| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "noise_suppression_x.h" |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| |
| #include "cpu_features_wrapper.h" |
| #include "nsx_core.h" |
| |
| // Skip first frequency bins during estimation. (0 <= value < 64) |
| static const int kStartBand = 5; |
| |
| // Constants to compensate for shifting signal log(2^shifts). |
| const WebRtc_Word16 WebRtcNsx_kLogTable[9] = { |
| 0, 177, 355, 532, 710, 887, 1065, 1242, 1420 |
| }; |
| |
| const WebRtc_Word16 WebRtcNsx_kCounterDiv[201] = { |
| 32767, 16384, 10923, 8192, 6554, 5461, 4681, |
| 4096, 3641, 3277, 2979, 2731, 2521, 2341, 2185, 2048, 1928, 1820, 1725, 1638, 1560, |
| 1489, 1425, 1365, 1311, 1260, 1214, 1170, 1130, 1092, 1057, 1024, 993, 964, 936, 910, |
| 886, 862, 840, 819, 799, 780, 762, 745, 728, 712, 697, 683, 669, 655, 643, 630, 618, |
| 607, 596, 585, 575, 565, 555, 546, 537, 529, 520, 512, 504, 496, 489, 482, 475, 468, |
| 462, 455, 449, 443, 437, 431, 426, 420, 415, 410, 405, 400, 395, 390, 386, 381, 377, |
| 372, 368, 364, 360, 356, 352, 349, 345, 341, 338, 334, 331, 328, 324, 321, 318, 315, |
| 312, 309, 306, 303, 301, 298, 295, 293, 290, 287, 285, 282, 280, 278, 275, 273, 271, |
| 269, 266, 264, 262, 260, 258, 256, 254, 252, 250, 248, 246, 245, 243, 241, 239, 237, |
| 236, 234, 232, 231, 229, 228, 226, 224, 223, 221, 220, 218, 217, 216, 214, 213, 211, |
| 210, 209, 207, 206, 205, 204, 202, 201, 200, 199, 197, 196, 195, 194, 193, 192, 191, |
| 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173, |
| 172, 172, 171, 170, 169, 168, 167, 166, 165, 165, 164, 163 |
| }; |
| |
| const WebRtc_Word16 WebRtcNsx_kLogTableFrac[256] = { |
| 0, 1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, |
| 22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42, |
| 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, |
| 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, |
| 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, |
| 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, |
| 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, |
| 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, |
| 150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, |
| 165, 166, 167, 168, 169, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 178, |
| 179, 180, 181, 182, 183, 184, 185, 185, 186, 187, 188, 189, 190, 191, 192, 192, |
| 193, 194, 195, 196, 197, 198, 198, 199, 200, 201, 202, 203, 203, 204, 205, 206, |
| 207, 208, 208, 209, 210, 211, 212, 212, 213, 214, 215, 216, 216, 217, 218, 219, |
| 220, 220, 221, 222, 223, 224, 224, 225, 226, 227, 228, 228, 229, 230, 231, 231, |
| 232, 233, 234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243, 244, |
| 244, 245, 246, 247, 247, 248, 249, 249, 250, 251, 252, 252, 253, 254, 255, 255 |
| }; |
| |
| static const WebRtc_Word16 kPowTableFrac[1024] = { |
| 0, 1, 1, 2, 3, 3, 4, 5, |
| 6, 6, 7, 8, 8, 9, 10, 10, |
| 11, 12, 13, 13, 14, 15, 15, 16, |
| 17, 17, 18, 19, 20, 20, 21, 22, |
| 22, 23, 24, 25, 25, 26, 27, 27, |
| 28, 29, 30, 30, 31, 32, 32, 33, |
| 34, 35, 35, 36, 37, 37, 38, 39, |
| 40, 40, 41, 42, 42, 43, 44, 45, |
| 45, 46, 47, 48, 48, 49, 50, 50, |
| 51, 52, 53, 53, 54, 55, 56, 56, |
| 57, 58, 58, 59, 60, 61, 61, 62, |
| 63, 64, 64, 65, 66, 67, 67, 68, |
| 69, 69, 70, 71, 72, 72, 73, 74, |
| 75, 75, 76, 77, 78, 78, 79, 80, |
| 81, 81, 82, 83, 84, 84, 85, 86, |
| 87, 87, 88, 89, 90, 90, 91, 92, |
| 93, 93, 94, 95, 96, 96, 97, 98, |
| 99, 100, 100, 101, 102, 103, 103, 104, |
| 105, 106, 106, 107, 108, 109, 109, 110, |
| 111, 112, 113, 113, 114, 115, 116, 116, |
| 117, 118, 119, 119, 120, 121, 122, 123, |
| 123, 124, 125, 126, 126, 127, 128, 129, |
| 130, 130, 131, 132, 133, 133, 134, 135, |
| 136, 137, 137, 138, 139, 140, 141, 141, |
| 142, 143, 144, 144, 145, 146, 147, 148, |
| 148, 149, 150, 151, 152, 152, 153, 154, |
| 155, 156, 156, 157, 158, 159, 160, 160, |
| 161, 162, 163, 164, 164, 165, 166, 167, |
| 168, 168, 169, 170, 171, 172, 173, 173, |
| 174, 175, 176, 177, 177, 178, 179, 180, |
| 181, 181, 182, 183, 184, 185, 186, 186, |
| 187, 188, 189, 190, 190, 191, 192, 193, |
| 194, 195, 195, 196, 197, 198, 199, 200, |
| 200, 201, 202, 203, 204, 205, 205, 206, |
| 207, 208, 209, 210, 210, 211, 212, 213, |
| 214, 215, 215, 216, 217, 218, 219, 220, |
| 220, 221, 222, 223, 224, 225, 225, 226, |
| 227, 228, 229, 230, 231, 231, 232, 233, |
| 234, 235, 236, 237, 237, 238, 239, 240, |
| 241, 242, 243, 243, 244, 245, 246, 247, |
| 248, 249, 249, 250, 251, 252, 253, 254, |
| 255, 255, 256, 257, 258, 259, 260, 261, |
| 262, 262, 263, 264, 265, 266, 267, 268, |
| 268, 269, 270, 271, 272, 273, 274, 275, |
| 276, 276, 277, 278, 279, 280, 281, 282, |
| 283, 283, 284, 285, 286, 287, 288, 289, |
| 290, 291, 291, 292, 293, 294, 295, 296, |
| 297, 298, 299, 299, 300, 301, 302, 303, |
| 304, 305, 306, 307, 308, 308, 309, 310, |
| 311, 312, 313, 314, 315, 316, 317, 318, |
| 318, 319, 320, 321, 322, 323, 324, 325, |
| 326, 327, 328, 328, 329, 330, 331, 332, |
| 333, 334, 335, 336, 337, 338, 339, 339, |
| 340, 341, 342, 343, 344, 345, 346, 347, |
| 348, 349, 350, 351, 352, 352, 353, 354, |
| 355, 356, 357, 358, 359, 360, 361, 362, |
| 363, 364, 365, 366, 367, 367, 368, 369, |
| 370, 371, 372, 373, 374, 375, 376, 377, |
| 378, 379, 380, 381, 382, 383, 384, 385, |
| 385, 386, 387, 388, 389, 390, 391, 392, |
| 393, 394, 395, 396, 397, 398, 399, 400, |
| 401, 402, 403, 404, 405, 406, 407, 408, |
| 409, 410, 410, 411, 412, 413, 414, 415, |
| 416, 417, 418, 419, 420, 421, 422, 423, |
| 424, 425, 426, 427, 428, 429, 430, 431, |
| 432, 433, 434, 435, 436, 437, 438, 439, |
| 440, 441, 442, 443, 444, 445, 446, 447, |
| 448, 449, 450, 451, 452, 453, 454, 455, |
| 456, 457, 458, 459, 460, 461, 462, 463, |
| 464, 465, 466, 467, 468, 469, 470, 471, |
| 472, 473, 474, 475, 476, 477, 478, 479, |
| 480, 481, 482, 483, 484, 485, 486, 487, |
| 488, 489, 490, 491, 492, 493, 494, 495, |
| 496, 498, 499, 500, 501, 502, 503, 504, |
| 505, 506, 507, 508, 509, 510, 511, 512, |
| 513, 514, 515, 516, 517, 518, 519, 520, |
| 521, 522, 523, 525, 526, 527, 528, 529, |
| 530, 531, 532, 533, 534, 535, 536, 537, |
| 538, 539, 540, 541, 542, 544, 545, 546, |
| 547, 548, 549, 550, 551, 552, 553, 554, |
| 555, 556, 557, 558, 560, 561, 562, 563, |
| 564, 565, 566, 567, 568, 569, 570, 571, |
| 572, 574, 575, 576, 577, 578, 579, 580, |
| 581, 582, 583, 584, 585, 587, 588, 589, |
| 590, 591, 592, 593, 594, 595, 596, 597, |
| 599, 600, 601, 602, 603, 604, 605, 606, |
| 607, 608, 610, 611, 612, 613, 614, 615, |
| 616, 617, 618, 620, 621, 622, 623, 624, |
| 625, 626, 627, 628, 630, 631, 632, 633, |
| 634, 635, 636, 637, 639, 640, 641, 642, |
| 643, 644, 645, 646, 648, 649, 650, 651, |
| 652, 653, 654, 656, 657, 658, 659, 660, |
| 661, 662, 664, 665, 666, 667, 668, 669, |
| 670, 672, 673, 674, 675, 676, 677, 678, |
| 680, 681, 682, 683, 684, 685, 687, 688, |
| 689, 690, 691, 692, 693, 695, 696, 697, |
| 698, 699, 700, 702, 703, 704, 705, 706, |
| 708, 709, 710, 711, 712, 713, 715, 716, |
| 717, 718, 719, 720, 722, 723, 724, 725, |
| 726, 728, 729, 730, 731, 732, 733, 735, |
| 736, 737, 738, 739, 741, 742, 743, 744, |
| 745, 747, 748, 749, 750, 751, 753, 754, |
| 755, 756, 757, 759, 760, 761, 762, 763, |
| 765, 766, 767, 768, 770, 771, 772, 773, |
| 774, 776, 777, 778, 779, 780, 782, 783, |
| 784, 785, 787, 788, 789, 790, 792, 793, |
| 794, 795, 796, 798, 799, 800, 801, 803, |
| 804, 805, 806, 808, 809, 810, 811, 813, |
| 814, 815, 816, 818, 819, 820, 821, 823, |
| 824, 825, 826, 828, 829, 830, 831, 833, |
| 834, 835, 836, 838, 839, 840, 841, 843, |
| 844, 845, 846, 848, 849, 850, 851, 853, |
| 854, 855, 857, 858, 859, 860, 862, 863, |
| 864, 866, 867, 868, 869, 871, 872, 873, |
| 874, 876, 877, 878, 880, 881, 882, 883, |
| 885, 886, 887, 889, 890, 891, 893, 894, |
| 895, 896, 898, 899, 900, 902, 903, 904, |
| 906, 907, 908, 909, 911, 912, 913, 915, |
| 916, 917, 919, 920, 921, 923, 924, 925, |
| 927, 928, 929, 931, 932, 933, 935, 936, |
| 937, 938, 940, 941, 942, 944, 945, 946, |
| 948, 949, 950, 952, 953, 955, 956, 957, |
| 959, 960, 961, 963, 964, 965, 967, 968, |
| 969, 971, 972, 973, 975, 976, 977, 979, |
| 980, 981, 983, 984, 986, 987, 988, 990, |
| 991, 992, 994, 995, 996, 998, 999, 1001, |
| 1002, 1003, 1005, 1006, 1007, 1009, 1010, 1012, |
| 1013, 1014, 1016, 1017, 1018, 1020, 1021, 1023 |
| }; |
| |
| static const WebRtc_Word16 kIndicatorTable[17] = { |
| 0, 2017, 3809, 5227, 6258, 6963, 7424, 7718, |
| 7901, 8014, 8084, 8126, 8152, 8168, 8177, 8183, 8187 |
| }; |
| |
| // hybrib Hanning & flat window |
| static const WebRtc_Word16 kBlocks80w128x[128] = { |
| 0, 536, 1072, 1606, 2139, 2669, 3196, 3720, 4240, 4756, 5266, |
| 5771, 6270, 6762, 7246, 7723, 8192, 8652, 9102, 9543, 9974, 10394, |
| 10803, 11200, 11585, 11958, 12318, 12665, 12998, 13318, 13623, 13913, 14189, |
| 14449, 14694, 14924, 15137, 15334, 15515, 15679, 15826, 15956, 16069, 16165, |
| 16244, 16305, 16349, 16375, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16384, 16384, 16384, 16375, 16349, 16305, 16244, 16165, 16069, 15956, |
| 15826, 15679, 15515, 15334, 15137, 14924, 14694, 14449, 14189, 13913, 13623, |
| 13318, 12998, 12665, 12318, 11958, 11585, 11200, 10803, 10394, 9974, 9543, |
| 9102, 8652, 8192, 7723, 7246, 6762, 6270, 5771, 5266, 4756, 4240, |
| 3720, 3196, 2669, 2139, 1606, 1072, 536 |
| }; |
| |
| // hybrib Hanning & flat window |
| static const WebRtc_Word16 kBlocks160w256x[256] = { |
| 0, 268, 536, 804, 1072, 1339, 1606, 1872, |
| 2139, 2404, 2669, 2933, 3196, 3459, 3720, 3981, |
| 4240, 4499, 4756, 5012, 5266, 5520, 5771, 6021, |
| 6270, 6517, 6762, 7005, 7246, 7486, 7723, 7959, |
| 8192, 8423, 8652, 8878, 9102, 9324, 9543, 9760, |
| 9974, 10185, 10394, 10600, 10803, 11003, 11200, 11394, |
| 11585, 11773, 11958, 12140, 12318, 12493, 12665, 12833, |
| 12998, 13160, 13318, 13472, 13623, 13770, 13913, 14053, |
| 14189, 14321, 14449, 14574, 14694, 14811, 14924, 15032, |
| 15137, 15237, 15334, 15426, 15515, 15599, 15679, 15754, |
| 15826, 15893, 15956, 16015, 16069, 16119, 16165, 16207, |
| 16244, 16277, 16305, 16329, 16349, 16364, 16375, 16382, |
| 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, |
| 16384, 16382, 16375, 16364, 16349, 16329, 16305, 16277, |
