blob: 4a51d56a8dfc0871932ccd5750ee6ecf1a377fae [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "aecm_core.h"
#include <assert.h>
#include <stdlib.h>
#include "cpu_features_wrapper.h"
#include "delay_estimator_wrapper.h"
#include "echo_control_mobile.h"
#include "ring_buffer.h"
#include "typedefs.h"
#ifdef ARM_WINM_LOG
#include <stdio.h>
#include <windows.h>
#endif
#ifdef AEC_DEBUG
FILE *dfile;
FILE *testfile;
#endif
#ifdef _MSC_VER // visual c++
#define ALIGN8_BEG __declspec(align(8))
#define ALIGN8_END
#else // gcc or icc
#define ALIGN8_BEG
#define ALIGN8_END __attribute__((aligned(8)))
#endif
#ifdef AECM_SHORT
// Square root of Hanning window in Q14
const WebRtc_Word16 WebRtcAecm_kSqrtHanning[] =
{
0, 804, 1606, 2404, 3196, 3981, 4756, 5520,
6270, 7005, 7723, 8423, 9102, 9760, 10394, 11003,
11585, 12140, 12665, 13160, 13623, 14053, 14449, 14811,
15137, 15426, 15679, 15893, 16069, 16207, 16305, 16364,
16384
};
#else
// Square root of Hanning window in Q14
const ALIGN8_BEG WebRtc_Word16 WebRtcAecm_kSqrtHanning[] ALIGN8_END =
{
0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224, 6591, 6954, 7313, 7668, 8019, 8364,
8705, 9040, 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514, 11795, 12068, 12335,
12594, 12845, 13089, 13325, 13553, 13773, 13985, 14189, 14384, 14571, 14749, 14918,
15079, 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034, 16111, 16179, 16237,
16286, 16325, 16354, 16373, 16384
};
#endif
//Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
static const WebRtc_UWord16 kAlpha1 = 32584;
//Q15 beta = 0.12967166976970 const Factor for magnitude approximation
static const WebRtc_UWord16 kBeta1 = 4249;
//Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
static const WebRtc_UWord16 kAlpha2 = 30879;
//Q15 beta = 0.33787806009150 const Factor for magnitude approximation
static const WebRtc_UWord16 kBeta2 = 11072;
//Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
static const WebRtc_UWord16 kAlpha3 = 26951;
//Q15 beta = 0.57762063060713 const Factor for magnitude approximation
static const WebRtc_UWord16 kBeta3 = 18927;
// Initialization table for echo channel in 8 kHz
static const WebRtc_Word16 kChannelStored8kHz[PART_LEN1] = {
2040, 1815, 1590, 1498, 1405, 1395, 1385, 1418,
1451, 1506, 1562, 1644, 1726, 1804, 1882, 1918,
1953, 1982, 2010, 2025, 2040, 2034, 2027, 2021,
2014, 1997, 1980, 1925, 1869, 1800, 1732, 1683,
1635, 1604, 1572, 1545, 1517, 1481, 1444, 1405,
1367, 1331, 1294, 1270, 1245, 1239, 1233, 1247,
1260, 1282, 1303, 1338, 1373, 1407, 1441, 1470,
1499, 1524, 1549, 1565, 1582, 1601, 1621, 1649,
1676
};
// Initialization table for echo channel in 16 kHz
static const WebRtc_Word16 kChannelStored16kHz[PART_LEN1] = {
2040, 1590, 1405, 1385, 1451, 1562, 1726, 1882,
1953, 2010, 2040, 2027, 2014, 1980, 1869, 1732,
1635, 1572, 1517, 1444, 1367, 1294, 1245, 1233,
1260, 1303, 1373, 1441, 1499, 1549, 1582, 1621,
1676, 1741, 1802, 1861, 1921, 1983, 2040, 2102,
2170, 2265, 2375, 2515, 2651, 2781, 2922, 3075,
3253, 3471, 3738, 3976, 4151, 4258, 4308, 4288,
4270, 4253, 4237, 4179, 4086, 3947, 3757, 3484,
3153
};
static const WebRtc_Word16 kCosTable[] = {
8192, 8190, 8187, 8180, 8172, 8160, 8147, 8130, 8112,
8091, 8067, 8041, 8012, 7982, 7948, 7912, 7874, 7834,
7791, 7745, 7697, 7647, 7595, 7540, 7483, 7424, 7362,
7299, 7233, 7164, 7094, 7021, 6947, 6870, 6791, 6710,
6627, 6542, 6455, 6366, 6275, 6182, 6087, 5991, 5892,
5792, 5690, 5586, 5481, 5374, 5265, 5155, 5043, 4930,
4815, 4698, 4580, 4461, 4341, 4219, 4096, 3971, 3845,
3719, 3591, 3462, 3331, 3200, 3068, 2935, 2801, 2667,
2531, 2395, 2258, 2120, 1981, 1842, 1703, 1563, 1422,
1281, 1140, 998, 856, 713, 571, 428, 285, 142,
0, -142, -285, -428, -571, -713, -856, -998, -1140,
-1281, -1422, -1563, -1703, -1842, -1981, -2120, -2258, -2395,
-2531, -2667, -2801, -2935, -3068, -3200, -3331, -3462, -3591,
-3719, -3845, -3971, -4095, -4219, -4341, -4461, -4580, -4698,
-4815, -4930, -5043, -5155, -5265, -5374, -5481, -5586, -5690,
-5792, -5892, -5991, -6087, -6182, -6275, -6366, -6455, -6542,
-6627, -6710, -6791, -6870, -6947, -7021, -7094, -7164, -7233,
-7299, -7362, -7424, -7483, -7540, -7595, -7647, -7697, -7745,
-7791, -7834, -7874, -7912, -7948, -7982, -8012, -8041, -8067,
-8091, -8112, -8130, -8147, -8160, -8172, -8180, -8187, -8190,
-8191, -8190, -8187, -8180, -8172, -8160, -8147, -8130, -8112,
-8091, -8067, -8041, -8012, -7982, -7948, -7912, -7874, -7834,
-7791, -7745, -7697, -7647, -7595, -7540, -7483, -7424, -7362,
-7299, -7233, -7164, -7094, -7021, -6947, -6870, -6791, -6710,
-6627, -6542, -6455, -6366, -6275, -6182, -6087, -5991, -5892,
-5792, -5690, -5586, -5481, -5374, -5265, -5155, -5043, -4930,
-4815, -4698, -4580, -4461, -4341, -4219, -4096, -3971, -3845,
-3719, -3591, -3462, -3331, -3200, -3068, -2935, -2801, -2667,
-2531, -2395, -2258, -2120, -1981, -1842, -1703, -1563, -1422,
-1281, -1140, -998, -856, -713, -571, -428, -285, -142,
0, 142, 285, 428, 571, 713, 856, 998, 1140,
1281, 1422, 1563, 1703, 1842, 1981, 2120, 2258, 2395,
2531, 2667, 2801, 2935, 3068, 3200, 3331, 3462, 3591,
3719, 3845, 3971, 4095, 4219, 4341, 4461, 4580, 4698,
4815, 4930, 5043, 5155, 5265, 5374, 5481, 5586, 5690,
5792, 5892, 5991, 6087, 6182, 6275, 6366, 6455, 6542,
6627, 6710, 6791, 6870, 6947, 7021, 7094, 7164, 7233,
7299, 7362, 7424, 7483, 7540, 7595, 7647, 7697, 7745,
7791, 7834, 7874, 7912, 7948, 7982, 8012, 8041, 8067,
8091, 8112, 8130, 8147, 8160, 8172, 8180, 8187, 8190
};
static const WebRtc_Word16 kSinTable[] = {
0, 142, 285, 428, 571, 713, 856, 998,
1140, 1281, 1422, 1563, 1703, 1842, 1981, 2120,
2258, 2395, 2531, 2667, 2801, 2935, 3068, 3200,
3331, 3462, 3591, 3719, 3845, 3971, 4095, 4219,
4341, 4461, 4580, 4698, 4815, 4930, 5043, 5155,
5265, 5374, 5481, 5586, 5690, 5792, 5892, 5991,
6087, 6182, 6275, 6366, 6455, 6542, 6627, 6710,
6791, 6870, 6947, 7021, 7094, 7164, 7233, 7299,
7362, 7424, 7483, 7540, 7595, 7647, 7697, 7745,
7791, 7834, 7874, 7912, 7948, 7982, 8012, 8041,
8067, 8091, 8112, 8130, 8147, 8160, 8172, 8180,
8187, 8190, 8191, 8190, 8187, 8180, 8172, 8160,
8147, 8130, 8112, 8091, 8067, 8041, 8012, 7982,
7948, 7912, 7874, 7834, 7791, 7745, 7697, 7647,
7595, 7540, 7483, 7424, 7362, 7299, 7233, 7164,
7094, 7021, 6947, 6870, 6791, 6710, 6627, 6542,
6455, 6366, 6275, 6182, 6087, 5991, 5892, 5792,
5690, 5586, 5481, 5374, 5265, 5155, 5043, 4930,
4815, 4698, 4580, 4461, 4341, 4219, 4096, 3971,
3845, 3719, 3591, 3462, 3331, 3200, 3068, 2935,
2801, 2667, 2531, 2395, 2258, 2120, 1981, 1842,
1703, 1563, 1422, 1281, 1140, 998, 856, 713,
571, 428, 285, 142, 0, -142, -285, -428,
-571, -713, -856, -998, -1140, -1281, -1422, -1563,
-1703, -1842, -1981, -2120, -2258, -2395, -2531, -2667,
-2801, -2935, -3068, -3200, -3331, -3462, -3591, -3719,
-3845, -3971, -4095, -4219, -4341, -4461, -4580, -4698,
-4815, -4930, -5043, -5155, -5265, -5374, -5481, -5586,
-5690, -5792, -5892, -5991, -6087, -6182, -6275, -6366,
-6455, -6542, -6627, -6710, -6791, -6870, -6947, -7021,
-7094, -7164, -7233, -7299, -7362, -7424, -7483, -7540,
-7595, -7647, -7697, -7745, -7791, -7834, -7874, -7912,
-7948, -7982, -8012, -8041, -8067, -8091, -8112, -8130,
-8147, -8160, -8172, -8180, -8187, -8190, -8191, -8190,
-8187, -8180, -8172, -8160, -8147, -8130, -8112, -8091,
-8067, -8041, -8012, -7982, -7948, -7912, -7874, -7834,
-7791, -7745, -7697, -7647, -7595, -7540, -7483, -7424,
-7362, -7299, -7233, -7164, -7094, -7021, -6947, -6870,
-6791, -6710, -6627, -6542, -6455, -6366, -6275, -6182,
-6087, -5991, -5892, -5792, -5690, -5586, -5481, -5374,
-5265, -5155, -5043, -4930, -4815, -4698, -4580, -4461,
-4341, -4219, -4096, -3971, -3845, -3719, -3591, -3462,
-3331, -3200, -3068, -2935, -2801, -2667, -2531, -2395,
-2258, -2120, -1981, -1842, -1703, -1563, -1422, -1281,
-1140, -998, -856, -713, -571, -428, -285, -142
};
static const WebRtc_Word16 kNoiseEstQDomain = 15;
static const WebRtc_Word16 kNoiseEstIncCount = 5;
static void ComfortNoise(AecmCore_t* aecm,
const WebRtc_UWord16* dfa,
complex16_t* out,
const WebRtc_Word16* lambda);
static WebRtc_Word16 CalcSuppressionGain(AecmCore_t * const aecm);
// Moves the pointer to the next entry and inserts |far_spectrum| and
// corresponding Q-domain in its buffer.
