blob: f5d1bd9b449b3edc7bf109db368f8f0abfffe25f [file] [log] [blame]
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2014 Kevin Cernekee <cernekee@gmail.com>
*/
#define pr_fmt(fmt) "bmips-dma: " fmt
#include <linux/device.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <dma-coherence.h>
/*
* BCM338x has configurable address translation windows which allow the
* peripherals' DMA addresses to be different from the Zephyr-visible
* physical addresses. e.g. usb_dma_addr = zephyr_pa ^ 0x08000000
*
* If the "brcm,ubus" node has a "dma-ranges" property we will enable this
* translation globally using the provided information. This implements a
* very limited subset of "dma-ranges" support and it will probably be
* replaced by a more generic version later.
*/
struct bmips_dma_range {
u32 child_addr;
u32 parent_addr;
u32 size;
};
struct bmips_dma_ops {
dma_addr_t (*phys_to_dma)(struct device *dev, phys_addr_t pa);
unsigned long (*addr_to_phys)(struct device *dev, dma_addr_t dma);
};
static inline dma_addr_t bmips_noop_phys_to_dma(struct device *dev,
phys_addr_t pa)
{
return pa;
}
static inline unsigned long bmips_noop_addr_to_phys(struct device *dev,
dma_addr_t dma_addr)
{
return dma_addr;
}
static struct bmips_dma_range *bmips_dma_ranges;
static struct bmips_dma_ops bmips_dma_ops = {
.phys_to_dma = bmips_noop_phys_to_dma,
.addr_to_phys = bmips_noop_addr_to_phys,
};
#define FLUSH_RAC 0x100
static dma_addr_t bmips_ubus_phys_to_dma(struct device *dev, phys_addr_t pa)
{
struct bmips_dma_range *r;
for (r = bmips_dma_ranges; r && r->size; r++) {
if (pa >= r->child_addr &&
pa < (r->child_addr + r->size))
return pa - r->child_addr + r->parent_addr;
}
return pa;
}
static unsigned long bmips_ubus_dma_addr_to_phys(struct device *dev,
dma_addr_t dma_addr)
{
struct bmips_dma_range *r;
for (r = bmips_dma_ranges; r && r->size; r++) {
if (dma_addr >= r->parent_addr &&
dma_addr < (r->parent_addr + r->size))
return dma_addr - r->parent_addr + r->child_addr;
}
return dma_addr;
}
#ifdef CONFIG_PCI
/* These two offsets depend on the chip we are running on, namely
* if the processor supports 1GB or 2GB on MEMC0
*/
static unsigned long memc1_start;
static unsigned long memc1_pci_offset;
/* This is a constant on all Broadcom STB chips, spans the GISB register
* and EBI space
*/
#define BRCM_PCI_HOLE_START _AC(0x10000000, UL)
#define BRCM_PCI_HOLE_SIZE _AC(0x10000000, UL)
/*
* PCIe inbound BARs collapse the "holes" in the chip's SCB address space.
* Therefore the PCI addresses need to be adjusted as they will not match
* the SCB addresses (MIPS physical addresses).
*/
static int dev_collapses_memory_hole(struct device *dev)
{
#if defined(CONFIG_HIGHMEM)
if (unlikely(dev == NULL) ||
likely(dev->bus != &pci_bus_type))
return 0;
return 1;
#else
return 0;
#endif
}
static dma_addr_t bmips_pci_phys_to_dma(struct device *dev, phys_addr_t pa)
{
if (!dev_collapses_memory_hole(dev))
return pa;
if (pa >= memc1_start)
return pa - memc1_pci_offset;
if (pa >= (BRCM_PCI_HOLE_START + BRCM_PCI_HOLE_SIZE))
return pa - BRCM_PCI_HOLE_SIZE;
return pa;
}
static unsigned long bmips_pci_dma_addr_to_phys(struct device *dev,
dma_addr_t dma_addr)
{
if (!dev_collapses_memory_hole(dev))
return dma_addr;
if (dma_addr >= (memc1_start - memc1_pci_offset))
return dma_addr + memc1_pci_offset;
if (dma_addr >= BRCM_PCI_HOLE_START)
return dma_addr + BRCM_PCI_HOLE_SIZE;
return dma_addr;
}
#endif /* CONFIG_PCI */
static dma_addr_t bmips_phys_to_dma(struct device *dev, phys_addr_t pa)
{
return bmips_dma_ops.phys_to_dma(dev, pa);
}
dma_addr_t plat_map_dma_mem(struct device *dev, void *addr, size_t size)
{
return bmips_phys_to_dma(dev, virt_to_phys(addr));
}
dma_addr_t plat_map_dma_mem_page(struct device *dev, struct page *page)
{
return bmips_phys_to_dma(dev, page_to_phys(page));
}
unsigned long plat_dma_addr_to_phys(struct device *dev, dma_addr_t dma_addr)
{
return bmips_dma_ops.addr_to_phys(dev, dma_addr);
}
static int __init bmips_init_dma_ranges(void)
{
struct device_node *np =
of_find_compatible_node(NULL, NULL, "brcm,ubus");
const __be32 *data;
struct bmips_dma_range *r;
int len;
if (!np)
return 0;
data = of_get_property(np, "dma-ranges", &len);
if (!data)
goto out_good;
len /= sizeof(*data) * 3;
if (!len)
goto out_bad;
/* add a dummy (zero) entry at the end as a sentinel */
bmips_dma_ranges = kzalloc(sizeof(struct bmips_dma_range) * (len + 1),
GFP_KERNEL);
if (!bmips_dma_ranges)
goto out_bad;
for (r = bmips_dma_ranges; len; len--, r++) {
r->child_addr = be32_to_cpup(data++);
r->parent_addr = be32_to_cpup(data++);
r->size = be32_to_cpup(data++);
}
bmips_dma_ops.phys_to_dma = bmips_ubus_phys_to_dma;
bmips_dma_ops.addr_to_phys = bmips_ubus_dma_addr_to_phys;
out_good:
of_node_put(np);
return 0;
out_bad:
pr_err("error parsing dma-ranges property\n");
of_node_put(np);
return -EINVAL;
}
arch_initcall(bmips_init_dma_ranges);
#ifdef CONFIG_PCI
static int __init bmips_init_pci_ranges(void)
{
struct device_node *np = of_find_node_by_name(NULL, "rdb");
struct cpuinfo_mips *c = &current_cpu_data;
int rev = 0;
/* Likely not running on a STB chip, bail out */
if (!np || c->cputype != CPU_BMIPS5000)
return 0;
rev = c->processor_id & PRID_REV_MASK;
/* Early BMIPS5000, only supports up to 1GB on MEMC0 */
if (rev <= 0x2 &&
(c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5000) {
memc1_start = _AC(0x60000000, UL);
memc1_pci_offset = _AC(0x20000000, UL);
} else {
memc1_start = _AC(0x90000000, UL);
memc1_pci_offset = _AC(0x10000000, UL);
}
pr_info("MEMC1 start: 0x%lx, PCI offset: 0x%lx\n",
memc1_start, memc1_pci_offset);
bmips_dma_ops.phys_to_dma = bmips_pci_phys_to_dma;
bmips_dma_ops.addr_to_phys = bmips_pci_dma_addr_to_phys;
return 0;
}
arch_initcall(bmips_init_pci_ranges);
#endif