| 16244, 16207, 16165, 16119, 16069, 16015, 15956, 15893, |
| 15826, 15754, 15679, 15599, 15515, 15426, 15334, 15237, |
| 15137, 15032, 14924, 14811, 14694, 14574, 14449, 14321, |
| 14189, 14053, 13913, 13770, 13623, 13472, 13318, 13160, |
| 12998, 12833, 12665, 12493, 12318, 12140, 11958, 11773, |
| 11585, 11394, 11200, 11003, 10803, 10600, 10394, 10185, |
| 9974, 9760, 9543, 9324, 9102, 8878, 8652, 8423, |
| 8192, 7959, 7723, 7486, 7246, 7005, 6762, 6517, |
| 6270, 6021, 5771, 5520, 5266, 5012, 4756, 4499, |
| 4240, 3981, 3720, 3459, 3196, 2933, 2669, 2404, |
| 2139, 1872, 1606, 1339, 1072, 804, 536, 268 |
| }; |
| |
| // Gain factor1 table: Input value in Q8 and output value in Q13 |
| // original floating point code |
| // if (gain > blim) { |
| // factor1 = 1.0 + 1.3 * (gain - blim); |
| // if (gain * factor1 > 1.0) { |
| // factor1 = 1.0 / gain; |
| // } |
| // } else { |
| // factor1 = 1.0; |
| // } |
| static const WebRtc_Word16 kFactor1Table[257] = { |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8233, 8274, 8315, 8355, 8396, 8436, 8475, 8515, 8554, 8592, 8631, 8669, |
| 8707, 8745, 8783, 8820, 8857, 8894, 8931, 8967, 9003, 9039, 9075, 9111, 9146, 9181, |
| 9216, 9251, 9286, 9320, 9354, 9388, 9422, 9456, 9489, 9523, 9556, 9589, 9622, 9655, |
| 9687, 9719, 9752, 9784, 9816, 9848, 9879, 9911, 9942, 9973, 10004, 10035, 10066, |
| 10097, 10128, 10158, 10188, 10218, 10249, 10279, 10308, 10338, 10368, 10397, 10426, |
| 10456, 10485, 10514, 10543, 10572, 10600, 10629, 10657, 10686, 10714, 10742, 10770, |
| 10798, 10826, 10854, 10882, 10847, 10810, 10774, 10737, 10701, 10666, 10631, 10596, |
| 10562, 10527, 10494, 10460, 10427, 10394, 10362, 10329, 10297, 10266, 10235, 10203, |
| 10173, 10142, 10112, 10082, 10052, 10023, 9994, 9965, 9936, 9908, 9879, 9851, 9824, |
| 9796, 9769, 9742, 9715, 9689, 9662, 9636, 9610, 9584, 9559, 9534, 9508, 9484, 9459, |
| 9434, 9410, 9386, 9362, 9338, 9314, 9291, 9268, 9245, 9222, 9199, 9176, 9154, 9132, |
| 9110, 9088, 9066, 9044, 9023, 9002, 8980, 8959, 8939, 8918, 8897, 8877, 8857, 8836, |
| 8816, 8796, 8777, 8757, 8738, 8718, 8699, 8680, 8661, 8642, 8623, 8605, 8586, 8568, |
| 8550, 8532, 8514, 8496, 8478, 8460, 8443, 8425, 8408, 8391, 8373, 8356, 8339, 8323, |
| 8306, 8289, 8273, 8256, 8240, 8224, 8208, 8192 |
| }; |
| |
| // For Factor2 tables |
| // original floating point code |
| // if (gain > blim) { |
| // factor2 = 1.0; |
| // } else { |
| // factor2 = 1.0 - 0.3 * (blim - gain); |
| // if (gain <= inst->denoiseBound) { |
| // factor2 = 1.0 - 0.3 * (blim - inst->denoiseBound); |
| // } |
| // } |
| // |
| // Gain factor table: Input value in Q8 and output value in Q13 |
| static const WebRtc_Word16 kFactor2Aggressiveness1[257] = { |
| 7577, 7577, 7577, 7577, 7577, 7577, |
| 7577, 7577, 7577, 7577, 7577, 7577, 7577, 7577, 7577, 7577, 7577, 7596, 7614, 7632, |
| 7650, 7667, 7683, 7699, 7715, 7731, 7746, 7761, 7775, 7790, 7804, 7818, 7832, 7845, |
| 7858, 7871, 7884, 7897, 7910, 7922, 7934, 7946, 7958, 7970, 7982, 7993, 8004, 8016, |
| 8027, 8038, 8049, 8060, 8070, 8081, 8091, 8102, 8112, 8122, 8132, 8143, 8152, 8162, |
| 8172, 8182, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192 |
| }; |
| |
| // Gain factor table: Input value in Q8 and output value in Q13 |
| static const WebRtc_Word16 kFactor2Aggressiveness2[257] = { |
| 7270, 7270, 7270, 7270, 7270, 7306, |
| 7339, 7369, 7397, 7424, 7448, 7472, 7495, 7517, 7537, 7558, 7577, 7596, 7614, 7632, |
| 7650, 7667, 7683, 7699, 7715, 7731, 7746, 7761, 7775, 7790, 7804, 7818, 7832, 7845, |
| 7858, 7871, 7884, 7897, 7910, 7922, 7934, 7946, 7958, 7970, 7982, 7993, 8004, 8016, |
| 8027, 8038, 8049, 8060, 8070, 8081, 8091, 8102, 8112, 8122, 8132, 8143, 8152, 8162, |
| 8172, 8182, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192 |
| }; |
| |
| // Gain factor table: Input value in Q8 and output value in Q13 |
| static const WebRtc_Word16 kFactor2Aggressiveness3[257] = { |
| 7184, 7184, 7184, 7229, 7270, 7306, |
| 7339, 7369, 7397, 7424, 7448, 7472, 7495, 7517, 7537, 7558, 7577, 7596, 7614, 7632, |
| 7650, 7667, 7683, 7699, 7715, 7731, 7746, 7761, 7775, 7790, 7804, 7818, 7832, 7845, |
| 7858, 7871, 7884, 7897, 7910, 7922, 7934, 7946, 7958, 7970, 7982, 7993, 8004, 8016, |
| 8027, 8038, 8049, 8060, 8070, 8081, 8091, 8102, 8112, 8122, 8132, 8143, 8152, 8162, |
| 8172, 8182, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, |
| 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192 |
| }; |
| |
| // sum of log2(i) from table index to inst->anaLen2 in Q5 |
| // Note that the first table value is invalid, since log2(0) = -infinity |
| static const WebRtc_Word16 kSumLogIndex[66] = { |
| 0, 22917, 22917, 22885, 22834, 22770, 22696, 22613, |
| 22524, 22428, 22326, 22220, 22109, 21994, 21876, 21754, |
| 21629, 21501, 21370, 21237, 21101, 20963, 20822, 20679, |
| 20535, 20388, 20239, 20089, 19937, 19783, 19628, 19470, |
| 19312, 19152, 18991, 18828, 18664, 18498, 18331, 18164, |
| 17994, 17824, 17653, 17480, 17306, 17132, 16956, 16779, |
| 16602, 16423, 16243, 16063, 15881, 15699, 15515, 15331, |
| 15146, 14960, 14774, 14586, 14398, 14209, 14019, 13829, |
| 13637, 13445 |
| }; |
| |
| // sum of log2(i)^2 from table index to inst->anaLen2 in Q2 |
| // Note that the first table value is invalid, since log2(0) = -infinity |
| static const WebRtc_Word16 kSumSquareLogIndex[66] = { |
| 0, 16959, 16959, 16955, 16945, 16929, 16908, 16881, |
| 16850, 16814, 16773, 16729, 16681, 16630, 16575, 16517, |
| 16456, 16392, 16325, 16256, 16184, 16109, 16032, 15952, |
| 15870, 15786, 15700, 15612, 15521, 15429, 15334, 15238, |
| 15140, 15040, 14938, 14834, 14729, 14622, 14514, 14404, |
| 14292, 14179, 14064, 13947, 13830, 13710, 13590, 13468, |
| 13344, 13220, 13094, 12966, 12837, 12707, 12576, 12444, |
| 12310, 12175, 12039, 11902, 11763, 11624, 11483, 11341, |
| 11198, 11054 |
| }; |
| |
| // log2(table index) in Q12 |
| // Note that the first table value is invalid, since log2(0) = -infinity |
| static const WebRtc_Word16 kLogIndex[129] = { |
| 0, 0, 4096, 6492, 8192, 9511, 10588, 11499, |
| 12288, 12984, 13607, 14170, 14684, 15157, 15595, 16003, |
| 16384, 16742, 17080, 17400, 17703, 17991, 18266, 18529, |
| 18780, 19021, 19253, 19476, 19691, 19898, 20099, 20292, |
| 20480, 20662, 20838, 21010, 21176, 21338, 21496, 21649, |
| 21799, 21945, 22087, 22226, 22362, 22495, 22625, 22752, |
| 22876, 22998, 23117, 23234, 23349, 23462, 23572, 23680, |
| 23787, 23892, 23994, 24095, 24195, 24292, 24388, 24483, |
| 24576, 24668, 24758, 24847, 24934, 25021, 25106, 25189, |
| 25272, 25354, 25434, 25513, 25592, 25669, 25745, 25820, |
| 25895, 25968, 26041, 26112, 26183, 26253, 26322, 26390, |
| 26458, 26525, 26591, 26656, 26721, 26784, 26848, 26910, |
| 26972, 27033, 27094, 27154, 27213, 27272, 27330, 27388, |
| 27445, 27502, 27558, 27613, 27668, 27722, 27776, 27830, |
| 27883, 27935, 27988, 28039, 28090, 28141, 28191, 28241, |
| 28291, 28340, 28388, 28437, 28484, 28532, 28579, 28626, |
| 28672 |
| }; |
| |
| // determinant of estimation matrix in Q0 corresponding to the log2 tables above |
| // Note that the first table value is invalid, since log2(0) = -infinity |
| static const WebRtc_Word16 kDeterminantEstMatrix[66] = { |
| 0, 29814, 25574, 22640, 20351, 18469, 16873, 15491, |
| 14277, 13199, 12233, 11362, 10571, 9851, 9192, 8587, |
| 8030, 7515, 7038, 6596, 6186, 5804, 5448, 5115, |
| 4805, 4514, 4242, 3988, 3749, 3524, 3314, 3116, |
| 2930, 2755, 2590, 2435, 2289, 2152, 2022, 1900, |
| 1785, 1677, 1575, 1478, 1388, 1302, 1221, 1145, |
| 1073, 1005, 942, 881, 825, 771, 721, 674, |
| 629, 587, 547, 510, 475, 442, 411, 382, |
| 355, 330 |
| }; |
| |
| // Declare function pointers. |
| NoiseEstimation WebRtcNsx_NoiseEstimation; |
| PrepareSpectrum WebRtcNsx_PrepareSpectrum; |
| SynthesisUpdate WebRtcNsx_SynthesisUpdate; |
| AnalysisUpdate WebRtcNsx_AnalysisUpdate; |
| Denormalize WebRtcNsx_Denormalize; |
| CreateComplexBuffer WebRtcNsx_CreateComplexBuffer; |
| |
| // Update the noise estimation information. |
| static void UpdateNoiseEstimate(NsxInst_t* inst, int offset) { |
| WebRtc_Word32 tmp32no1 = 0; |
| WebRtc_Word32 tmp32no2 = 0; |
| WebRtc_Word16 tmp16 = 0; |
| const WebRtc_Word16 kExp2Const = 11819; // Q13 |
| |
| int i = 0; |
| |
| tmp16 = WebRtcSpl_MaxValueW16(inst->noiseEstLogQuantile + offset, |
| inst->magnLen); |
| // Guarantee a Q-domain as high as possible and still fit in int16 |
| inst->qNoise = 14 - (int) WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( |
| kExp2Const, tmp16, 21); |
| for (i = 0; i < inst->magnLen; i++) { |
| // inst->quantile[i]=exp(inst->lquantile[offset+i]); |
| // in Q21 |
| tmp32no2 = WEBRTC_SPL_MUL_16_16(kExp2Const, |
| inst->noiseEstLogQuantile[offset + i]); |
| tmp32no1 = (0x00200000 | (tmp32no2 & 0x001FFFFF)); // 2^21 + frac |
| tmp16 = (WebRtc_Word16) WEBRTC_SPL_RSHIFT_W32(tmp32no2, 21); |
| tmp16 -= 21;// shift 21 to get result in Q0 |
| tmp16 += (WebRtc_Word16) inst->qNoise; //shift to get result in Q(qNoise) |
| if (tmp16 < 0) { |
| tmp32no1 = WEBRTC_SPL_RSHIFT_W32(tmp32no1, -tmp16); |
| } else { |
| tmp32no1 = WEBRTC_SPL_LSHIFT_W32(tmp32no1, tmp16); |
| } |
| inst->noiseEstQuantile[i] = WebRtcSpl_SatW32ToW16(tmp32no1); |
| } |
| } |
| |
| // Noise Estimation |
| static void NoiseEstimationC(NsxInst_t* inst, |
| uint16_t* magn, |
| uint32_t* noise, |
| int16_t* q_noise) { |
| WebRtc_Word16 lmagn[HALF_ANAL_BLOCKL], counter, countDiv; |
| WebRtc_Word16 countProd, delta, zeros, frac; |
| WebRtc_Word16 log2, tabind, logval, tmp16, tmp16no1, tmp16no2; |
| const int16_t log2_const = 22713; // Q15 |
| const int16_t width_factor = 21845; |
| |
| int i, s, offset; |
| |
| tabind = inst->stages - inst->normData; |
| assert(tabind < 9); |
| assert(tabind > -9); |
| if (tabind < 0) { |
| logval = -WebRtcNsx_kLogTable[-tabind]; |
| } else { |
| logval = WebRtcNsx_kLogTable[tabind]; |
| } |
| |
| // lmagn(i)=log(magn(i))=log(2)*log2(magn(i)) |
| // magn is in Q(-stages), and the real lmagn values are: |
| // real_lmagn(i)=log(magn(i)*2^stages)=log(magn(i))+log(2^stages) |
| // lmagn in Q8 |
| for (i = 0; i < inst->magnLen; i++) { |
| if (magn[i]) { |
| zeros = WebRtcSpl_NormU32((WebRtc_UWord32)magn[i]); |
| frac = (WebRtc_Word16)((((WebRtc_UWord32)magn[i] << zeros) |