//
// Inputs:
// - self : Pointer to the delay estimation instance
// - far_spectrum : Pointer to the far end spectrum
// - far_q : Q-domain of far end spectrum
//
static void UpdateFarHistory(AecmCore_t* self,
uint16_t* far_spectrum,
int far_q) {
// Get new buffer position
self->far_history_pos++;
if (self->far_history_pos >= MAX_DELAY) {
self->far_history_pos = 0;
}
// Update Q-domain buffer
self->far_q_domains[self->far_history_pos] = far_q;
// Update far end spectrum buffer
memcpy(&(self->far_history[self->far_history_pos * PART_LEN1]),
far_spectrum,
sizeof(uint16_t) * PART_LEN1);
}
// Returns a pointer to the far end spectrum aligned to current near end
// spectrum. The function WebRtc_DelayEstimatorProcessFix(...) should have been
// called before AlignedFarend(...). Otherwise, you get the pointer to the
// previous frame. The memory is only valid until the next call of
// WebRtc_DelayEstimatorProcessFix(...).
//
// Inputs:
// - self : Pointer to the AECM instance.
// - delay : Current delay estimate.
//
// Output:
// - far_q : The Q-domain of the aligned far end spectrum
//
// Return value:
// - far_spectrum : Pointer to the aligned far end spectrum
// NULL - Error
//
static const uint16_t* AlignedFarend(AecmCore_t* self, int* far_q, int delay) {
int buffer_position = 0;
assert(self != NULL);
buffer_position = self->far_history_pos - delay;
// Check buffer position
if (buffer_position < 0) {
buffer_position += MAX_DELAY;
}
// Get Q-domain
*far_q = self->far_q_domains[buffer_position];
// Return far end spectrum
return &(self->far_history[buffer_position * PART_LEN1]);
}
#ifdef ARM_WINM_LOG
HANDLE logFile = NULL;
#endif
// Declare function pointers.
CalcLinearEnergies WebRtcAecm_CalcLinearEnergies;
StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel;
ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
WindowAndFFT WebRtcAecm_WindowAndFFT;
InverseFFTAndWindow WebRtcAecm_InverseFFTAndWindow;
int WebRtcAecm_CreateCore(AecmCore_t **aecmInst)
{
AecmCore_t *aecm = malloc(sizeof(AecmCore_t));
*aecmInst = aecm;
if (aecm == NULL)
{
return -1;
}
if (WebRtc_CreateBuffer(&aecm->farFrameBuf, FRAME_LEN + PART_LEN,
sizeof(int16_t)) == -1)
{
WebRtcAecm_FreeCore(aecm);
aecm = NULL;
return -1;
}
if (WebRtc_CreateBuffer(&aecm->nearNoisyFrameBuf, FRAME_LEN + PART_LEN,
sizeof(int16_t)) == -1)
{
WebRtcAecm_FreeCore(aecm);
aecm = NULL;
return -1;
}
if (WebRtc_CreateBuffer(&aecm->nearCleanFrameBuf, FRAME_LEN + PART_LEN,
sizeof(int16_t)) == -1)
{
WebRtcAecm_FreeCore(aecm);
aecm = NULL;
return -1;
}
if (WebRtc_CreateBuffer(&aecm->outFrameBuf, FRAME_LEN + PART_LEN,
sizeof(int16_t)) == -1)
{
WebRtcAecm_FreeCore(aecm);
aecm = NULL;
return -1;
}
if (WebRtc_CreateDelayEstimator(&aecm->delay_estimator,
PART_LEN1,
MAX_DELAY,
0) == -1) {
WebRtcAecm_FreeCore(aecm);
aecm = NULL;
return -1;
}
// Init some aecm pointers. 16 and 32 byte alignment is only necessary
// for Neon code currently.
aecm->xBuf = (WebRtc_Word16*) (((uintptr_t)aecm->xBuf_buf + 31) & ~ 31);
aecm->dBufClean = (WebRtc_Word16*) (((uintptr_t)aecm->dBufClean_buf + 31) & ~ 31);
aecm->dBufNoisy = (WebRtc_Word16*) (((uintptr_t)aecm->dBufNoisy_buf + 31) & ~ 31);
aecm->outBuf = (WebRtc_Word16*) (((uintptr_t)aecm->outBuf_buf + 15) & ~ 15);
aecm->channelStored = (WebRtc_Word16*) (((uintptr_t)
aecm->channelStored_buf + 15) & ~ 15);
aecm->channelAdapt16 = (WebRtc_Word16*) (((uintptr_t)
aecm->channelAdapt16_buf + 15) & ~ 15);
aecm->channelAdapt32 = (WebRtc_Word32*) (((uintptr_t)
aecm->channelAdapt32_buf + 31) & ~ 31);
return 0;
}
void WebRtcAecm_InitEchoPathCore(AecmCore_t* aecm, const WebRtc_Word16* echo_path)
{
int i = 0;
// Reset the stored channel
memcpy(aecm->channelStored, echo_path, sizeof(WebRtc_Word16) * PART_LEN1);
// Reset the adapted channels
memcpy(aecm->channelAdapt16, echo_path, sizeof(WebRtc_Word16) * PART_LEN1);
for (i = 0; i < PART_LEN1; i++)
{
aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32(
(WebRtc_Word32)(aecm->channelAdapt16[i]), 16);
}
// Reset channel storing variables
aecm->mseAdaptOld = 1000;
aecm->mseStoredOld = 1000;
aecm->mseThreshold = WEBRTC_SPL_WORD32_MAX;
aecm->mseChannelCount = 0;
}
static void WindowAndFFTC(WebRtc_Word16* fft,
const WebRtc_Word16* time_signal,
complex16_t* freq_signal,
int time_signal_scaling)
{
int i, j;
memset(fft, 0, sizeof(WebRtc_Word16) * PART_LEN4);
// FFT of signal
for (i = 0, j = 0; i < PART_LEN; i++, j += 2)
{
// Window time domain signal and insert into real part of
// transformation array |fft|
fft[j] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(
(time_signal[i] << time_signal_scaling),
WebRtcAecm_kSqrtHanning[i],
14);
fft[PART_LEN2 + j] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(
(time_signal[i + PART_LEN] << time_signal_scaling),
WebRtcAecm_kSqrtHanning[PART_LEN - i],
14);
// Inserting zeros in imaginary parts not necessary since we
// initialized the array with all zeros
}
WebRtcSpl_ComplexBitReverse(fft, PART_LEN_SHIFT);
WebRtcSpl_ComplexFFT(fft, PART_LEN_SHIFT, 1);
// Take only the first PART_LEN2 samples
for (i = 0, j = 0; j < PART_LEN2; i += 1, j += 2)
{
freq_signal[i].real = fft[j];
// The imaginary part has to switch sign
freq_signal[i].imag = - fft[j+1];
}
}
static void InverseFFTAndWindowC(AecmCore_t* aecm,
WebRtc_Word16* fft,
complex16_t* efw,
WebRtc_Word16* output,
const WebRtc_Word16* nearendClean)
{
int i, j, outCFFT;
WebRtc_Word32 tmp32no1;
// Synthesis
for (i = 1; i < PART_LEN; i++)
{
j = WEBRTC_SPL_LSHIFT_W32(i, 1);
fft[j] = efw[i].real;
// mirrored data, even
fft[PART_LEN4 - j] = efw[i].real;
fft[j + 1] = -efw[i].imag;
//mirrored data, odd
fft[PART_LEN4 - (j - 1)] = efw[i].imag;
}
fft[0] = efw[0].real;
fft[1] = -efw[0].imag;
fft[PART_LEN2] = efw[PART_LEN].real;
fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
// inverse FFT, result should be scaled with outCFFT
WebRtcSpl_ComplexBitReverse(fft, PART_LEN_SHIFT);
outCFFT = WebRtcSpl_ComplexIFFT(fft, PART_LEN_SHIFT, 1);
//take only the real values and scale with outCFFT
for (i = 0; i < PART_LEN2; i++)
{
j = WEBRTC_SPL_LSHIFT_W32(i, 1);
fft[i] = fft[j];
}
for (i = 0; i < PART_LEN; i++)
{
fft[i] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
fft[i],
WebRtcAecm_kSqrtHanning[i],
14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32((WebRtc_Word32)fft[i],
outCFFT - aecm->dfaCleanQDomain);
fft[i] = (WebRtc_Word16)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1 + aecm->outBuf[i],
WEBRTC_SPL_WORD16_MIN);
output[i] = fft[i];
tmp32no1 = WEBRTC_SPL_MUL_16_16_RSFT(
fft[PART_LEN + i],
WebRtcAecm_kSqrtHanning[PART_LEN - i],
14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
outCFFT - aecm->dfaCleanQDomain);
aecm->outBuf[i] = (WebRtc_Word16)WEBRTC_SPL_SAT(
WEBRTC_SPL_WORD16_MAX,
tmp32no1,
WEBRTC_SPL_WORD16_MIN);
}
#ifdef ARM_WINM_LOG_
// measure tick end
QueryPerformanceCounter((LARGE_INTEGER*)&end);
diff__ = ((end - start) * 1000) / (freq/1000);
milliseconds = (unsigned int)(diff__ & 0xffffffff);
WriteFile (logFile, &milliseconds, sizeof(unsigned int), &temp, NULL);
#endif
// Copy the current block to the old position (aecm->outBuf is shifted elsewhere)
memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(WebRtc_Word16) * PART_LEN);
memcpy(aecm->dBufNoisy, aecm->dBufNoisy + PART_LEN, sizeof(WebRtc_Word16) * PART_LEN);
if (nearendClean != NULL)
{
memcpy(aecm->dBufClean, aecm->dBufClean + PART_LEN, sizeof(WebRtc_Word16) * PART_LEN);
}
}
static void CalcLinearEnergiesC(AecmCore_t* aecm,
const WebRtc_UWord16* far_spectrum,
WebRtc_Word32* echo_est,
WebRtc_UWord32* far_energy,
WebRtc_UWord32* echo_energy_adapt,
WebRtc_UWord32* echo_energy_stored)
{
int i;
// Get energy for the delayed far end signal and estimated
// echo using both stored and adapted channels.
