Ethernet Device (HAL) */
USB_DEVICE(0x0424, 0x9905),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9505A USB Ethernet Device (HAL) */
USB_DEVICE(0x0424, 0x9906),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9500 USB Ethernet Device (Alternate ID) */
USB_DEVICE(0x0424, 0x9907),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9500A USB Ethernet Device (Alternate ID) */
USB_DEVICE(0x0424, 0x9908),
.driver_info = &smsc95xx_info,
}, {
/* SMSC9512/9514 USB Hub & Ethernet Device (Alternate ID) */
USB_DEVICE(0x0424, 0x9909),
.driver_info = &smsc95xx_info,
},
{ }, /* END */
};
static struct usb_driver smsc95xx_driver = {
.name = "smsc95xx",
.id_table = products,
.probe = usbnet_probe,
.disconnect = usbnet_disconnect,
};
static int __init smsc95xx_init(void)
{
return usb_driver_register(&smsc95xx_driver);
}
device_initcall(smsc95xx_init);