| & 0x7FFFFFFF) >> 23); |
| // log2(magn(i)) |
| assert(frac < 256); |
| log2 = (WebRtc_Word16)(((31 - zeros) << 8) |
| + WebRtcNsx_kLogTableFrac[frac]); |
| // log2(magn(i))*log(2) |
| lmagn[i] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(log2, log2_const, 15); |
| // + log(2^stages) |
| lmagn[i] += logval; |
| } else { |
| lmagn[i] = logval;//0; |
| } |
| } |
| |
| // loop over simultaneous estimates |
| for (s = 0; s < SIMULT; s++) { |
| offset = s * inst->magnLen; |
| |
| // Get counter values from state |
| counter = inst->noiseEstCounter[s]; |
| assert(counter < 201); |
| countDiv = WebRtcNsx_kCounterDiv[counter]; |
| countProd = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(counter, countDiv); |
| |
| // quant_est(...) |
| for (i = 0; i < inst->magnLen; i++) { |
| // compute delta |
| if (inst->noiseEstDensity[offset + i] > 512) { |
| // Get the value for delta by shifting intead of dividing. |
| int factor = WebRtcSpl_NormW16(inst->noiseEstDensity[offset + i]); |
| delta = (int16_t)(FACTOR_Q16 >> (14 - factor)); |
| } else { |
| delta = FACTOR_Q7; |
| if (inst->blockIndex < END_STARTUP_LONG) { |
| // Smaller step size during startup. This prevents from using |
| // unrealistic values causing overflow. |
| delta = FACTOR_Q7_STARTUP; |
| } |
| } |
| |
| // update log quantile estimate |
| tmp16 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(delta, countDiv, 14); |
| if (lmagn[i] > inst->noiseEstLogQuantile[offset + i]) { |
| // +=QUANTILE*delta/(inst->counter[s]+1) QUANTILE=0.25, =1 in Q2 |
| // CounterDiv=1/(inst->counter[s]+1) in Q15 |
| tmp16 += 2; |
| tmp16no1 = WEBRTC_SPL_RSHIFT_W16(tmp16, 2); |
| inst->noiseEstLogQuantile[offset + i] += tmp16no1; |
| } else { |
| tmp16 += 1; |
| tmp16no1 = WEBRTC_SPL_RSHIFT_W16(tmp16, 1); |
| // *(1-QUANTILE), in Q2 QUANTILE=0.25, 1-0.25=0.75=3 in Q2 |
| tmp16no2 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(tmp16no1, 3, 1); |
| inst->noiseEstLogQuantile[offset + i] -= tmp16no2; |
| if (inst->noiseEstLogQuantile[offset + i] < logval) { |
| // This is the smallest fixed point representation we can |
| // have, hence we limit the output. |
| inst->noiseEstLogQuantile[offset + i] = logval; |
| } |
| } |
| |
| // update density estimate |
| if (WEBRTC_SPL_ABS_W16(lmagn[i] - inst->noiseEstLogQuantile[offset + i]) |
| < WIDTH_Q8) { |
| tmp16no1 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( |
| inst->noiseEstDensity[offset + i], countProd, 15); |
| tmp16no2 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( |
| width_factor, countDiv, 15); |
| inst->noiseEstDensity[offset + i] = tmp16no1 + tmp16no2; |
| } |
| } // end loop over magnitude spectrum |
| |
| if (counter >= END_STARTUP_LONG) { |
| inst->noiseEstCounter[s] = 0; |
| if (inst->blockIndex >= END_STARTUP_LONG) { |
| UpdateNoiseEstimate(inst, offset); |
| } |
| } |
| inst->noiseEstCounter[s]++; |
| |
| } // end loop over simultaneous estimates |
| |
| // Sequentially update the noise during startup |
| if (inst->blockIndex < END_STARTUP_LONG) { |
| UpdateNoiseEstimate(inst, offset); |
| } |
| |
| for (i = 0; i < inst->magnLen; i++) { |
| noise[i] = (WebRtc_UWord32)(inst->noiseEstQuantile[i]); // Q(qNoise) |
| } |
| (*q_noise) = (WebRtc_Word16)inst->qNoise; |
| } |
| |
| // Filter the data in the frequency domain, and create spectrum. |
| static void PrepareSpectrumC(NsxInst_t* inst, int16_t* freq_buf) { |
| int i = 0, j = 0; |
| int16_t tmp16 = 0; |
| |
| for (i = 0; i < inst->magnLen; i++) { |
| inst->real[i] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(inst->real[i], |
| (WebRtc_Word16)(inst->noiseSupFilter[i]), 14); // Q(normData-stages) |
| inst->imag[i] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(inst->imag[i], |
| (WebRtc_Word16)(inst->noiseSupFilter[i]), 14); // Q(normData-stages) |
| } |
| |
| freq_buf[0] = inst->real[0]; |
| freq_buf[1] = -inst->imag[0]; |
| for (i = 1, j = 2; i < inst->anaLen2; i += 1, j += 2) { |
| tmp16 = (inst->anaLen << 1) - j; |
| freq_buf[j] = inst->real[i]; |
| freq_buf[j + 1] = -inst->imag[i]; |
| freq_buf[tmp16] = inst->real[i]; |
| freq_buf[tmp16 + 1] = inst->imag[i]; |
| } |
| freq_buf[inst->anaLen] = inst->real[inst->anaLen2]; |
| freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2]; |
| } |
| |
| // Denormalize the input buffer. |
| static __inline void DenormalizeC(NsxInst_t* inst, int16_t* in, int factor) { |
| int i = 0, j = 0; |
| int32_t tmp32 = 0; |
| for (i = 0, j = 0; i < inst->anaLen; i += 1, j += 2) { |
| tmp32 = WEBRTC_SPL_SHIFT_W32((WebRtc_Word32)in[j], |
| factor - inst->normData); |
| inst->real[i] = WebRtcSpl_SatW32ToW16(tmp32); // Q0 |
| } |
| } |
| |
| // For the noise supression process, synthesis, read out fully processed |
| // segment, and update synthesis buffer. |
| static void SynthesisUpdateC(NsxInst_t* inst, |
| int16_t* out_frame, |
| int16_t gain_factor) { |
| int i = 0; |
| int16_t tmp16a = 0; |
| int16_t tmp16b = 0; |
| int32_t tmp32 = 0; |
| |
| // synthesis |
| for (i = 0; i < inst->anaLen; i++) { |
| tmp16a = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( |
| inst->window[i], inst->real[i], 14); // Q0, window in Q14 |
| tmp32 = WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(tmp16a, gain_factor, 13); // Q0 |
| // Down shift with rounding |
| tmp16b = WebRtcSpl_SatW32ToW16(tmp32); // Q0 |
| inst->synthesisBuffer[i] = WEBRTC_SPL_ADD_SAT_W16(inst->synthesisBuffer[i], |
| tmp16b); // Q0 |
| } |
| |
| // read out fully processed segment |
| for (i = 0; i < inst->blockLen10ms; i++) { |
| out_frame[i] = inst->synthesisBuffer[i]; // Q0 |
| } |
| |
| // update synthesis buffer |
| WEBRTC_SPL_MEMCPY_W16(inst->synthesisBuffer, |
| inst->synthesisBuffer + inst->blockLen10ms, |
| inst->anaLen - inst->blockLen10ms); |
| WebRtcSpl_ZerosArrayW16(inst->synthesisBuffer |
| + inst->anaLen - inst->blockLen10ms, inst->blockLen10ms); |
| } |
| |
| // Update analysis buffer for lower band, and window data before FFT. |
| static void AnalysisUpdateC(NsxInst_t* inst, |
| int16_t* out, |
| int16_t* new_speech) { |
| int i = 0; |
| |
| // For lower band update analysis buffer. |
| WEBRTC_SPL_MEMCPY_W16(inst->analysisBuffer, |
| inst->analysisBuffer + inst->blockLen10ms, |
| inst->anaLen - inst->blockLen10ms); |
| WEBRTC_SPL_MEMCPY_W16(inst->analysisBuffer |
| + inst->anaLen - inst->blockLen10ms, new_speech, inst->blockLen10ms); |
| |
| // Window data before FFT. |
| for (i = 0; i < inst->anaLen; i++) { |
| out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( |
| inst->window[i], inst->analysisBuffer[i], 14); // Q0 |
| } |
| } |
| |
| // Create a complex number buffer (out[]) as the intput (in[]) interleaved with |
| // zeros, and normalize it. |
| static __inline void CreateComplexBufferC(NsxInst_t* inst, |
| int16_t* in, |
| int16_t* out) { |
| int i = 0, j = 0; |
| for (i = 0, j = 0; i < inst->anaLen; i += 1, j += 2) { |
| out[j] = WEBRTC_SPL_LSHIFT_W16(in[i], inst->normData); // Q(normData) |
| out[j + 1] = 0; // Insert zeros in imaginary part |
| } |
| } |
| |
| void WebRtcNsx_CalcParametricNoiseEstimate(NsxInst_t* inst, |
| WebRtc_Word16 pink_noise_exp_avg, |
| WebRtc_Word32 pink_noise_num_avg, |
| int freq_index, |
| WebRtc_UWord32* noise_estimate, |
| WebRtc_UWord32* noise_estimate_avg) { |
| WebRtc_Word32 tmp32no1 = 0; |
| WebRtc_Word32 tmp32no2 = 0; |
| |
| WebRtc_Word16 int_part = 0; |
| WebRtc_Word16 frac_part = 0; |
| |
| // Use pink noise estimate |
| // noise_estimate = 2^(pinkNoiseNumerator + pinkNoiseExp * log2(j)) |
| assert(freq_index >= 0); |
| assert(freq_index < 129); |
| tmp32no2 = WEBRTC_SPL_MUL_16_16(pink_noise_exp_avg, kLogIndex[freq_index]); // Q26 |
| tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 15); // Q11 |
| tmp32no1 = pink_noise_num_avg - tmp32no2; // Q11 |
| |
| // Calculate output: 2^tmp32no1 |
| // Output in Q(minNorm-stages) |
| tmp32no1 += WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)(inst->minNorm - inst->stages), 11); |
| if (tmp32no1 > 0) { |
| int_part = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32no1, 11); |
| frac_part = (WebRtc_Word16)(tmp32no1 & 0x000007ff); // Q11 |
| // Piecewise linear approximation of 'b' in |
| // 2^(int_part+frac_part) = 2^int_part * (1 + b) |
| // 'b' is given in Q11 and below stored in frac_part. |
| if (WEBRTC_SPL_RSHIFT_W16(frac_part, 10)) { |
| // Upper fractional part |
| tmp32no2 = WEBRTC_SPL_MUL_16_16(2048 - frac_part, 1244); // Q21 |
| tmp32no2 = 2048 - WEBRTC_SPL_RSHIFT_W32(tmp32no2, 10); |
| } else { |
| // Lower fractional part |
| tmp32no2 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(frac_part, 804), 10); |
| } |
| // Shift fractional part to Q(minNorm-stages) |
| tmp32no2 = WEBRTC_SPL_SHIFT_W32(tmp32no2, int_part - 11); |
| *noise_estimate_avg = WEBRTC_SPL_LSHIFT_U32(1, int_part) + (WebRtc_UWord32)tmp32no2; |
| // Scale up to initMagnEst, which is not block averaged |
| *noise_estimate = (*noise_estimate_avg) * (WebRtc_UWord32)(inst->blockIndex + 1); |
| } |
| } |
| |
| // Initialize state |
| WebRtc_Word32 WebRtcNsx_InitCore(NsxInst_t* inst, WebRtc_UWord32 fs) { |
| int i; |
| |
| //check for valid pointer |
| if (inst == NULL) { |
| return -1; |
| } |
| // |
| |
| // Initialization of struct |
| if (fs == 8000 || fs == 16000 || fs == 32000) { |
| inst->fs = fs; |
| } else { |
| return -1; |
| } |
| |
| if (fs == 8000) { |
| inst->blockLen10ms = 80; |
| inst->anaLen = 128; |
| inst->stages = 7; |
| inst->window = kBlocks80w128x; |
| inst->thresholdLogLrt = 131072; //default threshold for LRT feature |
| inst->maxLrt = 0x0040000; |
| inst->minLrt = 52429; |
| } else if (fs == 16000) { |
| inst->blockLen10ms = 160; |
| inst->anaLen = 256; |
| inst->stages = 8; |
| inst->window = kBlocks160w256x; |
| inst->thresholdLogLrt = 212644; //default threshold for LRT feature |
| inst->maxLrt = 0x0080000; |
| inst->minLrt = 104858; |
| } else if (fs == 32000) { |
| inst->blockLen10ms = 160; |
| inst->anaLen = 256; |
| inst->stages = 8; |
| inst->window = kBlocks160w256x; |
| inst->thresholdLogLrt = 212644; //default threshold for LRT feature |
| inst->maxLrt = 0x0080000; |
| inst->minLrt = 104858; |
| } |
| inst->anaLen2 = WEBRTC_SPL_RSHIFT_W16(inst->anaLen, 1); |
| inst->magnLen = inst->anaLen2 + 1; |