for (i = 0; i < PART_LEN1; i++)
{
echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
far_spectrum[i]);
(*far_energy) += (WebRtc_UWord32)(far_spectrum[i]);
(*echo_energy_adapt) += WEBRTC_SPL_UMUL_16_16(aecm->channelAdapt16[i],
far_spectrum[i]);
(*echo_energy_stored) += (WebRtc_UWord32)echo_est[i];
}
}
static void StoreAdaptiveChannelC(AecmCore_t* aecm,
const WebRtc_UWord16* far_spectrum,
WebRtc_Word32* echo_est)
{
int i;
// During startup we store the channel every block.
memcpy(aecm->channelStored, aecm->channelAdapt16, sizeof(WebRtc_Word16) * PART_LEN1);
// Recalculate echo estimate
for (i = 0; i < PART_LEN; i += 4)
{
echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
far_spectrum[i]);
echo_est[i + 1] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 1],
far_spectrum[i + 1]);
echo_est[i + 2] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 2],
far_spectrum[i + 2]);
echo_est[i + 3] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 3],
far_spectrum[i + 3]);
}
echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
far_spectrum[i]);
}
static void ResetAdaptiveChannelC(AecmCore_t* aecm)
{
int i;
// The stored channel has a significantly lower MSE than the adaptive one for
// two consecutive calculations. Reset the adaptive channel.
memcpy(aecm->channelAdapt16, aecm->channelStored,
sizeof(WebRtc_Word16) * PART_LEN1);
// Restore the W32 channel
for (i = 0; i < PART_LEN; i += 4)
{
aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32(
(WebRtc_Word32)aecm->channelStored[i], 16);
aecm->channelAdapt32[i + 1] = WEBRTC_SPL_LSHIFT_W32(
(WebRtc_Word32)aecm->channelStored[i + 1], 16);
aecm->channelAdapt32[i + 2] = WEBRTC_SPL_LSHIFT_W32(
(WebRtc_Word32)aecm->channelStored[i + 2], 16);
aecm->channelAdapt32[i + 3] = WEBRTC_SPL_LSHIFT_W32(
(WebRtc_Word32)aecm->channelStored[i + 3], 16);
}
aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)aecm->channelStored[i], 16);
}
// WebRtcAecm_InitCore(...)
//
// This function initializes the AECM instant created with WebRtcAecm_CreateCore(...)
// Input:
// - aecm : Pointer to the Echo Suppression instance
// - samplingFreq : Sampling Frequency
//
// Output:
// - aecm : Initialized instance
//
// Return value : 0 - Ok
// -1 - Error
//
int WebRtcAecm_InitCore(AecmCore_t * const aecm, int samplingFreq)
{
int i = 0;
WebRtc_Word32 tmp32 = PART_LEN1 * PART_LEN1;
WebRtc_Word16 tmp16 = PART_LEN1;
if (samplingFreq != 8000 && samplingFreq != 16000)
{
samplingFreq = 8000;
return -1;
}
// sanity check of sampling frequency
aecm->mult = (WebRtc_Word16)samplingFreq / 8000;
aecm->farBufWritePos = 0;
aecm->farBufReadPos = 0;
aecm->knownDelay = 0;
aecm->lastKnownDelay = 0;
WebRtc_InitBuffer(aecm->farFrameBuf);
WebRtc_InitBuffer(aecm->nearNoisyFrameBuf);
WebRtc_InitBuffer(aecm->nearCleanFrameBuf);
WebRtc_InitBuffer(aecm->outFrameBuf);
memset(aecm->xBuf_buf, 0, sizeof(aecm->xBuf_buf));
memset(aecm->dBufClean_buf, 0, sizeof(aecm->dBufClean_buf));
memset(aecm->dBufNoisy_buf, 0, sizeof(aecm->dBufNoisy_buf));
memset(aecm->outBuf_buf, 0, sizeof(aecm->outBuf_buf));
aecm->seed = 666;
aecm->totCount = 0;
if (WebRtc_InitDelayEstimator(aecm->delay_estimator) != 0) {
return -1;
}
// Set far end histories to zero
memset(aecm->far_history, 0, sizeof(uint16_t) * PART_LEN1 * MAX_DELAY);
memset(aecm->far_q_domains, 0, sizeof(int) * MAX_DELAY);
aecm->far_history_pos = MAX_DELAY;
aecm->nlpFlag = 1;
aecm->fixedDelay = -1;
aecm->dfaCleanQDomain = 0;
aecm->dfaCleanQDomainOld = 0;
aecm->dfaNoisyQDomain = 0;
aecm->dfaNoisyQDomainOld = 0;
memset(aecm->nearLogEnergy, 0, sizeof(aecm->nearLogEnergy));
aecm->farLogEnergy = 0;
memset(aecm->echoAdaptLogEnergy, 0, sizeof(aecm->echoAdaptLogEnergy));
memset(aecm->echoStoredLogEnergy, 0, sizeof(aecm->echoStoredLogEnergy));
// Initialize the echo channels with a stored shape.
if (samplingFreq == 8000)
{
WebRtcAecm_InitEchoPathCore(aecm, kChannelStored8kHz);
}
else
{
WebRtcAecm_InitEchoPathCore(aecm, kChannelStored16kHz);
}
memset(aecm->echoFilt, 0, sizeof(aecm->echoFilt));
memset(aecm->nearFilt, 0, sizeof(aecm->nearFilt));
aecm->noiseEstCtr = 0;
aecm->cngMode = AecmTrue;
memset(aecm->noiseEstTooLowCtr, 0, sizeof(aecm->noiseEstTooLowCtr));
memset(aecm->noiseEstTooHighCtr, 0, sizeof(aecm->noiseEstTooHighCtr));
// Shape the initial noise level to an approximate pink noise.
for (i = 0; i < (PART_LEN1 >> 1) - 1; i++)
{
aecm->noiseEst[i] = (tmp32 << 8);
tmp16--;
tmp32 -= (WebRtc_Word32)((tmp16 << 1) + 1);
}
for (; i < PART_LEN1; i++)
{
aecm->noiseEst[i] = (tmp32 << 8);
}
aecm->farEnergyMin = WEBRTC_SPL_WORD16_MAX;
aecm->farEnergyMax = WEBRTC_SPL_WORD16_MIN;
aecm->farEnergyMaxMin = 0;
aecm->farEnergyVAD = FAR_ENERGY_MIN; // This prevents false speech detection at the
// beginning.
aecm->farEnergyMSE = 0;
aecm->currentVADValue = 0;
aecm->vadUpdateCount = 0;
aecm->firstVAD = 1;
aecm->startupState = 0;
aecm->supGain = SUPGAIN_DEFAULT;
aecm->supGainOld = SUPGAIN_DEFAULT;
aecm->supGainErrParamA = SUPGAIN_ERROR_PARAM_A;
aecm->supGainErrParamD = SUPGAIN_ERROR_PARAM_D;
aecm->supGainErrParamDiffAB = SUPGAIN_ERROR_PARAM_A - SUPGAIN_ERROR_PARAM_B;
aecm->supGainErrParamDiffBD = SUPGAIN_ERROR_PARAM_B - SUPGAIN_ERROR_PARAM_D;
assert(PART_LEN % 16 == 0);
// Initialize function pointers.
WebRtcAecm_WindowAndFFT = WindowAndFFTC;
WebRtcAecm_InverseFFTAndWindow = InverseFFTAndWindowC;
WebRtcAecm_CalcLinearEnergies = CalcLinearEnergiesC;
WebRtcAecm_StoreAdaptiveChannel = StoreAdaptiveChannelC;
WebRtcAecm_ResetAdaptiveChannel = ResetAdaptiveChannelC;
#ifdef WEBRTC_DETECT_ARM_NEON
uint64_t features = WebRtc_GetCPUFeaturesARM();
if ((features & kCPUFeatureNEON) != 0)
{
WebRtcAecm_InitNeon();
}
#elif defined(WEBRTC_ARCH_ARM_NEON)
WebRtcAecm_InitNeon();
#endif
return 0;
}
// TODO(bjornv): This function is currently not used. Add support for these
// parameters from a higher level
int WebRtcAecm_Control(AecmCore_t *aecm, int delay, int nlpFlag)
{
aecm->nlpFlag = nlpFlag;
aecm->fixedDelay = delay;
return 0;
}
int WebRtcAecm_FreeCore(AecmCore_t *aecm)
{
if (aecm == NULL)
{
return -1;
}
WebRtc_FreeBuffer(aecm->farFrameBuf);
WebRtc_FreeBuffer(aecm->nearNoisyFrameBuf);
WebRtc_FreeBuffer(aecm->nearCleanFrameBuf);
WebRtc_FreeBuffer(aecm->outFrameBuf);
WebRtc_FreeDelayEstimator(aecm->delay_estimator);
free(aecm);
return 0;
}
int WebRtcAecm_ProcessFrame(AecmCore_t * aecm,
const WebRtc_Word16 * farend,
const WebRtc_Word16 * nearendNoisy,
const WebRtc_Word16 * nearendClean,
WebRtc_Word16 * out)
{
WebRtc_Word16 outBlock_buf[PART_LEN + 8]; // Align buffer to 8-byte boundary.
