blob: a2ef64c3403d90bee1833ad4e5ab955e07c12906 [file] [log] [blame]
/*
* GPL HEADER START
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 only,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 for more details (a copy is included
* in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; If not, see
* http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
* GPL HEADER END
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 2011, 2012, Intel Corporation.
*/
/*
* This file is part of Lustre, http://www.lustre.org/
* Lustre is a trademark of Sun Microsystems, Inc.
*
* libcfs/libcfs/linux/linux-curproc.c
*
* Lustre curproc API implementation for Linux kernel
*
* Author: Nikita Danilov <nikita@clusterfs.com>
*/
#include <linux/sched.h>
#include <linux/fs_struct.h>
#include <linux/compat.h>
#include <linux/thread_info.h>
#define DEBUG_SUBSYSTEM S_LNET
#include <linux/libcfs/libcfs.h>
/*
* Implementation of cfs_curproc API (see portals/include/libcfs/curproc.h)
* for Linux kernel.
*/
int cfs_curproc_groups_nr(void)
{
int nr;
task_lock(current);
nr = current_cred()->group_info->ngroups;
task_unlock(current);
return nr;
}
/* Currently all the CFS_CAP_* defines match CAP_* ones. */
#define cfs_cap_pack(cap) (cap)
#define cfs_cap_unpack(cap) (cap)
void cfs_cap_raise(cfs_cap_t cap)
{
struct cred *cred;
if ((cred = prepare_creds())) {
cap_raise(cred->cap_effective, cfs_cap_unpack(cap));
commit_creds(cred);
}
}
void cfs_cap_lower(cfs_cap_t cap)
{
struct cred *cred;
if ((cred = prepare_creds())) {
cap_lower(cred->cap_effective, cfs_cap_unpack(cap));
commit_creds(cred);
}
}
int cfs_cap_raised(cfs_cap_t cap)
{
return cap_raised(current_cap(), cfs_cap_unpack(cap));
}
void cfs_kernel_cap_pack(kernel_cap_t kcap, cfs_cap_t *cap)
{
#if defined (_LINUX_CAPABILITY_VERSION) && _LINUX_CAPABILITY_VERSION == 0x19980330
*cap = cfs_cap_pack(kcap);
#elif defined (_LINUX_CAPABILITY_VERSION) && _LINUX_CAPABILITY_VERSION == 0x20071026
*cap = cfs_cap_pack(kcap[0]);
#elif defined(_KERNEL_CAPABILITY_VERSION) && _KERNEL_CAPABILITY_VERSION == 0x20080522
/* XXX lost high byte */
*cap = cfs_cap_pack(kcap.cap[0]);
#else
#error "need correct _KERNEL_CAPABILITY_VERSION "
#endif
}
void cfs_kernel_cap_unpack(kernel_cap_t *kcap, cfs_cap_t cap)
{
#if defined (_LINUX_CAPABILITY_VERSION) && _LINUX_CAPABILITY_VERSION == 0x19980330
*kcap = cfs_cap_unpack(cap);
#elif defined (_LINUX_CAPABILITY_VERSION) && _LINUX_CAPABILITY_VERSION == 0x20071026
(*kcap)[0] = cfs_cap_unpack(cap);
#elif defined(_KERNEL_CAPABILITY_VERSION) && _KERNEL_CAPABILITY_VERSION == 0x20080522
kcap->cap[0] = cfs_cap_unpack(cap);
#else
#error "need correct _KERNEL_CAPABILITY_VERSION "
#endif
}
cfs_cap_t cfs_curproc_cap_pack(void)
{
cfs_cap_t cap;
cfs_kernel_cap_pack(current_cap(), &cap);
return cap;
}
void cfs_curproc_cap_unpack(cfs_cap_t cap)
{
struct cred *cred;
if ((cred = prepare_creds())) {
cfs_kernel_cap_unpack(&cred->cap_effective, cap);
commit_creds(cred);
}
}
int cfs_capable(cfs_cap_t cap)
{
return capable(cfs_cap_unpack(cap));
}
static int cfs_access_process_vm(struct task_struct *tsk, unsigned long addr,
void *buf, int len, int write)
{
/* Just copied from kernel for the kernels which doesn't
* have access_process_vm() exported */
struct mm_struct *mm;
struct vm_area_struct *vma;
struct page *page;
void *old_buf = buf;
mm = get_task_mm(tsk);