| |
| WebRtcSpl_ZerosArrayW16(inst->analysisBuffer, ANAL_BLOCKL_MAX); |
| WebRtcSpl_ZerosArrayW16(inst->synthesisBuffer, ANAL_BLOCKL_MAX); |
| |
| // for HB processing |
| WebRtcSpl_ZerosArrayW16(inst->dataBufHBFX, ANAL_BLOCKL_MAX); |
| // for quantile noise estimation |
| WebRtcSpl_ZerosArrayW16(inst->noiseEstQuantile, HALF_ANAL_BLOCKL); |
| for (i = 0; i < SIMULT * HALF_ANAL_BLOCKL; i++) { |
| inst->noiseEstLogQuantile[i] = 2048; // Q8 |
| inst->noiseEstDensity[i] = 153; // Q9 |
| } |
| for (i = 0; i < SIMULT; i++) { |
| inst->noiseEstCounter[i] = (WebRtc_Word16)(END_STARTUP_LONG * (i + 1)) / SIMULT; |
| } |
| |
| // Initialize suppression filter with ones |
| WebRtcSpl_MemSetW16((WebRtc_Word16*)inst->noiseSupFilter, 16384, HALF_ANAL_BLOCKL); |
| |
| // Set the aggressiveness: default |
| inst->aggrMode = 0; |
| |
| //initialize variables for new method |
| inst->priorNonSpeechProb = 8192; // Q14(0.5) prior probability for speech/noise |
| for (i = 0; i < HALF_ANAL_BLOCKL; i++) { |
| inst->prevMagnU16[i] = 0; |
| inst->prevNoiseU32[i] = 0; //previous noise-spectrum |
| inst->logLrtTimeAvgW32[i] = 0; //smooth LR ratio |
| inst->avgMagnPause[i] = 0; //conservative noise spectrum estimate |
| inst->initMagnEst[i] = 0; //initial average magnitude spectrum |
| } |
| |
| //feature quantities |
| inst->thresholdSpecDiff = 50; //threshold for difference feature: determined on-line |
| inst->thresholdSpecFlat = 20480; //threshold for flatness: determined on-line |
| inst->featureLogLrt = inst->thresholdLogLrt; //average LRT factor (= threshold) |
| inst->featureSpecFlat = inst->thresholdSpecFlat; //spectral flatness (= threshold) |
| inst->featureSpecDiff = inst->thresholdSpecDiff; //spectral difference (= threshold) |
| inst->weightLogLrt = 6; //default weighting par for LRT feature |
| inst->weightSpecFlat = 0; //default weighting par for spectral flatness feature |
| inst->weightSpecDiff = 0; //default weighting par for spectral difference feature |
| |
| inst->curAvgMagnEnergy = 0; //window time-average of input magnitude spectrum |
| inst->timeAvgMagnEnergy = 0; //normalization for spectral difference |
| inst->timeAvgMagnEnergyTmp = 0; //normalization for spectral difference |
| |
| //histogram quantities: used to estimate/update thresholds for features |
| WebRtcSpl_ZerosArrayW16(inst->histLrt, HIST_PAR_EST); |
| WebRtcSpl_ZerosArrayW16(inst->histSpecDiff, HIST_PAR_EST); |
| WebRtcSpl_ZerosArrayW16(inst->histSpecFlat, HIST_PAR_EST); |
| |
| inst->blockIndex = -1; //frame counter |
| |
| //inst->modelUpdate = 500; //window for update |
| inst->modelUpdate = (1 << STAT_UPDATES); //window for update |
| inst->cntThresUpdate = 0; //counter feature thresholds updates |
| |
| inst->sumMagn = 0; |
| inst->magnEnergy = 0; |
| inst->prevQMagn = 0; |
| inst->qNoise = 0; |
| inst->prevQNoise = 0; |
| |
| inst->energyIn = 0; |
| inst->scaleEnergyIn = 0; |
| |
| inst->whiteNoiseLevel = 0; |
| inst->pinkNoiseNumerator = 0; |
| inst->pinkNoiseExp = 0; |
| inst->minNorm = 15; // Start with full scale |
| inst->zeroInputSignal = 0; |
| |
| //default mode |
| WebRtcNsx_set_policy_core(inst, 0); |
| |
| #ifdef NS_FILEDEBUG |
| inst->infile = fopen("indebug.pcm", "wb"); |
| inst->outfile = fopen("outdebug.pcm", "wb"); |
| inst->file1 = fopen("file1.pcm", "wb"); |
| inst->file2 = fopen("file2.pcm", "wb"); |
| inst->file3 = fopen("file3.pcm", "wb"); |
| inst->file4 = fopen("file4.pcm", "wb"); |
| inst->file5 = fopen("file5.pcm", "wb"); |
| #endif |
| |
| // Initialize function pointers. |
| WebRtcNsx_NoiseEstimation = NoiseEstimationC; |
| WebRtcNsx_PrepareSpectrum = PrepareSpectrumC; |
| WebRtcNsx_SynthesisUpdate = SynthesisUpdateC; |
| WebRtcNsx_AnalysisUpdate = AnalysisUpdateC; |
| WebRtcNsx_Denormalize = DenormalizeC; |
| WebRtcNsx_CreateComplexBuffer = CreateComplexBufferC; |
| |
| #ifdef WEBRTC_DETECT_ARM_NEON |
| uint64_t features = WebRtc_GetCPUFeaturesARM(); |
| if ((features & kCPUFeatureNEON) != 0) |
| { |
| WebRtcNsx_InitNeon(); |
| } |
| #elif defined(WEBRTC_ARCH_ARM_NEON) |
| WebRtcNsx_InitNeon(); |
| #endif |
| |
| inst->initFlag = 1; |
| |
| return 0; |
| } |
| |
| int WebRtcNsx_set_policy_core(NsxInst_t* inst, int mode) { |
| // allow for modes:0,1,2,3 |
| if (mode < 0 || mode > 3) { |
| return -1; |
| } |
| |
| inst->aggrMode = mode; |
| if (mode == 0) { |
| inst->overdrive = 256; // Q8(1.0) |
| inst->denoiseBound = 8192; // Q14(0.5) |
| inst->gainMap = 0; // No gain compensation |
| } else if (mode == 1) { |
| inst->overdrive = 256; // Q8(1.0) |
| inst->denoiseBound = 4096; // Q14(0.25) |
| inst->factor2Table = kFactor2Aggressiveness1; |
| inst->gainMap = 1; |
| } else if (mode == 2) { |
| inst->overdrive = 282; // ~= Q8(1.1) |
| inst->denoiseBound = 2048; // Q14(0.125) |
| inst->factor2Table = kFactor2Aggressiveness2; |
| inst->gainMap = 1; |
| } else if (mode == 3) { |
| inst->overdrive = 320; // Q8(1.25) |
| inst->denoiseBound = 1475; // ~= Q14(0.09) |
| inst->factor2Table = kFactor2Aggressiveness3; |
| inst->gainMap = 1; |
| } |
| return 0; |
| } |
| |
| // Extract thresholds for feature parameters |
| // histograms are computed over some window_size (given by window_pars) |
| // thresholds and weights are extracted every window |
| // flag 0 means update histogram only, flag 1 means compute the thresholds/weights |
| // threshold and weights are returned in: inst->priorModelPars |
| void WebRtcNsx_FeatureParameterExtraction(NsxInst_t* inst, int flag) { |
| WebRtc_UWord32 tmpU32; |
| WebRtc_UWord32 histIndex; |
| WebRtc_UWord32 posPeak1SpecFlatFX, posPeak2SpecFlatFX; |
| WebRtc_UWord32 posPeak1SpecDiffFX, posPeak2SpecDiffFX; |
| |
| WebRtc_Word32 tmp32; |
| WebRtc_Word32 fluctLrtFX, thresFluctLrtFX; |
| WebRtc_Word32 avgHistLrtFX, avgSquareHistLrtFX, avgHistLrtComplFX; |
| |
| WebRtc_Word16 j; |
| WebRtc_Word16 numHistLrt; |
| |
| int i; |
| int useFeatureSpecFlat, useFeatureSpecDiff, featureSum; |
| int maxPeak1, maxPeak2; |
| int weightPeak1SpecFlat, weightPeak2SpecFlat; |
| int weightPeak1SpecDiff, weightPeak2SpecDiff; |
| |
| //update histograms |
| if (!flag) { |
| // LRT |
| // Type casting to UWord32 is safe since negative values will not be wrapped to larger |
| // values than HIST_PAR_EST |
| histIndex = (WebRtc_UWord32)(inst->featureLogLrt); |
| if (histIndex < HIST_PAR_EST) { |
| inst->histLrt[histIndex]++; |
| } |
| // Spectral flatness |
| // (inst->featureSpecFlat*20)>>10 = (inst->featureSpecFlat*5)>>8 |
| histIndex = WEBRTC_SPL_RSHIFT_U32(inst->featureSpecFlat * 5, 8); |
| if (histIndex < HIST_PAR_EST) { |
| inst->histSpecFlat[histIndex]++; |
| } |
| // Spectral difference |
| histIndex = HIST_PAR_EST; |
| if (inst->timeAvgMagnEnergy > 0) { |
| // Guard against division by zero |
| // If timeAvgMagnEnergy == 0 we have no normalizing statistics and |
| // therefore can't update the histogram |
| histIndex = WEBRTC_SPL_UDIV((inst->featureSpecDiff * 5) >> inst->stages, |
| inst->timeAvgMagnEnergy); |
| } |
| if (histIndex < HIST_PAR_EST) { |
| inst->histSpecDiff[histIndex]++; |
| } |
| } |
| |
| // extract parameters for speech/noise probability |
| if (flag) { |
| useFeatureSpecDiff = 1; |
| //for LRT feature: |
| // compute the average over inst->featureExtractionParams.rangeAvgHistLrt |
| avgHistLrtFX = 0; |
| avgSquareHistLrtFX = 0; |
| numHistLrt = 0; |
| for (i = 0; i < BIN_SIZE_LRT; i++) { |
| j = (2 * i + 1); |
| tmp32 = WEBRTC_SPL_MUL_16_16(inst->histLrt[i], j); |
| avgHistLrtFX += tmp32; |
| numHistLrt += inst->histLrt[i]; |
| avgSquareHistLrtFX += WEBRTC_SPL_MUL_32_16(tmp32, j); |
| } |
| avgHistLrtComplFX = avgHistLrtFX; |
| for (; i < HIST_PAR_EST; i++) { |
| j = (2 * i + 1); |
| tmp32 = WEBRTC_SPL_MUL_16_16(inst->histLrt[i], j); |
| avgHistLrtComplFX += tmp32; |
| avgSquareHistLrtFX += WEBRTC_SPL_MUL_32_16(tmp32, j); |
| } |
| fluctLrtFX = WEBRTC_SPL_MUL(avgSquareHistLrtFX, numHistLrt); |
| fluctLrtFX -= WEBRTC_SPL_MUL(avgHistLrtFX, avgHistLrtComplFX); |
| thresFluctLrtFX = THRES_FLUCT_LRT * numHistLrt; |
| // get threshold for LRT feature: |
| tmpU32 = (FACTOR_1_LRT_DIFF * (WebRtc_UWord32)avgHistLrtFX); |
| if ((fluctLrtFX < thresFluctLrtFX) || (numHistLrt == 0) || |
| (tmpU32 > (WebRtc_UWord32)(100 * numHistLrt))) { |
| //very low fluctuation, so likely noise |
| inst->thresholdLogLrt = inst->maxLrt; |
| } else { |
| tmp32 = (WebRtc_Word32)((tmpU32 << (9 + inst->stages)) / numHistLrt / |
| 25); |
| // check if value is within min/max range |
| inst->thresholdLogLrt = WEBRTC_SPL_SAT(inst->maxLrt, |
| tmp32, |
| inst->minLrt); |
| } |
| if (fluctLrtFX < thresFluctLrtFX) { |
| // Do not use difference feature if fluctuation of LRT feature is very low: |
| // most likely just noise state |
| useFeatureSpecDiff = 0; |
| } |
| |
| // for spectral flatness and spectral difference: compute the main peaks of histogram |
| maxPeak1 = 0; |
| maxPeak2 = 0; |
| posPeak1SpecFlatFX = 0; |
| posPeak2SpecFlatFX = 0; |
| weightPeak1SpecFlat = 0; |
| weightPeak2SpecFlat = 0; |
| |
| // peaks for flatness |
| for (i = 0; i < HIST_PAR_EST; i++) { |
| if (inst->histSpecFlat[i] > maxPeak1) { |
| // Found new "first" peak |
| maxPeak2 = maxPeak1; |
| weightPeak2SpecFlat = weightPeak1SpecFlat; |
| posPeak2SpecFlatFX = posPeak1SpecFlatFX; |
| |
| maxPeak1 = inst->histSpecFlat[i]; |
| weightPeak1SpecFlat = inst->histSpecFlat[i]; |
| posPeak1SpecFlatFX = (WebRtc_UWord32)(2 * i + 1); |
| } else if (inst->histSpecFlat[i] > maxPeak2) { |
| // Found new "second" peak |
| maxPeak2 = inst->histSpecFlat[i]; |
| weightPeak2SpecFlat = inst->histSpecFlat[i]; |
| posPeak2SpecFlatFX = (WebRtc_UWord32)(2 * i + 1); |
| } |
| } |
| |
| // for spectral flatness feature |
| useFeatureSpecFlat = 1; |
| // merge the two peaks if they are close |
| if ((posPeak1SpecFlatFX - posPeak2SpecFlatFX < LIM_PEAK_SPACE_FLAT_DIFF) |
| && (weightPeak2SpecFlat * LIM_PEAK_WEIGHT_FLAT_DIFF > weightPeak1SpecFlat)) { |
| weightPeak1SpecFlat += weightPeak2SpecFlat; |
| posPeak1SpecFlatFX = (posPeak1SpecFlatFX + posPeak2SpecFlatFX) >> 1; |
| } |
| //reject if weight of peaks is not large enough, or peak value too small |
| if (weightPeak1SpecFlat < THRES_WEIGHT_FLAT_DIFF || posPeak1SpecFlatFX |
| < THRES_PEAK_FLAT) { |
| useFeatureSpecFlat = 0; |
| } else { // if selected, get the threshold |