WebRtc_Word16* outBlock = (WebRtc_Word16*) (((uintptr_t) outBlock_buf + 15) & ~ 15);
WebRtc_Word16 farFrame[FRAME_LEN];
const int16_t* out_ptr = NULL;
int size = 0;
// Buffer the current frame.
// Fetch an older one corresponding to the delay.
WebRtcAecm_BufferFarFrame(aecm, farend, FRAME_LEN);
WebRtcAecm_FetchFarFrame(aecm, farFrame, FRAME_LEN, aecm->knownDelay);
// Buffer the synchronized far and near frames,
// to pass the smaller blocks individually.
WebRtc_WriteBuffer(aecm->farFrameBuf, farFrame, FRAME_LEN);
WebRtc_WriteBuffer(aecm->nearNoisyFrameBuf, nearendNoisy, FRAME_LEN);
if (nearendClean != NULL)
{
WebRtc_WriteBuffer(aecm->nearCleanFrameBuf, nearendClean, FRAME_LEN);
}
// Process as many blocks as possible.
while (WebRtc_available_read(aecm->farFrameBuf) >= PART_LEN)
{
int16_t far_block[PART_LEN];
const int16_t* far_block_ptr = NULL;
int16_t near_noisy_block[PART_LEN];
const int16_t* near_noisy_block_ptr = NULL;
WebRtc_ReadBuffer(aecm->farFrameBuf, (void**) &far_block_ptr, far_block,
PART_LEN);
WebRtc_ReadBuffer(aecm->nearNoisyFrameBuf,
(void**) &near_noisy_block_ptr,
near_noisy_block,
PART_LEN);
if (nearendClean != NULL)
{
int16_t near_clean_block[PART_LEN];
const int16_t* near_clean_block_ptr = NULL;
WebRtc_ReadBuffer(aecm->nearCleanFrameBuf,
(void**) &near_clean_block_ptr,
near_clean_block,
PART_LEN);
if (WebRtcAecm_ProcessBlock(aecm,
far_block_ptr,
near_noisy_block_ptr,
near_clean_block_ptr,
outBlock) == -1)
{
return -1;
}
} else
{
if (WebRtcAecm_ProcessBlock(aecm,
far_block_ptr,
near_noisy_block_ptr,
NULL,
outBlock) == -1)
{
return -1;
}
}
WebRtc_WriteBuffer(aecm->outFrameBuf, outBlock, PART_LEN);
}
// Stuff the out buffer if we have less than a frame to output.
// This should only happen for the first frame.
size = (int) WebRtc_available_read(aecm->outFrameBuf);
if (size < FRAME_LEN)
{
WebRtc_MoveReadPtr(aecm->outFrameBuf, size - FRAME_LEN);
}
// Obtain an output frame.
WebRtc_ReadBuffer(aecm->outFrameBuf, (void**) &out_ptr, out, FRAME_LEN);
if (out_ptr != out) {
// ReadBuffer() hasn't copied to |out| in this case.
memcpy(out, out_ptr, FRAME_LEN * sizeof(int16_t));
}
return 0;
}
// WebRtcAecm_AsymFilt(...)
//
// Performs asymmetric filtering.
//
// Inputs:
// - filtOld : Previous filtered value.
// - inVal : New input value.
// - stepSizePos : Step size when we have a positive contribution.
// - stepSizeNeg : Step size when we have a negative contribution.
//
// Output:
//
// Return: - Filtered value.
//
WebRtc_Word16 WebRtcAecm_AsymFilt(const WebRtc_Word16 filtOld, const WebRtc_Word16 inVal,
const WebRtc_Word16 stepSizePos,
const WebRtc_Word16 stepSizeNeg)
{
WebRtc_Word16 retVal;
if ((filtOld == WEBRTC_SPL_WORD16_MAX) | (filtOld == WEBRTC_SPL_WORD16_MIN))
{
return inVal;
}
retVal = filtOld;
if (filtOld > inVal)
{
retVal -= WEBRTC_SPL_RSHIFT_W16(filtOld - inVal, stepSizeNeg);
} else
{
retVal += WEBRTC_SPL_RSHIFT_W16(inVal - filtOld, stepSizePos);
}
return retVal;
}
// WebRtcAecm_CalcEnergies(...)
//
// This function calculates the log of energies for nearend, farend and estimated
// echoes. There is also an update of energy decision levels, i.e. internal VAD.
//
//
// @param aecm [i/o] Handle of the AECM instance.
// @param far_spectrum [in] Pointer to farend spectrum.
// @param far_q [in] Q-domain of farend spectrum.
// @param nearEner [in] Near end energy for current block in
// Q(aecm->dfaQDomain).
// @param echoEst [out] Estimated echo in Q(xfa_q+RESOLUTION_CHANNEL16).
//
void WebRtcAecm_CalcEnergies(AecmCore_t * aecm,
const WebRtc_UWord16* far_spectrum,
const WebRtc_Word16 far_q,
const WebRtc_UWord32 nearEner,
WebRtc_Word32 * echoEst)
{
// Local variables
WebRtc_UWord32 tmpAdapt = 0;
WebRtc_UWord32 tmpStored = 0;
WebRtc_UWord32 tmpFar = 0;
int i;
WebRtc_Word16 zeros, frac;
WebRtc_Word16 tmp16;
WebRtc_Word16 increase_max_shifts = 4;
WebRtc_Word16 decrease_max_shifts = 11;
WebRtc_Word16 increase_min_shifts = 11;
WebRtc_Word16 decrease_min_shifts = 3;
WebRtc_Word16 kLogLowValue = WEBRTC_SPL_LSHIFT_W16(PART_LEN_SHIFT, 7);
// Get log of near end energy and store in buffer
// Shift buffer
memmove(aecm->nearLogEnergy + 1, aecm->nearLogEnergy,
sizeof(WebRtc_Word16) * (MAX_BUF_LEN - 1));
// Logarithm of integrated magnitude spectrum (nearEner)
tmp16 = kLogLowValue;
if (nearEner)
{
zeros = WebRtcSpl_NormU32(nearEner);
frac = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_U32(
(WEBRTC_SPL_LSHIFT_U32(nearEner, zeros) & 0x7FFFFFFF),
23);
// log2 in Q8
tmp16 += WEBRTC_SPL_LSHIFT_W16((31 - zeros), 8) + frac;
tmp16 -= WEBRTC_SPL_LSHIFT_W16(aecm->dfaNoisyQDomain, 8);
}
aecm->nearLogEnergy[0] = tmp16;
// END: Get log of near end energy
WebRtcAecm_CalcLinearEnergies(aecm, far_spectrum, echoEst, &tmpFar, &tmpAdapt, &tmpStored);
// Shift buffers
memmove(aecm->echoAdaptLogEnergy + 1, aecm->echoAdaptLogEnergy,
sizeof(WebRtc_Word16) * (MAX_BUF_LEN - 1));
memmove(aecm->echoStoredLogEnergy + 1, aecm->echoStoredLogEnergy,
sizeof(WebRtc_Word16) * (MAX_BUF_LEN - 1));
// Logarithm of delayed far end energy
tmp16 = kLogLowValue;
if (tmpFar)
{
zeros = WebRtcSpl_NormU32(tmpFar);
frac = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_U32((WEBRTC_SPL_LSHIFT_U32(tmpFar, zeros)
& 0x7FFFFFFF), 23);
// log2 in Q8
tmp16 += WEBRTC_SPL_LSHIFT_W16((31 - zeros), 8) + frac;
tmp16 -= WEBRTC_SPL_LSHIFT_W16(far_q, 8);
}
aecm->farLogEnergy = tmp16;
// Logarithm of estimated echo energy through adapted channel
tmp16 = kLogLowValue;
if (tmpAdapt)
{
zeros = WebRtcSpl_NormU32(tmpAdapt);
frac = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_U32((WEBRTC_SPL_LSHIFT_U32(tmpAdapt, zeros)
& 0x7FFFFFFF), 23);
//log2 in Q8
tmp16 += WEBRTC_SPL_LSHIFT_W16((31 - zeros), 8) + frac;
tmp16 -= WEBRTC_SPL_LSHIFT_W16(RESOLUTION_CHANNEL16 + far_q, 8);
}
aecm->echoAdaptLogEnergy[0] = tmp16;
// Logarithm of estimated echo energy through stored channel
tmp16 = kLogLowValue;
if (tmpStored)
{
zeros = WebRtcSpl_NormU32(tmpStored);
frac = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_U32((WEBRTC_SPL_LSHIFT_U32(tmpStored, zeros)
& 0x7FFFFFFF), 23);
//log2 in Q8
tmp16 += WEBRTC_SPL_LSHIFT_W16((31 - zeros), 8) + frac;
tmp16 -= WEBRTC_SPL_LSHIFT_W16(RESOLUTION_CHANNEL16 + far_q, 8);
}
aecm->echoStoredLogEnergy[0] = tmp16;
// Update farend energy levels (min, max, vad, mse)
if (aecm->farLogEnergy > FAR_ENERGY_MIN)
{
if (aecm->startupState == 0)
{
increase_max_shifts = 2;
decrease_min_shifts = 2;
increase_min_shifts = 8;
}
aecm->farEnergyMin = WebRtcAecm_AsymFilt(aecm->farEnergyMin, aecm->farLogEnergy,
increase_min_shifts, decrease_min_shifts);
aecm->farEnergyMax = WebRtcAecm_AsymFilt(aecm->farEnergyMax, aecm->farLogEnergy,
increase_max_shifts, decrease_max_shifts);
aecm->farEnergyMaxMin = (aecm->farEnergyMax - aecm->farEnergyMin);
// Dynamic VAD region size
tmp16 = 2560 - aecm->farEnergyMin;
if (tmp16 > 0)
{
tmp16 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(tmp16, FAR_ENERGY_VAD_REGION, 9);
} else
{
tmp16 = 0;
}
tmp16 += FAR_ENERGY_VAD_REGION;
if ((aecm->startupState == 0) | (aecm->vadUpdateCount > 1024))
{
// In startup phase or VAD update halted
aecm->farEnergyVAD = aecm->farEnergyMin + tmp16;
} else
{
if (aecm->farEnergyVAD > aecm->farLogEnergy)
{
aecm->farEnergyVAD += WEBRTC_SPL_RSHIFT_W16(aecm->farLogEnergy +
tmp16 -
aecm->farEnergyVAD,
6);
aecm->vadUpdateCount = 0;
} else
{
aecm->vadUpdateCount++;
}
}
// Put MSE threshold higher than VAD
aecm->farEnergyMSE = aecm->farEnergyVAD + (1 << 8);
}
// Update VAD variables
if (aecm->farLogEnergy > aecm->farEnergyVAD)
{
if ((aecm->startupState == 0) | (aecm->farEnergyMaxMin > FAR_ENERGY_DIFF))
{
// We are in startup or have significant dynamics in input speech level
aecm->currentVADValue = 1;
}
} else
{
aecm->currentVADValue = 0;
}
if ((aecm->currentVADValue) && (aecm->firstVAD))
{
aecm->firstVAD = 0;
if (aecm->echoAdaptLogEnergy[0] > aecm->nearLogEnergy[0])
{
// The estimated echo has higher energy than the near end signal.