if (!mm)
return 0;
down_read(&mm->mmap_sem);
/* ignore errors, just check how much was successfully transferred */
while (len) {
int bytes, rc, offset;
void *maddr;
rc = get_user_pages(tsk, mm, addr, 1,
write, 1, &page, &vma);
if (rc <= 0)
break;
bytes = len;
offset = addr & (PAGE_SIZE-1);
if (bytes > PAGE_SIZE-offset)
bytes = PAGE_SIZE-offset;
maddr = kmap(page);
if (write) {
copy_to_user_page(vma, page, addr,
maddr + offset, buf, bytes);
set_page_dirty_lock(page);
} else {
copy_from_user_page(vma, page, addr,
buf, maddr + offset, bytes);
}
kunmap(page);
page_cache_release(page);
len -= bytes;
buf += bytes;
addr += bytes;
}
up_read(&mm->mmap_sem);
mmput(mm);
return buf - old_buf;
}
/* Read the environment variable of current process specified by @key. */
int cfs_get_environ(const char *key, char *value, int *val_len)
{
struct mm_struct *mm;
char *buffer, *tmp_buf = NULL;
int buf_len = PAGE_CACHE_SIZE;
int key_len = strlen(key);
unsigned long addr;
int rc;
buffer = kmalloc(buf_len, GFP_USER);
if (!buffer)
return -ENOMEM;
mm = get_task_mm(current);
if (!mm) {
kfree(buffer);
return -EINVAL;
}
/* Avoid deadlocks on mmap_sem if called from sys_mmap_pgoff(),
* which is already holding mmap_sem for writes. If some other
* thread gets the write lock in the meantime, this thread will
* block, but at least it won't deadlock on itself. LU-1735 */
if (down_read_trylock(&mm->mmap_sem) == 0) {
kfree(buffer);
return -EDEADLK;
}
up_read(&mm->mmap_sem);
addr = mm->env_start;
while (addr < mm->env_end) {
int this_len, retval, scan_len;
char *env_start, *env_end;
memset(buffer, 0, buf_len);
this_len = min_t(int, mm->env_end - addr, buf_len);
retval = cfs_access_process_vm(current, addr, buffer,
this_len, 0);
if (retval != this_len)
break;
addr += retval;
/* Parse the buffer to find out the specified key/value pair.
* The "key=value" entries are separated by '\0'. */
env_start = buffer;
scan_len = this_len;
while (scan_len) {
char *entry;
int entry_len;
env_end = memscan(env_start, '\0', scan_len);
LASSERT(env_end >= env_start &&
env_end <= env_start + scan_len);
/* The last entry of this buffer cross the buffer
* boundary, reread it in next cycle. */
if (unlikely(env_end - env_start == scan_len)) {
/* This entry is too large to fit in buffer */
if (unlikely(scan_len == this_len)) {
CERROR("Too long env variable.\n");
GOTO(out, rc = -EINVAL);
}
addr -= scan_len;
break;
}
entry = env_start;
entry_len = env_end - env_start;
/* Key length + length of '=' */
if (entry_len > key_len + 1 &&
!memcmp(entry, key, key_len)) {
entry += key_len + 1;
entry_len -= key_len + 1;
/* The 'value' buffer passed in is too small.*/
if (entry_len >= *val_len)
GOTO(out, rc = -EOVERFLOW);
memcpy(value, entry, entry_len);
*val_len = entry_len;
GOTO(out, rc = 0);
}
scan_len -= (env_end - env_start + 1);
env_start = env_end + 1;
}
}
GOTO(out, rc = -ENOENT);
out:
mmput(mm);
kfree((void *)buffer);
if (tmp_buf)
kfree((void *)tmp_buf);
return rc;
}
EXPORT_SYMBOL(cfs_get_environ);
EXPORT_SYMBOL(cfs_curproc_groups_nr);
EXPORT_SYMBOL(cfs_cap_raise);
EXPORT_SYMBOL(cfs_cap_lower);
EXPORT_SYMBOL(cfs_cap_raised);
EXPORT_SYMBOL(cfs_curproc_cap_pack);
EXPORT_SYMBOL(cfs_curproc_cap_unpack);
EXPORT_SYMBOL(cfs_capable);
/*
* Local variables:
* c-indentation-style: "K&R"
* c-basic-offset: 8
* tab-width: 8
* fill-column: 80
* scroll-step: 1
* End:
*/