| // compute the threshold and check if value is within min/max range |
| inst->thresholdSpecFlat = WEBRTC_SPL_SAT(MAX_FLAT_Q10, FACTOR_2_FLAT_Q10 |
| * posPeak1SpecFlatFX, MIN_FLAT_Q10); //Q10 |
| } |
| // done with flatness feature |
| |
| if (useFeatureSpecDiff) { |
| //compute two peaks for spectral difference |
| maxPeak1 = 0; |
| maxPeak2 = 0; |
| posPeak1SpecDiffFX = 0; |
| posPeak2SpecDiffFX = 0; |
| weightPeak1SpecDiff = 0; |
| weightPeak2SpecDiff = 0; |
| // peaks for spectral difference |
| for (i = 0; i < HIST_PAR_EST; i++) { |
| if (inst->histSpecDiff[i] > maxPeak1) { |
| // Found new "first" peak |
| maxPeak2 = maxPeak1; |
| weightPeak2SpecDiff = weightPeak1SpecDiff; |
| posPeak2SpecDiffFX = posPeak1SpecDiffFX; |
| |
| maxPeak1 = inst->histSpecDiff[i]; |
| weightPeak1SpecDiff = inst->histSpecDiff[i]; |
| posPeak1SpecDiffFX = (WebRtc_UWord32)(2 * i + 1); |
| } else if (inst->histSpecDiff[i] > maxPeak2) { |
| // Found new "second" peak |
| maxPeak2 = inst->histSpecDiff[i]; |
| weightPeak2SpecDiff = inst->histSpecDiff[i]; |
| posPeak2SpecDiffFX = (WebRtc_UWord32)(2 * i + 1); |
| } |
| } |
| |
| // merge the two peaks if they are close |
| if ((posPeak1SpecDiffFX - posPeak2SpecDiffFX < LIM_PEAK_SPACE_FLAT_DIFF) |
| && (weightPeak2SpecDiff * LIM_PEAK_WEIGHT_FLAT_DIFF > weightPeak1SpecDiff)) { |
| weightPeak1SpecDiff += weightPeak2SpecDiff; |
| posPeak1SpecDiffFX = (posPeak1SpecDiffFX + posPeak2SpecDiffFX) >> 1; |
| } |
| // get the threshold value and check if value is within min/max range |
| inst->thresholdSpecDiff = WEBRTC_SPL_SAT(MAX_DIFF, FACTOR_1_LRT_DIFF |
| * posPeak1SpecDiffFX, MIN_DIFF); //5x bigger |
| //reject if weight of peaks is not large enough |
| if (weightPeak1SpecDiff < THRES_WEIGHT_FLAT_DIFF) { |
| useFeatureSpecDiff = 0; |
| } |
| // done with spectral difference feature |
| } |
| |
| // select the weights between the features |
| // inst->priorModelPars[4] is weight for LRT: always selected |
| featureSum = 6 / (1 + useFeatureSpecFlat + useFeatureSpecDiff); |
| inst->weightLogLrt = featureSum; |
| inst->weightSpecFlat = useFeatureSpecFlat * featureSum; |
| inst->weightSpecDiff = useFeatureSpecDiff * featureSum; |
| |
| // set histograms to zero for next update |
| WebRtcSpl_ZerosArrayW16(inst->histLrt, HIST_PAR_EST); |
| WebRtcSpl_ZerosArrayW16(inst->histSpecDiff, HIST_PAR_EST); |
| WebRtcSpl_ZerosArrayW16(inst->histSpecFlat, HIST_PAR_EST); |
| } // end of flag == 1 |
| } |
| |
| |
| // Compute spectral flatness on input spectrum |
| // magn is the magnitude spectrum |
| // spectral flatness is returned in inst->featureSpecFlat |
| void WebRtcNsx_ComputeSpectralFlatness(NsxInst_t* inst, WebRtc_UWord16* magn) { |
| WebRtc_UWord32 tmpU32; |
| WebRtc_UWord32 avgSpectralFlatnessNum, avgSpectralFlatnessDen; |
| |
| WebRtc_Word32 tmp32; |
| WebRtc_Word32 currentSpectralFlatness, logCurSpectralFlatness; |
| |
| WebRtc_Word16 zeros, frac, intPart; |
| |
| int i; |
| |
| // for flatness |
| avgSpectralFlatnessNum = 0; |
| avgSpectralFlatnessDen = inst->sumMagn - (WebRtc_UWord32)magn[0]; // Q(normData-stages) |
| |
| // compute log of ratio of the geometric to arithmetic mean: check for log(0) case |
| // flatness = exp( sum(log(magn[i]))/N - log(sum(magn[i])/N) ) |
| // = exp( sum(log(magn[i]))/N ) * N / sum(magn[i]) |
| // = 2^( sum(log2(magn[i]))/N - (log2(sum(magn[i])) - log2(N)) ) [This is used] |
| for (i = 1; i < inst->magnLen; i++) { |
| // First bin is excluded from spectrum measures. Number of bins is now a power of 2 |
| if (magn[i]) { |
| zeros = WebRtcSpl_NormU32((WebRtc_UWord32)magn[i]); |
| frac = (WebRtc_Word16)(((WebRtc_UWord32)((WebRtc_UWord32)(magn[i]) << zeros) |
| & 0x7FFFFFFF) >> 23); |
| // log2(magn(i)) |
| assert(frac < 256); |
| tmpU32 = (WebRtc_UWord32)(((31 - zeros) << 8) |
| + WebRtcNsx_kLogTableFrac[frac]); // Q8 |
| avgSpectralFlatnessNum += tmpU32; // Q8 |
| } else { |
| //if at least one frequency component is zero, treat separately |
| tmpU32 = WEBRTC_SPL_UMUL_32_16(inst->featureSpecFlat, SPECT_FLAT_TAVG_Q14); // Q24 |
| inst->featureSpecFlat -= WEBRTC_SPL_RSHIFT_U32(tmpU32, 14); // Q10 |
| return; |
| } |
| } |
| //ratio and inverse log: check for case of log(0) |
| zeros = WebRtcSpl_NormU32(avgSpectralFlatnessDen); |
| frac = (WebRtc_Word16)(((avgSpectralFlatnessDen << zeros) & 0x7FFFFFFF) >> 23); |
| // log2(avgSpectralFlatnessDen) |
| assert(frac < 256); |
| tmp32 = (WebRtc_Word32)(((31 - zeros) << 8) + WebRtcNsx_kLogTableFrac[frac]); // Q8 |
| logCurSpectralFlatness = (WebRtc_Word32)avgSpectralFlatnessNum; |
| logCurSpectralFlatness += ((WebRtc_Word32)(inst->stages - 1) << (inst->stages + 7)); // Q(8+stages-1) |
| logCurSpectralFlatness -= (tmp32 << (inst->stages - 1)); |
| logCurSpectralFlatness = WEBRTC_SPL_LSHIFT_W32(logCurSpectralFlatness, 10 - inst->stages); // Q17 |
| tmp32 = (WebRtc_Word32)(0x00020000 | (WEBRTC_SPL_ABS_W32(logCurSpectralFlatness) |
| & 0x0001FFFF)); //Q17 |
| intPart = -(WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(logCurSpectralFlatness, 17); |
| intPart += 7; // Shift 7 to get the output in Q10 (from Q17 = -17+10) |
| if (intPart > 0) { |
| currentSpectralFlatness = WEBRTC_SPL_RSHIFT_W32(tmp32, intPart); |
| } else { |
| currentSpectralFlatness = WEBRTC_SPL_LSHIFT_W32(tmp32, -intPart); |
| } |
| |
| //time average update of spectral flatness feature |
| tmp32 = currentSpectralFlatness - (WebRtc_Word32)inst->featureSpecFlat; // Q10 |
| tmp32 = WEBRTC_SPL_MUL_32_16(SPECT_FLAT_TAVG_Q14, tmp32); // Q24 |
| inst->featureSpecFlat = (WebRtc_UWord32)((WebRtc_Word32)inst->featureSpecFlat |
| + WEBRTC_SPL_RSHIFT_W32(tmp32, 14)); // Q10 |
| // done with flatness feature |
| } |
| |
| |
| // Compute the difference measure between input spectrum and a template/learned noise spectrum |
| // magn_tmp is the input spectrum |
| // the reference/template spectrum is inst->magn_avg_pause[i] |
| // returns (normalized) spectral difference in inst->featureSpecDiff |
| void WebRtcNsx_ComputeSpectralDifference(NsxInst_t* inst, WebRtc_UWord16* magnIn) { |
| // This is to be calculated: |
| // avgDiffNormMagn = var(magnIn) - cov(magnIn, magnAvgPause)^2 / var(magnAvgPause) |
| |
| WebRtc_UWord32 tmpU32no1, tmpU32no2; |
| WebRtc_UWord32 varMagnUFX, varPauseUFX, avgDiffNormMagnUFX; |
| |
| WebRtc_Word32 tmp32no1, tmp32no2; |
| WebRtc_Word32 avgPauseFX, avgMagnFX, covMagnPauseFX; |
| WebRtc_Word32 maxPause, minPause; |
| |
| WebRtc_Word16 tmp16no1; |
| |
| int i, norm32, nShifts; |
| |
| avgPauseFX = 0; |
| maxPause = 0; |
| minPause = inst->avgMagnPause[0]; // Q(prevQMagn) |
| // compute average quantities |
| for (i = 0; i < inst->magnLen; i++) { |
| // Compute mean of magn_pause |
| avgPauseFX += inst->avgMagnPause[i]; // in Q(prevQMagn) |
| maxPause = WEBRTC_SPL_MAX(maxPause, inst->avgMagnPause[i]); |
| minPause = WEBRTC_SPL_MIN(minPause, inst->avgMagnPause[i]); |
| } |
| // normalize by replacing div of "inst->magnLen" with "inst->stages-1" shifts |
| avgPauseFX = WEBRTC_SPL_RSHIFT_W32(avgPauseFX, inst->stages - 1); |
| avgMagnFX = (WebRtc_Word32)WEBRTC_SPL_RSHIFT_U32(inst->sumMagn, inst->stages - 1); |
| // Largest possible deviation in magnPause for (co)var calculations |
| tmp32no1 = WEBRTC_SPL_MAX(maxPause - avgPauseFX, avgPauseFX - minPause); |
| // Get number of shifts to make sure we don't get wrap around in varPause |
| nShifts = WEBRTC_SPL_MAX(0, 10 + inst->stages - WebRtcSpl_NormW32(tmp32no1)); |
| |
| varMagnUFX = 0; |
| varPauseUFX = 0; |
| covMagnPauseFX = 0; |
| for (i = 0; i < inst->magnLen; i++) { |
| // Compute var and cov of magn and magn_pause |
| tmp16no1 = (WebRtc_Word16)((WebRtc_Word32)magnIn[i] - avgMagnFX); |
| tmp32no2 = inst->avgMagnPause[i] - avgPauseFX; |
| varMagnUFX += (WebRtc_UWord32)WEBRTC_SPL_MUL_16_16(tmp16no1, tmp16no1); // Q(2*qMagn) |
| tmp32no1 = WEBRTC_SPL_MUL_32_16(tmp32no2, tmp16no1); // Q(prevQMagn+qMagn) |
| covMagnPauseFX += tmp32no1; // Q(prevQMagn+qMagn) |
| tmp32no1 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, nShifts); // Q(prevQMagn-minPause) |
| varPauseUFX += (WebRtc_UWord32)WEBRTC_SPL_MUL(tmp32no1, tmp32no1); // Q(2*(prevQMagn-minPause)) |
| } |
| //update of average magnitude spectrum: Q(-2*stages) and averaging replaced by shifts |
| inst->curAvgMagnEnergy += WEBRTC_SPL_RSHIFT_U32(inst->magnEnergy, 2 * inst->normData |
| + inst->stages - 1); |
| |
| avgDiffNormMagnUFX = varMagnUFX; // Q(2*qMagn) |
| if ((varPauseUFX) && (covMagnPauseFX)) { |
| tmpU32no1 = (WebRtc_UWord32)WEBRTC_SPL_ABS_W32(covMagnPauseFX); // Q(prevQMagn+qMagn) |
| norm32 = WebRtcSpl_NormU32(tmpU32no1) - 16; |
| if (norm32 > 0) { |
| tmpU32no1 = WEBRTC_SPL_LSHIFT_U32(tmpU32no1, norm32); // Q(prevQMagn+qMagn+norm32) |
| } else { |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, -norm32); // Q(prevQMagn+qMagn+norm32) |
| } |
| tmpU32no2 = WEBRTC_SPL_UMUL(tmpU32no1, tmpU32no1); // Q(2*(prevQMagn+qMagn-norm32)) |
| |
| nShifts += norm32; |
| nShifts <<= 1; |
| if (nShifts < 0) { |
| varPauseUFX >>= (-nShifts); // Q(2*(qMagn+norm32+minPause)) |
| nShifts = 0; |
| } |
| if (varPauseUFX > 0) { |
| // Q(2*(qMagn+norm32-16+minPause)) |
| tmpU32no1 = WEBRTC_SPL_UDIV(tmpU32no2, varPauseUFX); |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, nShifts); |
| |
| // Q(2*qMagn) |
| avgDiffNormMagnUFX -= WEBRTC_SPL_MIN(avgDiffNormMagnUFX, tmpU32no1); |
| } else { |
| avgDiffNormMagnUFX = 0; |
| } |
| } |
| //normalize and compute time average update of difference feature |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(avgDiffNormMagnUFX, 2 * inst->normData); |
| if (inst->featureSpecDiff > tmpU32no1) { |
| tmpU32no2 = WEBRTC_SPL_UMUL_32_16(inst->featureSpecDiff - tmpU32no1, |
| SPECT_DIFF_TAVG_Q8); // Q(8-2*stages) |
| inst->featureSpecDiff -= WEBRTC_SPL_RSHIFT_U32(tmpU32no2, 8); // Q(-2*stages) |
| } else { |
| tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no1 - inst->featureSpecDiff, |
| SPECT_DIFF_TAVG_Q8); // Q(8-2*stages) |
| inst->featureSpecDiff += WEBRTC_SPL_RSHIFT_U32(tmpU32no2, 8); // Q(-2*stages) |
| } |
| } |
| |
| // Compute speech/noise probability |
| // speech/noise probability is returned in: probSpeechFinal |
| //snrLocPrior is the prior SNR for each frequency (in Q11) |
| //snrLocPost is the post SNR for each frequency (in Q11) |