// This means that the initialization was too aggressive. Scale
// down by a factor 8
for (i = 0; i < PART_LEN1; i++)
{
aecm->channelAdapt16[i] >>= 3;
}
// Compensate the adapted echo energy level accordingly.
aecm->echoAdaptLogEnergy[0] -= (3 << 8);
aecm->firstVAD = 1;
}
}
}
// WebRtcAecm_CalcStepSize(...)
//
// This function calculates the step size used in channel estimation
//
//
// @param aecm [in] Handle of the AECM instance.
// @param mu [out] (Return value) Stepsize in log2(), i.e. number of shifts.
//
//
WebRtc_Word16 WebRtcAecm_CalcStepSize(AecmCore_t * const aecm)
{
WebRtc_Word32 tmp32;
WebRtc_Word16 tmp16;
WebRtc_Word16 mu = MU_MAX;
// Here we calculate the step size mu used in the
// following NLMS based Channel estimation algorithm
if (!aecm->currentVADValue)
{
// Far end energy level too low, no channel update
mu = 0;
} else if (aecm->startupState > 0)
{
if (aecm->farEnergyMin >= aecm->farEnergyMax)
{
mu = MU_MIN;
} else
{
tmp16 = (aecm->farLogEnergy - aecm->farEnergyMin);
tmp32 = WEBRTC_SPL_MUL_16_16(tmp16, MU_DIFF);
tmp32 = WebRtcSpl_DivW32W16(tmp32, aecm->farEnergyMaxMin);
mu = MU_MIN - 1 - (WebRtc_Word16)(tmp32);
// The -1 is an alternative to rounding. This way we get a larger
// stepsize, so we in some sense compensate for truncation in NLMS
}
if (mu < MU_MAX)
{
mu = MU_MAX; // Equivalent with maximum step size of 2^-MU_MAX
}
}
return mu;
}
// WebRtcAecm_UpdateChannel(...)
//
// This function performs channel estimation. NLMS and decision on channel storage.
//
//
// @param aecm [i/o] Handle of the AECM instance.
// @param far_spectrum [in] Absolute value of the farend signal in Q(far_q)
// @param far_q [in] Q-domain of the farend signal
// @param dfa [in] Absolute value of the nearend signal (Q[aecm->dfaQDomain])
// @param mu [in] NLMS step size.
// @param echoEst [i/o] Estimated echo in Q(far_q+RESOLUTION_CHANNEL16).
//
void WebRtcAecm_UpdateChannel(AecmCore_t * aecm,
const WebRtc_UWord16* far_spectrum,
const WebRtc_Word16 far_q,
const WebRtc_UWord16 * const dfa,
const WebRtc_Word16 mu,
WebRtc_Word32 * echoEst)
{
WebRtc_UWord32 tmpU32no1, tmpU32no2;
WebRtc_Word32 tmp32no1, tmp32no2;
WebRtc_Word32 mseStored;
WebRtc_Word32 mseAdapt;
int i;
WebRtc_Word16 zerosFar, zerosNum, zerosCh, zerosDfa;
WebRtc_Word16 shiftChFar, shiftNum, shift2ResChan;
WebRtc_Word16 tmp16no1;
WebRtc_Word16 xfaQ, dfaQ;
// This is the channel estimation algorithm. It is base on NLMS but has a variable step
// length, which was calculated above.
if (mu)
{
for (i = 0; i < PART_LEN1; i++)
{
// Determine norm of channel and farend to make sure we don't get overflow in
// multiplication
zerosCh = WebRtcSpl_NormU32(aecm->channelAdapt32[i]);
zerosFar = WebRtcSpl_NormU32((WebRtc_UWord32)far_spectrum[i]);
if (zerosCh + zerosFar > 31)
{
// Multiplication is safe
tmpU32no1 = WEBRTC_SPL_UMUL_32_16(aecm->channelAdapt32[i],
far_spectrum[i]);
shiftChFar = 0;
} else
{
// We need to shift down before multiplication
shiftChFar = 32 - zerosCh - zerosFar;
tmpU32no1 = WEBRTC_SPL_UMUL_32_16(
WEBRTC_SPL_RSHIFT_W32(aecm->channelAdapt32[i], shiftChFar),
far_spectrum[i]);
}
// Determine Q-domain of numerator
zerosNum = WebRtcSpl_NormU32(tmpU32no1);
if (dfa[i])
{
zerosDfa = WebRtcSpl_NormU32((WebRtc_UWord32)dfa[i]);
} else
{
zerosDfa = 32;
}
tmp16no1 = zerosDfa - 2 + aecm->dfaNoisyQDomain -
RESOLUTION_CHANNEL32 - far_q + shiftChFar;
if (zerosNum > tmp16no1 + 1)
{
xfaQ = tmp16no1;
dfaQ = zerosDfa - 2;
} else
{
xfaQ = zerosNum - 2;
dfaQ = RESOLUTION_CHANNEL32 + far_q - aecm->dfaNoisyQDomain -
shiftChFar + xfaQ;
}
// Add in the same Q-domain
tmpU32no1 = WEBRTC_SPL_SHIFT_W32(tmpU32no1, xfaQ);
tmpU32no2 = WEBRTC_SPL_SHIFT_W32((WebRtc_UWord32)dfa[i], dfaQ);
tmp32no1 = (WebRtc_Word32)tmpU32no2 - (WebRtc_Word32)tmpU32no1;
zerosNum = WebRtcSpl_NormW32(tmp32no1);
if ((tmp32no1) && (far_spectrum[i] > (CHANNEL_VAD << far_q)))
{
//
// Update is needed
//
// This is what we would like to compute
//
// tmp32no1 = dfa[i] - (aecm->channelAdapt[i] * far_spectrum[i])
// tmp32norm = (i + 1)
// aecm->channelAdapt[i] += (2^mu) * tmp32no1
// / (tmp32norm * far_spectrum[i])
//
// Make sure we don't get overflow in multiplication.
if (zerosNum + zerosFar > 31)
{
if (tmp32no1 > 0)
{
tmp32no2 = (WebRtc_Word32)WEBRTC_SPL_UMUL_32_16(tmp32no1,
far_spectrum[i]);
} else
{
tmp32no2 = -(WebRtc_Word32)WEBRTC_SPL_UMUL_32_16(-tmp32no1,
far_spectrum[i]);
}
shiftNum = 0;
} else
{
shiftNum = 32 - (zerosNum + zerosFar);
if (tmp32no1 > 0)
{
tmp32no2 = (WebRtc_Word32)WEBRTC_SPL_UMUL_32_16(
WEBRTC_SPL_RSHIFT_W32(tmp32no1, shiftNum),
far_spectrum[i]);
} else
{
tmp32no2 = -(WebRtc_Word32)WEBRTC_SPL_UMUL_32_16(
WEBRTC_SPL_RSHIFT_W32(-tmp32no1, shiftNum),
far_spectrum[i]);
}
}
// Normalize with respect to frequency bin
tmp32no2 = WebRtcSpl_DivW32W16(tmp32no2, i + 1);
// Make sure we are in the right Q-domain
shift2ResChan = shiftNum + shiftChFar - xfaQ - mu - ((30 - zerosFar) << 1);
if (WebRtcSpl_NormW32(tmp32no2) < shift2ResChan)
{
tmp32no2 = WEBRTC_SPL_WORD32_MAX;
} else
{
tmp32no2 = WEBRTC_SPL_SHIFT_W32(tmp32no2, shift2ResChan);
}
aecm->channelAdapt32[i] = WEBRTC_SPL_ADD_SAT_W32(aecm->channelAdapt32[i],
tmp32no2);
if (aecm->channelAdapt32[i] < 0)
{
// We can never have negative channel gain
aecm->channelAdapt32[i] = 0;
}
aecm->channelAdapt16[i]
= (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(aecm->channelAdapt32[i], 16);
}
}
}
// END: Adaptive channel update
// Determine if we should store or restore the channel
if ((aecm->startupState == 0) & (aecm->currentVADValue))
{
// During startup we store the channel every block,
// and we recalculate echo estimate
WebRtcAecm_StoreAdaptiveChannel(aecm, far_spectrum, echoEst);
} else
{
if (aecm->farLogEnergy < aecm->farEnergyMSE)
{
aecm->mseChannelCount = 0;
} else
{
aecm->mseChannelCount++;
}
// Enough data for validation. Store channel if we can.
if (aecm->mseChannelCount >= (MIN_MSE_COUNT + 10))
{
// We have enough data.
// Calculate MSE of "Adapt" and "Stored" versions.
// It is actually not MSE, but average absolute error.
mseStored = 0;
mseAdapt = 0;
for (i = 0; i < MIN_MSE_COUNT; i++)
{
tmp32no1 = ((WebRtc_Word32)aecm->echoStoredLogEnergy[i]
- (WebRtc_Word32)aecm->nearLogEnergy[i]);
tmp32no2 = WEBRTC_SPL_ABS_W32(tmp32no1);
mseStored += tmp32no2;
tmp32no1 = ((WebRtc_Word32)aecm->echoAdaptLogEnergy[i]
- (WebRtc_Word32)aecm->nearLogEnergy[i]);
tmp32no2 = WEBRTC_SPL_ABS_W32(tmp32no1);
mseAdapt += tmp32no2;
}
if (((mseStored << MSE_RESOLUTION) < (MIN_MSE_DIFF * mseAdapt))
& ((aecm->mseStoredOld << MSE_RESOLUTION) < (MIN_MSE_DIFF
* aecm->mseAdaptOld)))
{
// The stored channel has a significantly lower MSE than the adaptive one for
// two consecutive calculations. Reset the adaptive channel.
WebRtcAecm_ResetAdaptiveChannel(aecm);
} else if (((MIN_MSE_DIFF * mseStored) > (mseAdapt << MSE_RESOLUTION)) & (mseAdapt
< aecm->mseThreshold) & (aecm->mseAdaptOld < aecm->mseThreshold))
{
// The adaptive channel has a significantly lower MSE than the stored one.
// The MSE for the adaptive channel has also been low for two consecutive
// calculations. Store the adaptive channel.
WebRtcAecm_StoreAdaptiveChannel(aecm, far_spectrum, echoEst);
// Update threshold
if (aecm->mseThreshold == WEBRTC_SPL_WORD32_MAX)
{
aecm->mseThreshold = (mseAdapt + aecm->mseAdaptOld);
} else
{
aecm->mseThreshold += WEBRTC_SPL_MUL_16_16_RSFT(mseAdapt
- WEBRTC_SPL_MUL_16_16_RSFT(aecm->mseThreshold, 5, 3), 205, 8);
}
}
// Reset counter
aecm->mseChannelCount = 0;
// Store the MSE values.
aecm->mseStoredOld = mseStored;
aecm->mseAdaptOld = mseAdapt;
}
}
// END: Determine if we should store or reset channel estimate.
}
// CalcSuppressionGain(...)
//
// This function calculates the suppression gain that is used in the Wiener filter.
//
//
// @param aecm [i/n] Handle of the AECM instance.
// @param supGain [out] (Return value) Suppression gain with which to scale the noise
// level (Q14).
//
//
static WebRtc_Word16 CalcSuppressionGain(AecmCore_t * const aecm)
{
WebRtc_Word32 tmp32no1;
WebRtc_Word16 supGain = SUPGAIN_DEFAULT;
WebRtc_Word16 tmp16no1;
WebRtc_Word16 dE = 0;
// Determine suppression gain used in the Wiener filter. The gain is based on a mix of far
// end energy and echo estimation error.
// Adjust for the far end signal level. A low signal level indicates no far end signal,
// hence we set the suppression gain to 0
if (!aecm->currentVADValue)
{
supGain = 0;
} else
{
// Adjust for possible double talk. If we have large variations in estimation error we
// likely have double talk (or poor channel).
tmp16no1 = (aecm->nearLogEnergy[0] - aecm->echoStoredLogEnergy[0] - ENERGY_DEV_OFFSET);
dE = WEBRTC_SPL_ABS_W16(tmp16no1);
if (dE < ENERGY_DEV_TOL)
{
// Likely no double talk. The better estimation, the more we can suppress signal.
// Update counters
if (dE < SUPGAIN_EPC_DT)
{
tmp32no1 = WEBRTC_SPL_MUL_16_16(aecm->supGainErrParamDiffAB, dE);
tmp32no1 += (SUPGAIN_EPC_DT >> 1);
tmp16no1 = (WebRtc_Word16)WebRtcSpl_DivW32W16(tmp32no1, SUPGAIN_EPC_DT);
supGain = aecm->supGainErrParamA - tmp16no1;
} else
{
tmp32no1 = WEBRTC_SPL_MUL_16_16(aecm->supGainErrParamDiffBD,
(ENERGY_DEV_TOL - dE));
tmp32no1 += ((ENERGY_DEV_TOL - SUPGAIN_EPC_DT) >> 1);
tmp16no1 = (WebRtc_Word16)WebRtcSpl_DivW32W16(tmp32no1, (ENERGY_DEV_TOL
- SUPGAIN_EPC_DT));
supGain = aecm->supGainErrParamD + tmp16no1;
}
} else
{
// Likely in double talk. Use default value
supGain = aecm->supGainErrParamD;
}
}
if (supGain > aecm->supGainOld)
{
tmp16no1 = supGain;
} else
{
tmp16no1 = aecm->supGainOld;
}
aecm->supGainOld = supGain;
if (tmp16no1 < aecm->supGain)
{
aecm->supGain += (WebRtc_Word16)((tmp16no1 - aecm->supGain) >> 4);
} else
{
aecm->supGain += (WebRtc_Word16)((tmp16no1 - aecm->supGain) >> 4);
}
// END: Update suppression gain
return aecm->supGain;
}
// Transforms a time domain signal into the frequency domain, outputting the
// complex valued signal, absolute value and sum of absolute values.
//
// time_signal [in] Pointer to time domain signal
// freq_signal_real [out] Pointer to real part of frequency domain array
// freq_signal_imag [out] Pointer to imaginary part of frequency domain
// array
// freq_signal_abs [out] Pointer to absolute value of frequency domain
// array
// freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
// the frequency domain array
// return value The Q-domain of current frequency values
//
static int TimeToFrequencyDomain(const WebRtc_Word16* time_signal,
complex16_t* freq_signal,
WebRtc_UWord16* freq_signal_abs,
WebRtc_UWord32* freq_signal_sum_abs)
{
int i = 0;
int time_signal_scaling = 0;
WebRtc_Word32 tmp32no1;
WebRtc_Word32 tmp32no2;
// In fft_buf, +16 for 32-byte alignment.
WebRtc_Word16 fft_buf[PART_LEN4 + 16];
WebRtc_Word16 *fft = (WebRtc_Word16 *) (((uintptr_t) fft_buf + 31) & ~31);
WebRtc_Word16 tmp16no1;
WebRtc_Word16 tmp16no2;
#ifdef AECM_WITH_ABS_APPROX
WebRtc_Word16 max_value = 0;
WebRtc_Word16 min_value = 0;
WebRtc_UWord16 alpha = 0;
WebRtc_UWord16 beta = 0;
#endif
#ifdef AECM_DYNAMIC_Q
tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
#endif
WebRtcAecm_WindowAndFFT(fft, time_signal, freq_signal, time_signal_scaling);
// Extract imaginary and real part, calculate the magnitude for all frequency bins
freq_signal[0].imag = 0;
freq_signal[PART_LEN].imag = 0;
freq_signal[PART_LEN].real = fft[PART_LEN2];
freq_signal_abs[0] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(
freq_signal[0].real);
freq_signal_abs[PART_LEN] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(
freq_signal[PART_LEN].real);
(*freq_signal_sum_abs) = (WebRtc_UWord32)(freq_signal_abs[0]) +
(WebRtc_UWord32)(freq_signal_abs[PART_LEN]);
for (i = 1; i < PART_LEN; i++)
{
if (freq_signal[i].real == 0)
{
freq_signal_abs[i] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(
freq_signal[i].imag);
}
else if (freq_signal[i].imag == 0)
{
freq_signal_abs[i] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(
freq_signal[i].real);
}
else
{
// Approximation for magnitude of complex fft output
// magn = sqrt(real^2 + imag^2)
// magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
//
// The parameters alpha and beta are stored in Q15
#ifdef AECM_WITH_ABS_APPROX
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
if(tmp16no1 > tmp16no2)
{
max_value = tmp16no1;
min_value = tmp16no2;
} else
{
max_value = tmp16no2;
min_value = tmp16no1;
}
// Magnitude in Q(-6)
if ((max_value >> 2) > min_value)
{
alpha = kAlpha1;
beta = kBeta1;
} else if ((max_value >> 1) > min_value)
{
alpha = kAlpha2;
beta = kBeta2;
} else
{
alpha = kAlpha3;
beta = kBeta3;
}
tmp16no1 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(max_value,
alpha,
15);
tmp16no2 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(min_value,
beta,
15);
freq_signal_abs[i] = (WebRtc_UWord16)tmp16no1 +
(WebRtc_UWord16)tmp16no2;
#else
#ifdef WEBRTC_ARCH_ARM_V7A
__asm __volatile(
"smulbb %[tmp32no1], %[real], %[real]\n\t"
"smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
:[tmp32no1]"=r"(tmp32no1),
[tmp32no2]"=r"(tmp32no2)
:[real]"r"(freq_signal[i].real),
[imag]"r"(freq_signal[i].imag)
);
#else
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
tmp32no1 = WEBRTC_SPL_MUL_16_16(tmp16no1, tmp16no1);
tmp32no2 = WEBRTC_SPL_MUL_16_16(tmp16no2, tmp16no2);
tmp32no2 = WEBRTC_SPL_ADD_SAT_W32(tmp32no1, tmp32no2);
#endif // WEBRTC_ARCH_ARM_V7A
tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
freq_signal_abs[i] = (WebRtc_UWord16)tmp32no1;
#endif // AECM_WITH_ABS_APPROX
}
(*freq_signal_sum_abs) += (WebRtc_UWord32)freq_signal_abs[i];
}
return time_signal_scaling;
}
int WebRtcAecm_ProcessBlock(AecmCore_t * aecm,
const WebRtc_Word16 * farend,
const WebRtc_Word16 * nearendNoisy,
const WebRtc_Word16 * nearendClean,
WebRtc_Word16 * output)
{
int i;
WebRtc_UWord32 xfaSum;
WebRtc_UWord32 dfaNoisySum;
WebRtc_UWord32 dfaCleanSum;
WebRtc_UWord32 echoEst32Gained;
WebRtc_UWord32 tmpU32;
WebRtc_Word32 tmp32no1;
WebRtc_UWord16 xfa[PART_LEN1];
WebRtc_UWord16 dfaNoisy[PART_LEN1];
WebRtc_UWord16 dfaClean[PART_LEN1];
WebRtc_UWord16* ptrDfaClean = dfaClean;
const WebRtc_UWord16* far_spectrum_ptr = NULL;
// 32 byte aligned buffers (with +8 or +16).