| void WebRtcNsx_SpeechNoiseProb(NsxInst_t* inst, WebRtc_UWord16* nonSpeechProbFinal, |
| WebRtc_UWord32* priorLocSnr, WebRtc_UWord32* postLocSnr) { |
| WebRtc_UWord32 zeros, num, den, tmpU32no1, tmpU32no2, tmpU32no3; |
| |
| WebRtc_Word32 invLrtFX, indPriorFX, tmp32, tmp32no1, tmp32no2, besselTmpFX32; |
| WebRtc_Word32 frac32, logTmp; |
| WebRtc_Word32 logLrtTimeAvgKsumFX; |
| |
| WebRtc_Word16 indPriorFX16; |
| WebRtc_Word16 tmp16, tmp16no1, tmp16no2, tmpIndFX, tableIndex, frac, intPart; |
| |
| int i, normTmp, normTmp2, nShifts; |
| |
| // compute feature based on average LR factor |
| // this is the average over all frequencies of the smooth log LRT |
| logLrtTimeAvgKsumFX = 0; |
| for (i = 0; i < inst->magnLen; i++) { |
| besselTmpFX32 = (WebRtc_Word32)postLocSnr[i]; // Q11 |
| normTmp = WebRtcSpl_NormU32(postLocSnr[i]); |
| num = WEBRTC_SPL_LSHIFT_U32(postLocSnr[i], normTmp); // Q(11+normTmp) |
| if (normTmp > 10) { |
| den = WEBRTC_SPL_LSHIFT_U32(priorLocSnr[i], normTmp - 11); // Q(normTmp) |
| } else { |
| den = WEBRTC_SPL_RSHIFT_U32(priorLocSnr[i], 11 - normTmp); // Q(normTmp) |
| } |
| if (den > 0) { |
| besselTmpFX32 -= WEBRTC_SPL_UDIV(num, den); // Q11 |
| } else { |
| besselTmpFX32 -= num; // Q11 |
| } |
| |
| // inst->logLrtTimeAvg[i] += LRT_TAVG * (besselTmp - log(snrLocPrior) - inst->logLrtTimeAvg[i]); |
| // Here, LRT_TAVG = 0.5 |
| zeros = WebRtcSpl_NormU32(priorLocSnr[i]); |
| frac32 = (WebRtc_Word32)(((priorLocSnr[i] << zeros) & 0x7FFFFFFF) >> 19); |
| tmp32 = WEBRTC_SPL_MUL(frac32, frac32); |
| tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL(tmp32, -43), 19); |
| tmp32 += WEBRTC_SPL_MUL_16_16_RSFT((WebRtc_Word16)frac32, 5412, 12); |
| frac32 = tmp32 + 37; |
| // tmp32 = log2(priorLocSnr[i]) |
| tmp32 = (WebRtc_Word32)(((31 - zeros) << 12) + frac32) - (11 << 12); // Q12 |
| logTmp = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_32_16(tmp32, 178), 8); // log2(priorLocSnr[i])*log(2) |
| tmp32no1 = WEBRTC_SPL_RSHIFT_W32(logTmp + inst->logLrtTimeAvgW32[i], 1); // Q12 |
| inst->logLrtTimeAvgW32[i] += (besselTmpFX32 - tmp32no1); // Q12 |
| |
| logLrtTimeAvgKsumFX += inst->logLrtTimeAvgW32[i]; // Q12 |
| } |
| inst->featureLogLrt = WEBRTC_SPL_RSHIFT_W32(logLrtTimeAvgKsumFX * 5, inst->stages + 10); // 5 = BIN_SIZE_LRT / 2 |
| // done with computation of LR factor |
| |
| // |
| //compute the indicator functions |
| // |
| |
| // average LRT feature |
| // FLOAT code |
| // indicator0 = 0.5 * (tanh(widthPrior * (logLrtTimeAvgKsum - threshPrior0)) + 1.0); |
| tmpIndFX = 16384; // Q14(1.0) |
| tmp32no1 = logLrtTimeAvgKsumFX - inst->thresholdLogLrt; // Q12 |
| nShifts = 7 - inst->stages; // WIDTH_PR_MAP_SHIFT - inst->stages + 5; |
| //use larger width in tanh map for pause regions |
| if (tmp32no1 < 0) { |
| tmpIndFX = 0; |
| tmp32no1 = -tmp32no1; |
| //widthPrior = widthPrior * 2.0; |
| nShifts++; |
| } |
| tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, nShifts); // Q14 |
| // compute indicator function: sigmoid map |
| tableIndex = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32no1, 14); |
| if ((tableIndex < 16) && (tableIndex >= 0)) { |
| tmp16no2 = kIndicatorTable[tableIndex]; |
| tmp16no1 = kIndicatorTable[tableIndex + 1] - kIndicatorTable[tableIndex]; |
| frac = (WebRtc_Word16)(tmp32no1 & 0x00003fff); // Q14 |
| tmp16no2 += (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(tmp16no1, frac, 14); |
| if (tmpIndFX == 0) { |
| tmpIndFX = 8192 - tmp16no2; // Q14 |
| } else { |
| tmpIndFX = 8192 + tmp16no2; // Q14 |
| } |
| } |
| indPriorFX = WEBRTC_SPL_MUL_16_16(inst->weightLogLrt, tmpIndFX); // 6*Q14 |
| |
| //spectral flatness feature |
| if (inst->weightSpecFlat) { |
| tmpU32no1 = WEBRTC_SPL_UMUL(inst->featureSpecFlat, 400); // Q10 |
| tmpIndFX = 16384; // Q14(1.0) |
| //use larger width in tanh map for pause regions |
| tmpU32no2 = inst->thresholdSpecFlat - tmpU32no1; //Q10 |
| nShifts = 4; |
| if (inst->thresholdSpecFlat < tmpU32no1) { |
| tmpIndFX = 0; |
| tmpU32no2 = tmpU32no1 - inst->thresholdSpecFlat; |
| //widthPrior = widthPrior * 2.0; |
| nShifts++; |
| } |
| tmp32no1 = (WebRtc_Word32)WebRtcSpl_DivU32U16(WEBRTC_SPL_LSHIFT_U32(tmpU32no2, |
| nShifts), 25); //Q14 |
| tmpU32no1 = WebRtcSpl_DivU32U16(WEBRTC_SPL_LSHIFT_U32(tmpU32no2, nShifts), 25); //Q14 |
| // compute indicator function: sigmoid map |
| // FLOAT code |
| // indicator1 = 0.5 * (tanh(sgnMap * widthPrior * (threshPrior1 - tmpFloat1)) + 1.0); |
| tableIndex = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 14); |
| if (tableIndex < 16) { |
| tmp16no2 = kIndicatorTable[tableIndex]; |
| tmp16no1 = kIndicatorTable[tableIndex + 1] - kIndicatorTable[tableIndex]; |
| frac = (WebRtc_Word16)(tmpU32no1 & 0x00003fff); // Q14 |
| tmp16no2 += (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(tmp16no1, frac, 14); |
| if (tmpIndFX) { |
| tmpIndFX = 8192 + tmp16no2; // Q14 |
| } else { |
| tmpIndFX = 8192 - tmp16no2; // Q14 |
| } |
| } |
| indPriorFX += WEBRTC_SPL_MUL_16_16(inst->weightSpecFlat, tmpIndFX); // 6*Q14 |
| } |
| |
| //for template spectral-difference |
| if (inst->weightSpecDiff) { |
| tmpU32no1 = 0; |
| if (inst->featureSpecDiff) { |
| normTmp = WEBRTC_SPL_MIN(20 - inst->stages, |
| WebRtcSpl_NormU32(inst->featureSpecDiff)); |
| tmpU32no1 = WEBRTC_SPL_LSHIFT_U32(inst->featureSpecDiff, normTmp); // Q(normTmp-2*stages) |
| tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(inst->timeAvgMagnEnergy, 20 - inst->stages |
| - normTmp); |
| if (tmpU32no2 > 0) { |
| // Q(20 - inst->stages) |
| tmpU32no1 = WEBRTC_SPL_UDIV(tmpU32no1, tmpU32no2); |
| } else { |
| tmpU32no1 = (WebRtc_UWord32)(0x7fffffff); |
| } |
| } |
| tmpU32no3 = WEBRTC_SPL_UDIV(WEBRTC_SPL_LSHIFT_U32(inst->thresholdSpecDiff, 17), 25); |
| tmpU32no2 = tmpU32no1 - tmpU32no3; |
| nShifts = 1; |
| tmpIndFX = 16384; // Q14(1.0) |
| //use larger width in tanh map for pause regions |
| if (tmpU32no2 & 0x80000000) { |
| tmpIndFX = 0; |
| tmpU32no2 = tmpU32no3 - tmpU32no1; |
| //widthPrior = widthPrior * 2.0; |
| nShifts--; |
| } |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, nShifts); |
| // compute indicator function: sigmoid map |
| /* FLOAT code |
| indicator2 = 0.5 * (tanh(widthPrior * (tmpFloat1 - threshPrior2)) + 1.0); |
| */ |
| tableIndex = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 14); |
| if (tableIndex < 16) { |
| tmp16no2 = kIndicatorTable[tableIndex]; |
| tmp16no1 = kIndicatorTable[tableIndex + 1] - kIndicatorTable[tableIndex]; |
| frac = (WebRtc_Word16)(tmpU32no1 & 0x00003fff); // Q14 |
| tmp16no2 += (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( |
| tmp16no1, frac, 14); |
| if (tmpIndFX) { |
| tmpIndFX = 8192 + tmp16no2; |
| } else { |
| tmpIndFX = 8192 - tmp16no2; |
| } |
| } |
| indPriorFX += WEBRTC_SPL_MUL_16_16(inst->weightSpecDiff, tmpIndFX); // 6*Q14 |
| } |
| |
| //combine the indicator function with the feature weights |
| // FLOAT code |
| // indPrior = 1 - (weightIndPrior0 * indicator0 + weightIndPrior1 * indicator1 + weightIndPrior2 * indicator2); |
| indPriorFX16 = WebRtcSpl_DivW32W16ResW16(98307 - indPriorFX, 6); // Q14 |
| // done with computing indicator function |
| |
| //compute the prior probability |
| // FLOAT code |
| // inst->priorNonSpeechProb += PRIOR_UPDATE * (indPriorNonSpeech - inst->priorNonSpeechProb); |
| tmp16 = indPriorFX16 - inst->priorNonSpeechProb; // Q14 |
| inst->priorNonSpeechProb += (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT( |
| PRIOR_UPDATE_Q14, tmp16, 14); // Q14 |
| |
| //final speech probability: combine prior model with LR factor: |
| |
| memset(nonSpeechProbFinal, 0, sizeof(WebRtc_UWord16) * inst->magnLen); |
| |
| if (inst->priorNonSpeechProb > 0) { |
| for (i = 0; i < inst->magnLen; i++) { |
| // FLOAT code |
| // invLrt = exp(inst->logLrtTimeAvg[i]); |
| // invLrt = inst->priorSpeechProb * invLrt; |
| // nonSpeechProbFinal[i] = (1.0 - inst->priorSpeechProb) / (1.0 - inst->priorSpeechProb + invLrt); |
| // invLrt = (1.0 - inst->priorNonSpeechProb) * invLrt; |
| // nonSpeechProbFinal[i] = inst->priorNonSpeechProb / (inst->priorNonSpeechProb + invLrt); |
| if (inst->logLrtTimeAvgW32[i] < 65300) { |
| tmp32no1 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL(inst->logLrtTimeAvgW32[i], 23637), |
| 14); // Q12 |
| intPart = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32no1, 12); |
| if (intPart < -8) { |
| intPart = -8; |
| } |
| frac = (WebRtc_Word16)(tmp32no1 & 0x00000fff); // Q12 |
| |
| // Quadratic approximation of 2^frac |
| tmp32no2 = WEBRTC_SPL_RSHIFT_W32(frac * frac * 44, 19); // Q12 |
| tmp32no2 += WEBRTC_SPL_MUL_16_16_RSFT(frac, 84, 7); // Q12 |
| invLrtFX = WEBRTC_SPL_LSHIFT_W32(1, 8 + intPart) |
| + WEBRTC_SPL_SHIFT_W32(tmp32no2, intPart - 4); // Q8 |
| |
| normTmp = WebRtcSpl_NormW32(invLrtFX); |
| normTmp2 = WebRtcSpl_NormW16((16384 - inst->priorNonSpeechProb)); |
| if (normTmp + normTmp2 >= 7) { |
| if (normTmp + normTmp2 < 15) { |
| invLrtFX = WEBRTC_SPL_RSHIFT_W32(invLrtFX, 15 - normTmp2 - normTmp); |
| // Q(normTmp+normTmp2-7) |
| tmp32no1 = WEBRTC_SPL_MUL_32_16(invLrtFX, (16384 - inst->priorNonSpeechProb)); |
| // Q(normTmp+normTmp2+7) |
| invLrtFX = WEBRTC_SPL_SHIFT_W32(tmp32no1, 7 - normTmp - normTmp2); // Q14 |
| } else { |
| tmp32no1 = WEBRTC_SPL_MUL_32_16(invLrtFX, (16384 - inst->priorNonSpeechProb)); // Q22 |
| invLrtFX = WEBRTC_SPL_RSHIFT_W32(tmp32no1, 8); // Q14 |
| } |
| |
| tmp32no1 = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)inst->priorNonSpeechProb, 8); // Q22 |
| |
| nonSpeechProbFinal[i] = (WebRtc_UWord16)WEBRTC_SPL_DIV(tmp32no1, |
| (WebRtc_Word32)inst->priorNonSpeechProb + invLrtFX); // Q8 |
| } |
| } |
| } |
| } |
| } |
| |
| // Transform input (speechFrame) to frequency domain magnitude (magnU16) |
| void WebRtcNsx_DataAnalysis(NsxInst_t* inst, short* speechFrame, WebRtc_UWord16* magnU16) { |
| |
| WebRtc_UWord32 tmpU32no1, tmpU32no2; |
| |
| WebRtc_Word32 tmp_1_w32 = 0; |
| WebRtc_Word32 tmp_2_w32 = 0; |
| WebRtc_Word32 sum_log_magn = 0; |
| WebRtc_Word32 sum_log_i_log_magn = 0; |
| |
| WebRtc_UWord16 sum_log_magn_u16 = 0; |
| WebRtc_UWord16 tmp_u16 = 0; |
| |
| WebRtc_Word16 sum_log_i = 0; |
| WebRtc_Word16 sum_log_i_square = 0; |
| WebRtc_Word16 frac = 0; |
| WebRtc_Word16 log2 = 0; |
| WebRtc_Word16 matrix_determinant = 0; |
| WebRtc_Word16 winData[ANAL_BLOCKL_MAX], maxWinData; |
| WebRtc_Word16 realImag[ANAL_BLOCKL_MAX << 1]; |
| |
| int i, j; |
| int zeros; |
| int net_norm = 0; |
| int right_shifts_in_magnU16 = 0; |
| int right_shifts_in_initMagnEst = 0; |
| |
| // Update analysis buffer for lower band, and window data before FFT. |
| WebRtcNsx_AnalysisUpdate(inst, winData, speechFrame); |
| |
| // Get input energy |
| inst->energyIn = WebRtcSpl_Energy(winData, (int)inst->anaLen, &(inst->scaleEnergyIn)); |
| |
| // Reset zero input flag |
| inst->zeroInputSignal = 0; |
| // Acquire norm for winData |
| maxWinData = WebRtcSpl_MaxAbsValueW16(winData, inst->anaLen); |
| inst->normData = WebRtcSpl_NormW16(maxWinData); |
| if (maxWinData == 0) { |
| // Treat zero input separately. |
| inst->zeroInputSignal = 1; |
| return; |
| } |
| |
| // Determine the net normalization in the frequency domain |
| net_norm = inst->stages - inst->normData; |
| // Track lowest normalization factor and use it to prevent wrap around in shifting |
| right_shifts_in_magnU16 = inst->normData - inst->minNorm; |
| right_shifts_in_initMagnEst = WEBRTC_SPL_MAX(-right_shifts_in_magnU16, 0); |
| inst->minNorm -= right_shifts_in_initMagnEst; |
| right_shifts_in_magnU16 = WEBRTC_SPL_MAX(right_shifts_in_magnU16, 0); |
| |
| // create realImag as winData interleaved with zeros (= imag. part), normalize it |
| WebRtcNsx_CreateComplexBuffer(inst, winData, realImag); |
| |
| // bit-reverse position of elements in array and FFT the array |
| WebRtcSpl_ComplexBitReverse(realImag, inst->stages); // Q(normData-stages) |
| WebRtcSpl_ComplexFFT(realImag, inst->stages, 1); |
| |
| inst->imag[0] = 0; // Q(normData-stages) |
| inst->imag[inst->anaLen2] = 0; |
| inst->real[0] = realImag[0]; // Q(normData-stages) |
| inst->real[inst->anaLen2] = realImag[inst->anaLen]; |
| // Q(2*(normData-stages)) |
| inst->magnEnergy = (WebRtc_UWord32)WEBRTC_SPL_MUL_16_16(inst->real[0], inst->real[0]); |
| inst->magnEnergy += (WebRtc_UWord32)WEBRTC_SPL_MUL_16_16(inst->real[inst->anaLen2], |
| inst->real[inst->anaLen2]); |
| magnU16[0] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(inst->real[0]); // Q(normData-stages) |
| magnU16[inst->anaLen2] = (WebRtc_UWord16)WEBRTC_SPL_ABS_W16(inst->real[inst->anaLen2]); |
| inst->sumMagn = (WebRtc_UWord32)magnU16[0]; // Q(normData-stages) |
| inst->sumMagn += (WebRtc_UWord32)magnU16[inst->anaLen2]; |
| |
| if (inst->blockIndex >= END_STARTUP_SHORT) { |
| for (i = 1, j = 2; i < inst->anaLen2; i += 1, j += 2) { |
| inst->real[i] = realImag[j]; |
| inst->imag[i] = -realImag[j + 1]; |
| // magnitude spectrum |
| // energy in Q(2*(normData-stages)) |
| tmpU32no1 = (WebRtc_UWord32)WEBRTC_SPL_MUL_16_16(realImag[j], realImag[j]); |
| tmpU32no1 += (WebRtc_UWord32)WEBRTC_SPL_MUL_16_16(realImag[j + 1], realImag[j + 1]); |
| inst->magnEnergy += tmpU32no1; // Q(2*(normData-stages)) |
| |
| magnU16[i] = (WebRtc_UWord16)WebRtcSpl_SqrtFloor(tmpU32no1); // Q(normData-stages) |
| inst->sumMagn += (WebRtc_UWord32)magnU16[i]; // Q(normData-stages) |
| } |
| } else { |
| // |
| // Gather information during startup for noise parameter estimation |
| // |
| |
| // Switch initMagnEst to Q(minNorm-stages) |
| inst->initMagnEst[0] = WEBRTC_SPL_RSHIFT_U32(inst->initMagnEst[0], |
| right_shifts_in_initMagnEst); |
| inst->initMagnEst[inst->anaLen2] = |
| WEBRTC_SPL_RSHIFT_U32(inst->initMagnEst[inst->anaLen2], |
| right_shifts_in_initMagnEst); // Q(minNorm-stages) |
| |
| // Shift magnU16 to same domain as initMagnEst |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_W32((WebRtc_UWord32)magnU16[0], |
| right_shifts_in_magnU16); // Q(minNorm-stages) |
| tmpU32no2 = WEBRTC_SPL_RSHIFT_W32((WebRtc_UWord32)magnU16[inst->anaLen2], |
| right_shifts_in_magnU16); // Q(minNorm-stages) |
| |
| // Update initMagnEst |
| inst->initMagnEst[0] += tmpU32no1; // Q(minNorm-stages) |
| inst->initMagnEst[inst->anaLen2] += tmpU32no2; // Q(minNorm-stages) |
| |
| log2 = 0; |
| if (magnU16[inst->anaLen2]) { |
| // Calculate log2(magnU16[inst->anaLen2]) |
| zeros = WebRtcSpl_NormU32((WebRtc_UWord32)magnU16[inst->anaLen2]); |
| frac = (WebRtc_Word16)((((WebRtc_UWord32)magnU16[inst->anaLen2] << zeros) & |
| 0x7FFFFFFF) >> 23); // Q8 |
| // log2(magnU16(i)) in Q8 |
| assert(frac < 256); |
| log2 = (WebRtc_Word16)(((31 - zeros) << 8) + WebRtcNsx_kLogTableFrac[frac]); |
| } |
| |
| sum_log_magn = (WebRtc_Word32)log2; // Q8 |
| // sum_log_i_log_magn in Q17 |
| sum_log_i_log_magn = (WEBRTC_SPL_MUL_16_16(kLogIndex[inst->anaLen2], log2) >> 3); |
| |
| for (i = 1, j = 2; i < inst->anaLen2; i += 1, j += 2) { |
| inst->real[i] = realImag[j]; |
| inst->imag[i] = -realImag[j + 1]; |
| // magnitude spectrum |
| // energy in Q(2*(normData-stages)) |
| tmpU32no1 = (WebRtc_UWord32)WEBRTC_SPL_MUL_16_16(realImag[j], realImag[j]); |
| tmpU32no1 += (WebRtc_UWord32)WEBRTC_SPL_MUL_16_16(realImag[j + 1], realImag[j + 1]); |
| inst->magnEnergy += tmpU32no1; // Q(2*(normData-stages)) |
| |
| magnU16[i] = (WebRtc_UWord16)WebRtcSpl_SqrtFloor(tmpU32no1); // Q(normData-stages) |
| inst->sumMagn += (WebRtc_UWord32)magnU16[i]; // Q(normData-stages) |
| |
| // Switch initMagnEst to Q(minNorm-stages) |
| inst->initMagnEst[i] = WEBRTC_SPL_RSHIFT_U32(inst->initMagnEst[i], |
| right_shifts_in_initMagnEst); |
| |
| // Shift magnU16 to same domain as initMagnEst, i.e., Q(minNorm-stages) |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_W32((WebRtc_UWord32)magnU16[i], |
| right_shifts_in_magnU16); |
| // Update initMagnEst |
| inst->initMagnEst[i] += tmpU32no1; // Q(minNorm-stages) |
| |
| if (i >= kStartBand) { |
| // For pink noise estimation. Collect data neglecting lower frequency band |
| log2 = 0; |
| if (magnU16[i]) { |
| zeros = WebRtcSpl_NormU32((WebRtc_UWord32)magnU16[i]); |
| frac = (WebRtc_Word16)((((WebRtc_UWord32)magnU16[i] << zeros) & |
| 0x7FFFFFFF) >> 23); |
| // log2(magnU16(i)) in Q8 |
| assert(frac < 256); |
| log2 = (WebRtc_Word16)(((31 - zeros) << 8) |
| + WebRtcNsx_kLogTableFrac[frac]); |
| } |
| sum_log_magn += (WebRtc_Word32)log2; // Q8 |
| // sum_log_i_log_magn in Q17 |
| sum_log_i_log_magn += (WEBRTC_SPL_MUL_16_16(kLogIndex[i], log2) >> 3); |
| } |
| } |
| |
| // |
| //compute simplified noise model during startup |
| // |
| |
| // Estimate White noise |
| |
| // Switch whiteNoiseLevel to Q(minNorm-stages) |
| inst->whiteNoiseLevel = WEBRTC_SPL_RSHIFT_U32(inst->whiteNoiseLevel, |
| right_shifts_in_initMagnEst); |
| |
| // Update the average magnitude spectrum, used as noise estimate. |
| tmpU32no1 = WEBRTC_SPL_UMUL_32_16(inst->sumMagn, inst->overdrive); |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, inst->stages + 8); |
| |
| // Replacing division above with 'stages' shifts |
| // Shift to same Q-domain as whiteNoiseLevel |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, right_shifts_in_magnU16); |
| // This operation is safe from wrap around as long as END_STARTUP_SHORT < 128 |
| assert(END_STARTUP_SHORT < 128); |
| inst->whiteNoiseLevel += tmpU32no1; // Q(minNorm-stages) |
| |
| // Estimate Pink noise parameters |
| // Denominator used in both parameter estimates. |
| // The value is only dependent on the size of the frequency band (kStartBand) |
| // and to reduce computational complexity stored in a table (kDeterminantEstMatrix[]) |
| assert(kStartBand < 66); |
| matrix_determinant = kDeterminantEstMatrix[kStartBand]; // Q0 |
| sum_log_i = kSumLogIndex[kStartBand]; // Q5 |
| sum_log_i_square = kSumSquareLogIndex[kStartBand]; // Q2 |
| if (inst->fs == 8000) { |
| // Adjust values to shorter blocks in narrow band. |
| tmp_1_w32 = (WebRtc_Word32)matrix_determinant; |
| tmp_1_w32 += WEBRTC_SPL_MUL_16_16_RSFT(kSumLogIndex[65], sum_log_i, 9); |
| tmp_1_w32 -= WEBRTC_SPL_MUL_16_16_RSFT(kSumLogIndex[65], kSumLogIndex[65], 10); |
| tmp_1_w32 -= WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)sum_log_i_square, 4); |
| tmp_1_w32 -= WEBRTC_SPL_MUL_16_16_RSFT((WebRtc_Word16) |
| (inst->magnLen - kStartBand), kSumSquareLogIndex[65], 2); |
| matrix_determinant = (WebRtc_Word16)tmp_1_w32; |
| sum_log_i -= kSumLogIndex[65]; // Q5 |
| sum_log_i_square -= kSumSquareLogIndex[65]; // Q2 |
| } |
| |
| // Necessary number of shifts to fit sum_log_magn in a word16 |
| zeros = 16 - WebRtcSpl_NormW32(sum_log_magn); |
| if (zeros < 0) { |
| zeros = 0; |
| } |
| tmp_1_w32 = WEBRTC_SPL_LSHIFT_W32(sum_log_magn, 1); // Q9 |
| sum_log_magn_u16 = (WebRtc_UWord16)WEBRTC_SPL_RSHIFT_W32(tmp_1_w32, zeros);//Q(9-zeros) |
| |
| // Calculate and update pinkNoiseNumerator. Result in Q11. |
| tmp_2_w32 = WEBRTC_SPL_MUL_16_U16(sum_log_i_square, sum_log_magn_u16); // Q(11-zeros) |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32((WebRtc_UWord32)sum_log_i_log_magn, 12); // Q5 |
| |
| // Shift the largest value of sum_log_i and tmp32no3 before multiplication |
| tmp_u16 = WEBRTC_SPL_LSHIFT_U16((WebRtc_UWord16)sum_log_i, 1); // Q6 |
| if ((WebRtc_UWord32)sum_log_i > tmpU32no1) { |
| tmp_u16 = WEBRTC_SPL_RSHIFT_U16(tmp_u16, zeros); |
| } else { |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, zeros); |
| } |
| tmp_2_w32 -= (WebRtc_Word32)WEBRTC_SPL_UMUL_32_16(tmpU32no1, tmp_u16); // Q(11-zeros) |
| matrix_determinant = WEBRTC_SPL_RSHIFT_W16(matrix_determinant, zeros); // Q(-zeros) |
| tmp_2_w32 = WebRtcSpl_DivW32W16(tmp_2_w32, matrix_determinant); // Q11 |
| tmp_2_w32 += WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)net_norm, 11); // Q11 |
| if (tmp_2_w32 < 0) { |
| tmp_2_w32 = 0; |
| } |
| inst->pinkNoiseNumerator += tmp_2_w32; // Q11 |
| |
| // Calculate and update pinkNoiseExp. Result in Q14. |
| tmp_2_w32 = WEBRTC_SPL_MUL_16_U16(sum_log_i, sum_log_magn_u16); // Q(14-zeros) |
| tmp_1_w32 = WEBRTC_SPL_RSHIFT_W32(sum_log_i_log_magn, 3 + zeros); |
| tmp_1_w32 = WEBRTC_SPL_MUL((WebRtc_Word32)(inst->magnLen - kStartBand), |
| tmp_1_w32); |
| tmp_2_w32 -= tmp_1_w32; // Q(14-zeros) |
| if (tmp_2_w32 > 0) { |
| // If the exponential parameter is negative force it to zero, which means a |
| // flat spectrum. |
| tmp_1_w32 = WebRtcSpl_DivW32W16(tmp_2_w32, matrix_determinant); // Q14 |
| inst->pinkNoiseExp += WEBRTC_SPL_SAT(16384, tmp_1_w32, 0); // Q14 |
| } |
| } |
| } |
| |
| void WebRtcNsx_DataSynthesis(NsxInst_t* inst, short* outFrame) { |