// TODO (kma): define fft with complex16_t.
WebRtc_Word16 fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
WebRtc_Word32 echoEst32_buf[PART_LEN1 + 8];
WebRtc_Word32 dfw_buf[PART_LEN1 + 8];
WebRtc_Word32 efw_buf[PART_LEN1 + 8];
WebRtc_Word16* fft = (WebRtc_Word16*) (((uintptr_t) fft_buf + 31) & ~ 31);
WebRtc_Word32* echoEst32 = (WebRtc_Word32*) (((uintptr_t) echoEst32_buf + 31) & ~ 31);
complex16_t* dfw = (complex16_t*) (((uintptr_t) dfw_buf + 31) & ~ 31);
complex16_t* efw = (complex16_t*) (((uintptr_t) efw_buf + 31) & ~ 31);
WebRtc_Word16 hnl[PART_LEN1];
WebRtc_Word16 numPosCoef = 0;
WebRtc_Word16 nlpGain = ONE_Q14;
int delay;
WebRtc_Word16 tmp16no1;
WebRtc_Word16 tmp16no2;
WebRtc_Word16 mu;
WebRtc_Word16 supGain;
WebRtc_Word16 zeros32, zeros16;
WebRtc_Word16 zerosDBufNoisy, zerosDBufClean, zerosXBuf;
int far_q;
WebRtc_Word16 resolutionDiff, qDomainDiff;
const int kMinPrefBand = 4;
const int kMaxPrefBand = 24;
WebRtc_Word32 avgHnl32 = 0;
#ifdef ARM_WINM_LOG_
DWORD temp;
static int flag0 = 0;
__int64 freq, start, end, diff__;
unsigned int milliseconds;
#endif
// Determine startup state. There are three states:
// (0) the first CONV_LEN blocks
// (1) another CONV_LEN blocks
// (2) the rest
if (aecm->startupState < 2)
{
aecm->startupState = (aecm->totCount >= CONV_LEN) + (aecm->totCount >= CONV_LEN2);
}
// END: Determine startup state
// Buffer near and far end signals
memcpy(aecm->xBuf + PART_LEN, farend, sizeof(WebRtc_Word16) * PART_LEN);
memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(WebRtc_Word16) * PART_LEN);
if (nearendClean != NULL)
{
memcpy(aecm->dBufClean + PART_LEN, nearendClean, sizeof(WebRtc_Word16) * PART_LEN);
}
#ifdef ARM_WINM_LOG_
// measure tick start
QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
QueryPerformanceCounter((LARGE_INTEGER*)&start);
#endif
// Transform far end signal from time domain to frequency domain.
far_q = TimeToFrequencyDomain(aecm->xBuf,
dfw,
xfa,
&xfaSum);
// Transform noisy near end signal from time domain to frequency domain.
zerosDBufNoisy = TimeToFrequencyDomain(aecm->dBufNoisy,
dfw,
dfaNoisy,
&dfaNoisySum);
aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
aecm->dfaNoisyQDomain = (WebRtc_Word16)zerosDBufNoisy;
if (nearendClean == NULL)
{
ptrDfaClean = dfaNoisy;
aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
dfaCleanSum = dfaNoisySum;
} else
{
// Transform clean near end signal from time domain to frequency domain.
zerosDBufClean = TimeToFrequencyDomain(aecm->dBufClean,
dfw,
dfaClean,
&dfaCleanSum);
aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
aecm->dfaCleanQDomain = (WebRtc_Word16)zerosDBufClean;
}
#ifdef ARM_WINM_LOG_
// measure tick end
QueryPerformanceCounter((LARGE_INTEGER*)&end);
diff__ = ((end - start) * 1000) / (freq/1000);
milliseconds = (unsigned int)(diff__ & 0xffffffff);
WriteFile (logFile, &milliseconds, sizeof(unsigned int), &temp, NULL);
// measure tick start
QueryPerformanceCounter((LARGE_INTEGER*)&start);
#endif
// Get the delay
// Save far-end history and estimate delay
UpdateFarHistory(aecm, xfa, far_q);
delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
xfa,
dfaNoisy,
PART_LEN1,
far_q,
zerosDBufNoisy);
if (delay == -1)
{
return -1;
}
else if (delay == -2)
{
// If the delay is unknown, we assume zero.
// NOTE: this will have to be adjusted if we ever add lookahead.
delay = 0;
}
if (aecm->fixedDelay >= 0)
{
// Use fixed delay
delay = aecm->fixedDelay;
}
#ifdef ARM_WINM_LOG_
// measure tick end
QueryPerformanceCounter((LARGE_INTEGER*)&end);
diff__ = ((end - start) * 1000) / (freq/1000);
milliseconds = (unsigned int)(diff__ & 0xffffffff);
WriteFile (logFile, &milliseconds, sizeof(unsigned int), &temp, NULL);
// measure tick start
QueryPerformanceCounter((LARGE_INTEGER*)&start);
#endif
// Get aligned far end spectrum
far_spectrum_ptr = AlignedFarend(aecm, &far_q, delay);
zerosXBuf = (WebRtc_Word16) far_q;
if (far_spectrum_ptr == NULL)
{
return -1;
}
// Calculate log(energy) and update energy threshold levels
WebRtcAecm_CalcEnergies(aecm,
far_spectrum_ptr,
zerosXBuf,
dfaNoisySum,
echoEst32);
// Calculate stepsize
mu = WebRtcAecm_CalcStepSize(aecm);
// Update counters
aecm->totCount++;
// This is the channel estimation algorithm.
// It is base on NLMS but has a variable step length, which was calculated above.
WebRtcAecm_UpdateChannel(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisy, mu, echoEst32);
supGain = CalcSuppressionGain(aecm);
#ifdef ARM_WINM_LOG_
// measure tick end
QueryPerformanceCounter((LARGE_INTEGER*)&end);
diff__ = ((end - start) * 1000) / (freq/1000);
milliseconds = (unsigned int)(diff__ & 0xffffffff);
WriteFile (logFile, &milliseconds, sizeof(unsigned int), &temp, NULL);
// measure tick start
QueryPerformanceCounter((LARGE_INTEGER*)&start);
#endif
// Calculate Wiener filter hnl[]
for (i = 0; i < PART_LEN1; i++)
{
// Far end signal through channel estimate in Q8
// How much can we shift right to preserve resolution
tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
aecm->echoFilt[i] += WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_32_16(tmp32no1, 50), 8);
zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
zeros16 = WebRtcSpl_NormW16(supGain) + 1;
if (zeros32 + zeros16 > 16)
{
// Multiplication is safe
// Result in Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+aecm->xfaQDomainBuf[diff])
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((WebRtc_UWord32)aecm->echoFilt[i],
(WebRtc_UWord16)supGain);
resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
} else
{
tmp16no1 = 17 - zeros32 - zeros16;
resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
if (zeros32 > tmp16no1)
{
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((WebRtc_UWord32)aecm->echoFilt[i],
(WebRtc_UWord16)WEBRTC_SPL_RSHIFT_W16(supGain,
tmp16no1)); // Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
} else
{
// Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
echoEst32Gained = WEBRTC_SPL_UMUL_32_16(
(WebRtc_UWord32)WEBRTC_SPL_RSHIFT_W32(aecm->echoFilt[i], tmp16no1),
(WebRtc_UWord16)supGain);
}
}
zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
if ((zeros16 < (aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld))
& (aecm->nearFilt[i]))
{
tmp16no1 = WEBRTC_SPL_SHIFT_W16(aecm->nearFilt[i], zeros16);
qDomainDiff = zeros16 - aecm->dfaCleanQDomain + aecm->dfaCleanQDomainOld;
} else
{
tmp16no1 = WEBRTC_SPL_SHIFT_W16(aecm->nearFilt[i],
aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld);
qDomainDiff = 0;
}
tmp16no2 = WEBRTC_SPL_SHIFT_W16(ptrDfaClean[i], qDomainDiff);
tmp32no1 = (WebRtc_Word32)(tmp16no2 - tmp16no1);
tmp16no2 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32no1, 4);
tmp16no2 += tmp16no1;
zeros16 = WebRtcSpl_NormW16(tmp16no2);
if ((tmp16no2) & (-qDomainDiff > zeros16))
{
aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
} else
{
aecm->nearFilt[i] = WEBRTC_SPL_SHIFT_W16(tmp16no2, -qDomainDiff);
}
// Wiener filter coefficients, resulting hnl in Q14
if (echoEst32Gained == 0)
{
hnl[i] = ONE_Q14;
} else if (aecm->nearFilt[i] == 0)
{
hnl[i] = 0;
} else
{
// Multiply the suppression gain
// Rounding
echoEst32Gained += (WebRtc_UWord32)(aecm->nearFilt[i] >> 1);
tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained, (WebRtc_UWord16)aecm->nearFilt[i]);
// Current resolution is
// Q-(RESOLUTION_CHANNEL + RESOLUTION_SUPGAIN - max(0, 17 - zeros16 - zeros32))
// Make sure we are in Q14
tmp32no1 = (WebRtc_Word32)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
if (tmp32no1 > ONE_Q14)
{
hnl[i] = 0;
} else if (tmp32no1 < 0)
{
hnl[i] = ONE_Q14;
} else
{
// 1-echoEst/dfa
hnl[i] = ONE_Q14 - (WebRtc_Word16)tmp32no1;
if (hnl[i] < 0)
{
hnl[i] = 0;
}
}
}
if (hnl[i])
{
numPosCoef++;
}
}
// Only in wideband. Prevent the gain in upper band from being larger than
// in lower band.
if (aecm->mult == 2)
{
// TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
// speech distortion in double-talk.
for (i = 0; i < PART_LEN1; i++)
{
hnl[i] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(hnl[i], hnl[i], 14);
}
for (i = kMinPrefBand; i <= kMaxPrefBand; i++)
{
avgHnl32 += (WebRtc_Word32)hnl[i];
}
assert(kMaxPrefBand - kMinPrefBand + 1 > 0);
avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
for (i = kMaxPrefBand; i < PART_LEN1; i++)
{
if (hnl[i] > (WebRtc_Word16)avgHnl32)
{
hnl[i] = (WebRtc_Word16)avgHnl32;
}
}
}
#ifdef ARM_WINM_LOG_
// measure tick end
QueryPerformanceCounter((LARGE_INTEGER*)&end);
diff__ = ((end - start) * 1000) / (freq/1000);
milliseconds = (unsigned int)(diff__ & 0xffffffff);
WriteFile (logFile, &milliseconds, sizeof(unsigned int), &temp, NULL);
// measure tick start
QueryPerformanceCounter((LARGE_INTEGER*)&start);
#endif
// Calculate NLP gain, result is in Q14
if (aecm->nlpFlag)
{
for (i = 0; i < PART_LEN1; i++)
{
// Truncate values close to zero and one.
if (hnl[i] > NLP_COMP_HIGH)
{
hnl[i] = ONE_Q14;
} else if (hnl[i] < NLP_COMP_LOW)
{
hnl[i] = 0;
}
// Remove outliers
if (numPosCoef < 3)
{
nlpGain = 0;
} else
{
nlpGain = ONE_Q14;
}
// NLP
if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14))
{
hnl[i] = ONE_Q14;
} else
{
hnl[i] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(hnl[i], nlpGain, 14);
}
// multiply with Wiener coefficients
efw[i].real = (WebRtc_Word16)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (WebRtc_Word16)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
}
}
else
{
// multiply with Wiener coefficients
for (i = 0; i < PART_LEN1; i++)
{
efw[i].real = (WebRtc_Word16)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (WebRtc_Word16)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
}
}
if (aecm->cngMode == AecmTrue)
{
ComfortNoise(aecm, ptrDfaClean, efw, hnl);
}
#ifdef ARM_WINM_LOG_
// measure tick end
QueryPerformanceCounter((LARGE_INTEGER*)&end);
diff__ = ((end - start) * 1000) / (freq/1000);
milliseconds = (unsigned int)(diff__ & 0xffffffff);
WriteFile (logFile, &milliseconds, sizeof(unsigned int), &temp, NULL);
// measure tick start
QueryPerformanceCounter((LARGE_INTEGER*)&start);
#endif
WebRtcAecm_InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
return 0;
}
// Generate comfort noise and add to output signal.
//
// \param[in] aecm Handle of the AECM instance.
// \param[in] dfa Absolute value of the nearend signal (Q[aecm->dfaQDomain]).
// \param[in,out] outReal Real part of the output signal (Q[aecm->dfaQDomain]).
// \param[in,out] outImag Imaginary part of the output signal (Q[aecm->dfaQDomain]).
// \param[in] lambda Suppression gain with which to scale the noise level (Q14).
//
static void ComfortNoise(AecmCore_t* aecm,
const WebRtc_UWord16* dfa,
complex16_t* out,
const WebRtc_Word16* lambda)
{
WebRtc_Word16 i;
WebRtc_Word16 tmp16;
WebRtc_Word32 tmp32;
WebRtc_Word16 randW16[PART_LEN];
WebRtc_Word16 uReal[PART_LEN1];
WebRtc_Word16 uImag[PART_LEN1];
WebRtc_Word32 outLShift32;
WebRtc_Word16 noiseRShift16[PART_LEN1];
WebRtc_Word16 shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
WebRtc_Word16 minTrackShift;
assert(shiftFromNearToNoise >= 0);
assert(shiftFromNearToNoise < 16);
if (aecm->noiseEstCtr < 100)
{
// Track the minimum more quickly initially.
aecm->noiseEstCtr++;
minTrackShift = 6;
} else
{
minTrackShift = 9;
}
// Estimate noise power.
for (i = 0; i < PART_LEN1; i++)
{
// Shift to the noise domain.
tmp32 = (WebRtc_Word32)dfa[i];
outLShift32 = WEBRTC_SPL_LSHIFT_W32(tmp32, shiftFromNearToNoise);
if (outLShift32 < aecm->noiseEst[i])
{
// Reset "too low" counter
aecm->noiseEstTooLowCtr[i] = 0;
// Track the minimum.
if (aecm->noiseEst[i] < (1 << minTrackShift))
{
// For small values, decrease noiseEst[i] every
// |kNoiseEstIncCount| block. The regular approach below can not
// go further down due to truncation.
aecm->noiseEstTooHighCtr[i]++;
if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount)
{
aecm->noiseEst[i]--;
aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
}
}
else
{
aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32) >> minTrackShift);
}
} else
{
// Reset "too high" counter
aecm->noiseEstTooHighCtr[i] = 0;
// Ramp slowly upwards until we hit the minimum again.
if ((aecm->noiseEst[i] >> 19) > 0)
{
// Avoid overflow.
// Multiplication with 2049 will cause wrap around. Scale
// down first and then multiply
aecm->noiseEst[i] >>= 11;
aecm->noiseEst[i] *= 2049;
}
else if ((aecm->noiseEst[i] >> 11) > 0)
{
// Large enough for relative increase
aecm->noiseEst[i] *= 2049;
aecm->noiseEst[i] >>= 11;
}
else
{
// Make incremental increases based on size every
// |kNoiseEstIncCount| block
aecm->noiseEstTooLowCtr[i]++;
if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount)
{
aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
}
}
}
}
for (i = 0; i < PART_LEN1; i++)
{
tmp32 = WEBRTC_SPL_RSHIFT_W32(aecm->noiseEst[i], shiftFromNearToNoise);
if (tmp32 > 32767)
{
tmp32 = 32767;
aecm->noiseEst[i] = WEBRTC_SPL_LSHIFT_W32(tmp32, shiftFromNearToNoise);
}
noiseRShift16[i] = (WebRtc_Word16)tmp32;
tmp16 = ONE_Q14 - lambda[i];
noiseRShift16[i]
= (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(tmp16, noiseRShift16[i], 14);
}
// Generate a uniform random array on [0 2^15-1].
WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
// Generate noise according to estimated energy.
uReal[0] = 0; // Reject LF noise.
uImag[0] = 0;
for (i = 1; i < PART_LEN1; i++)
{
// Get a random index for the cos and sin tables over [0 359].
tmp16 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(359, randW16[i - 1], 15);
// Tables are in Q13.
uReal[i] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(noiseRShift16[i],
kCosTable[tmp16], 13);
uImag[i] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(-noiseRShift16[i],
kSinTable[tmp16], 13);
}
uImag[PART_LEN] = 0;
#if (!defined ARM_WINM) && (!defined ARM9E_GCC) && (!defined ANDROID_AECOPT)
for (i = 0; i < PART_LEN1; i++)
{
out[i].real = WEBRTC_SPL_ADD_SAT_W16(out[i].real, uReal[i]);
out[i].imag = WEBRTC_SPL_ADD_SAT_W16(out[i].imag, uImag[i]);
}
#else
for (i = 0; i < PART_LEN1 -1; )
{
out[i].real = WEBRTC_SPL_ADD_SAT_W16(out[i].real, uReal[i]);
out[i].imag = WEBRTC_SPL_ADD_SAT_W16(out[i].imag, uImag[i]);
i++;
out[i].real = WEBRTC_SPL_ADD_SAT_W16(out[i].real, uReal[i]);
out[i].imag = WEBRTC_SPL_ADD_SAT_W16(out[i].imag, uImag[i]);
i++;
}
out[i].real = WEBRTC_SPL_ADD_SAT_W16(out[i].real, uReal[i]);
out[i].imag = WEBRTC_SPL_ADD_SAT_W16(out[i].imag, uImag[i]);
#endif
}
void WebRtcAecm_BufferFarFrame(AecmCore_t* const aecm,
const WebRtc_Word16* const farend,
const int farLen)
{
int writeLen = farLen, writePos = 0;
// Check if the write position must be wrapped
while (aecm->farBufWritePos + writeLen > FAR_BUF_LEN)
{
// Write to remaining buffer space before wrapping
writeLen = FAR_BUF_LEN - aecm->farBufWritePos;
memcpy(aecm->farBuf + aecm->farBufWritePos, farend + writePos,
sizeof(WebRtc_Word16) * writeLen);
aecm->farBufWritePos = 0;
writePos = writeLen;
writeLen = farLen - writeLen;
}
memcpy(aecm->farBuf + aecm->farBufWritePos, farend + writePos,
sizeof(WebRtc_Word16) * writeLen);
aecm->farBufWritePos += writeLen;
}
void WebRtcAecm_FetchFarFrame(AecmCore_t * const aecm, WebRtc_Word16 * const farend,
const int farLen, const int knownDelay)
{
int readLen = farLen;
int readPos = 0;
int delayChange = knownDelay - aecm->lastKnownDelay;
aecm->farBufReadPos -= delayChange;
// Check if delay forces a read position wrap
while (aecm->farBufReadPos < 0)
{
aecm->farBufReadPos += FAR_BUF_LEN;
}
while (aecm->farBufReadPos > FAR_BUF_LEN - 1)
{
aecm->farBufReadPos -= FAR_BUF_LEN;
}
aecm->lastKnownDelay = knownDelay;
// Check if read position must be wrapped
while (aecm->farBufReadPos + readLen > FAR_BUF_LEN)
{
// Read from remaining buffer space before wrapping
readLen = FAR_BUF_LEN - aecm->farBufReadPos;
memcpy(farend + readPos, aecm->farBuf + aecm->farBufReadPos,
sizeof(WebRtc_Word16) * readLen);
aecm->farBufReadPos = 0;
readPos = readLen;
readLen = farLen - readLen;
}
memcpy(farend + readPos, aecm->farBuf + aecm->farBufReadPos,
sizeof(WebRtc_Word16) * readLen);
aecm->farBufReadPos += readLen;
}