| WebRtc_Word32 energyOut; |
| |
| WebRtc_Word16 realImag[ANAL_BLOCKL_MAX << 1]; |
| WebRtc_Word16 tmp16no1, tmp16no2; |
| WebRtc_Word16 energyRatio; |
| WebRtc_Word16 gainFactor, gainFactor1, gainFactor2; |
| |
| int i; |
| int outCIFFT; |
| int scaleEnergyOut = 0; |
| |
| if (inst->zeroInputSignal) { |
| // synthesize the special case of zero input |
| // read out fully processed segment |
| for (i = 0; i < inst->blockLen10ms; i++) { |
| outFrame[i] = inst->synthesisBuffer[i]; // Q0 |
| } |
| // update synthesis buffer |
| WEBRTC_SPL_MEMCPY_W16(inst->synthesisBuffer, |
| inst->synthesisBuffer + inst->blockLen10ms, |
| inst->anaLen - inst->blockLen10ms); |
| WebRtcSpl_ZerosArrayW16(inst->synthesisBuffer + inst->anaLen - inst->blockLen10ms, |
| inst->blockLen10ms); |
| return; |
| } |
| |
| // Filter the data in the frequency domain, and create spectrum. |
| WebRtcNsx_PrepareSpectrum(inst, realImag); |
| |
| // bit-reverse position of elements in array and IFFT it |
| WebRtcSpl_ComplexBitReverse(realImag, inst->stages); |
| outCIFFT = WebRtcSpl_ComplexIFFT(realImag, inst->stages, 1); |
| |
| // Denormalize. |
| WebRtcNsx_Denormalize(inst, realImag, outCIFFT); |
| |
| //scale factor: only do it after END_STARTUP_LONG time |
| gainFactor = 8192; // 8192 = Q13(1.0) |
| if (inst->gainMap == 1 && |
| inst->blockIndex > END_STARTUP_LONG && |
| inst->energyIn > 0) { |
| energyOut = WebRtcSpl_Energy(inst->real, (int)inst->anaLen, &scaleEnergyOut); // Q(-scaleEnergyOut) |
| if (scaleEnergyOut == 0 && !(energyOut & 0x7f800000)) { |
| energyOut = WEBRTC_SPL_SHIFT_W32(energyOut, 8 + scaleEnergyOut |
| - inst->scaleEnergyIn); |
| } else { |
| inst->energyIn = WEBRTC_SPL_RSHIFT_W32(inst->energyIn, 8 + scaleEnergyOut |
| - inst->scaleEnergyIn); // Q(-8-scaleEnergyOut) |
| } |
| |
| assert(inst->energyIn > 0); |
| energyRatio = (WebRtc_Word16)WEBRTC_SPL_DIV(energyOut |
| + WEBRTC_SPL_RSHIFT_W32(inst->energyIn, 1), inst->energyIn); // Q8 |
| // Limit the ratio to [0, 1] in Q8, i.e., [0, 256] |
| energyRatio = WEBRTC_SPL_SAT(256, energyRatio, 0); |
| |
| // all done in lookup tables now |
| assert(energyRatio < 257); |
| gainFactor1 = kFactor1Table[energyRatio]; // Q8 |
| gainFactor2 = inst->factor2Table[energyRatio]; // Q8 |
| |
| //combine both scales with speech/noise prob: note prior (priorSpeechProb) is not frequency dependent |
| |
| // factor = inst->priorSpeechProb*factor1 + (1.0-inst->priorSpeechProb)*factor2; // original code |
| tmp16no1 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(16384 - inst->priorNonSpeechProb, |
| gainFactor1, 14); // Q13 16384 = Q14(1.0) |
| tmp16no2 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(inst->priorNonSpeechProb, |
| gainFactor2, 14); // Q13; |
| gainFactor = tmp16no1 + tmp16no2; // Q13 |
| } // out of flag_gain_map==1 |
| |
| // Synthesis, read out fully processed segment, and update synthesis buffer. |
| WebRtcNsx_SynthesisUpdate(inst, outFrame, gainFactor); |
| } |
| |
| int WebRtcNsx_ProcessCore(NsxInst_t* inst, short* speechFrame, short* speechFrameHB, |
| short* outFrame, short* outFrameHB) { |
| // main routine for noise suppression |
| |
| WebRtc_UWord32 tmpU32no1, tmpU32no2, tmpU32no3; |
| WebRtc_UWord32 satMax, maxNoiseU32; |
| WebRtc_UWord32 tmpMagnU32, tmpNoiseU32; |
| WebRtc_UWord32 nearMagnEst; |
| WebRtc_UWord32 noiseUpdateU32; |
| WebRtc_UWord32 noiseU32[HALF_ANAL_BLOCKL]; |
| WebRtc_UWord32 postLocSnr[HALF_ANAL_BLOCKL]; |
| WebRtc_UWord32 priorLocSnr[HALF_ANAL_BLOCKL]; |
| WebRtc_UWord32 prevNearSnr[HALF_ANAL_BLOCKL]; |
| WebRtc_UWord32 curNearSnr; |
| WebRtc_UWord32 priorSnr; |
| WebRtc_UWord32 noise_estimate = 0; |
| WebRtc_UWord32 noise_estimate_avg = 0; |
| WebRtc_UWord32 numerator = 0; |
| |
| WebRtc_Word32 tmp32no1, tmp32no2; |
| WebRtc_Word32 pink_noise_num_avg = 0; |
| |
| WebRtc_UWord16 tmpU16no1; |
| WebRtc_UWord16 magnU16[HALF_ANAL_BLOCKL]; |
| WebRtc_UWord16 prevNoiseU16[HALF_ANAL_BLOCKL]; |
| WebRtc_UWord16 nonSpeechProbFinal[HALF_ANAL_BLOCKL]; |
| WebRtc_UWord16 gammaNoise, prevGammaNoise; |
| WebRtc_UWord16 noiseSupFilterTmp[HALF_ANAL_BLOCKL]; |
| |
| WebRtc_Word16 qMagn, qNoise; |
| WebRtc_Word16 avgProbSpeechHB, gainModHB, avgFilterGainHB, gainTimeDomainHB; |
| WebRtc_Word16 pink_noise_exp_avg = 0; |
| |
| int i; |
| int nShifts, postShifts; |
| int norm32no1, norm32no2; |
| int flag, sign; |
| int q_domain_to_use = 0; |
| |
| // Code for ARMv7-Neon platform assumes the following: |
| assert(inst->anaLen % 16 == 0); |
| assert(inst->anaLen2 % 8 == 0); |
| assert(inst->blockLen10ms % 16 == 0); |
| assert(inst->magnLen == inst->anaLen2 + 1); |
| |
| #ifdef NS_FILEDEBUG |
| fwrite(spframe, sizeof(short), inst->blockLen10ms, inst->infile); |
| #endif |
| |
| // Check that initialization has been done |
| if (inst->initFlag != 1) { |
| return -1; |
| } |
| // Check for valid pointers based on sampling rate |
| if ((inst->fs == 32000) && (speechFrameHB == NULL)) { |
| return -1; |
| } |
| |
| // Store speechFrame and transform to frequency domain |
| WebRtcNsx_DataAnalysis(inst, speechFrame, magnU16); |
| |
| if (inst->zeroInputSignal) { |
| WebRtcNsx_DataSynthesis(inst, outFrame); |
| |
| if (inst->fs == 32000) { |
| // update analysis buffer for H band |
| // append new data to buffer FX |
| WEBRTC_SPL_MEMCPY_W16(inst->dataBufHBFX, inst->dataBufHBFX + inst->blockLen10ms, |
| inst->anaLen - inst->blockLen10ms); |
| WEBRTC_SPL_MEMCPY_W16(inst->dataBufHBFX + inst->anaLen - inst->blockLen10ms, |
| speechFrameHB, inst->blockLen10ms); |
| for (i = 0; i < inst->blockLen10ms; i++) { |
| outFrameHB[i] = inst->dataBufHBFX[i]; // Q0 |
| } |
| } // end of H band gain computation |
| return 0; |
| } |
| |
| // Update block index when we have something to process |
| inst->blockIndex++; |
| // |
| |
| // Norm of magn |
| qMagn = inst->normData - inst->stages; |
| |
| // Compute spectral flatness on input spectrum |
| WebRtcNsx_ComputeSpectralFlatness(inst, magnU16); |
| |
| // quantile noise estimate |
| WebRtcNsx_NoiseEstimation(inst, magnU16, noiseU32, &qNoise); |
| |
| //noise estimate from previous frame |
| for (i = 0; i < inst->magnLen; i++) { |
| prevNoiseU16[i] = (WebRtc_UWord16)WEBRTC_SPL_RSHIFT_U32(inst->prevNoiseU32[i], 11); // Q(prevQNoise) |
| } |
| |
| if (inst->blockIndex < END_STARTUP_SHORT) { |
| // Noise Q-domain to be used later; see description at end of section. |
| q_domain_to_use = WEBRTC_SPL_MIN((int)qNoise, inst->minNorm - inst->stages); |
| |
| // Calculate frequency independent parts in parametric noise estimate and calculate |
| // the estimate for the lower frequency band (same values for all frequency bins) |
| if (inst->pinkNoiseExp) { |
| pink_noise_exp_avg = (WebRtc_Word16)WebRtcSpl_DivW32W16(inst->pinkNoiseExp, |
| (WebRtc_Word16)(inst->blockIndex + 1)); // Q14 |
| pink_noise_num_avg = WebRtcSpl_DivW32W16(inst->pinkNoiseNumerator, |
| (WebRtc_Word16)(inst->blockIndex + 1)); // Q11 |
| WebRtcNsx_CalcParametricNoiseEstimate(inst, |
| pink_noise_exp_avg, |
| pink_noise_num_avg, |
| kStartBand, |
| &noise_estimate, |
| &noise_estimate_avg); |
| } else { |
| // Use white noise estimate if we have poor pink noise parameter estimates |
| noise_estimate = inst->whiteNoiseLevel; // Q(minNorm-stages) |
| noise_estimate_avg = noise_estimate / (inst->blockIndex + 1); // Q(minNorm-stages) |
| } |
| for (i = 0; i < inst->magnLen; i++) { |
| // Estimate the background noise using the pink noise parameters if permitted |
| if ((inst->pinkNoiseExp) && (i >= kStartBand)) { |
| // Reset noise_estimate |
| noise_estimate = 0; |
| noise_estimate_avg = 0; |
| // Calculate the parametric noise estimate for current frequency bin |
| WebRtcNsx_CalcParametricNoiseEstimate(inst, |
| pink_noise_exp_avg, |
| pink_noise_num_avg, |
| i, |
| &noise_estimate, |
| &noise_estimate_avg); |
| } |
| // Calculate parametric Wiener filter |
| noiseSupFilterTmp[i] = inst->denoiseBound; |
| if (inst->initMagnEst[i]) { |
| // numerator = (initMagnEst - noise_estimate * overdrive) |
| // Result in Q(8+minNorm-stages) |
| tmpU32no1 = WEBRTC_SPL_UMUL_32_16(noise_estimate, inst->overdrive); |
| numerator = WEBRTC_SPL_LSHIFT_U32(inst->initMagnEst[i], 8); |
| if (numerator > tmpU32no1) { |
| // Suppression filter coefficient larger than zero, so calculate. |
| numerator -= tmpU32no1; |
| |
| // Determine number of left shifts in numerator for best accuracy after |
| // division |
| nShifts = WebRtcSpl_NormU32(numerator); |
| nShifts = WEBRTC_SPL_SAT(6, nShifts, 0); |
| |
| // Shift numerator to Q(nShifts+8+minNorm-stages) |
| numerator = WEBRTC_SPL_LSHIFT_U32(numerator, nShifts); |
| |
| // Shift denominator to Q(nShifts-6+minNorm-stages) |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(inst->initMagnEst[i], 6 - nShifts); |
| if (tmpU32no1 == 0) { |
| // This is only possible if numerator = 0, in which case |
| // we don't need any division. |
| tmpU32no1 = 1; |
| } |
| tmpU32no2 = WEBRTC_SPL_UDIV(numerator, tmpU32no1); // Q14 |
| noiseSupFilterTmp[i] = (WebRtc_UWord16)WEBRTC_SPL_SAT(16384, tmpU32no2, |
| (WebRtc_UWord32)(inst->denoiseBound)); // Q14 |
| } |
| } |
| // Weight quantile noise 'noiseU32' with modeled noise 'noise_estimate_avg' |
| // 'noiseU32 is in Q(qNoise) and 'noise_estimate' in Q(minNorm-stages) |
| // To guarantee that we do not get wrap around when shifting to the same domain |
| // we use the lowest one. Furthermore, we need to save 6 bits for the weighting. |
| // 'noise_estimate_avg' can handle this operation by construction, but 'noiseU32' |
| // may not. |
| |
| // Shift 'noiseU32' to 'q_domain_to_use' |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(noiseU32[i], (int)qNoise - q_domain_to_use); |
| // Shift 'noise_estimate_avg' to 'q_domain_to_use' |
| tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(noise_estimate_avg, inst->minNorm - inst->stages |
| - q_domain_to_use); |
| // Make a simple check to see if we have enough room for weighting 'tmpU32no1' |
| // without wrap around |
| nShifts = 0; |
| if (tmpU32no1 & 0xfc000000) { |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 6); |
| tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, 6); |
| nShifts = 6; |
| } |
| tmpU32no1 *= inst->blockIndex; |
| tmpU32no2 *= (END_STARTUP_SHORT - inst->blockIndex); |
| // Add them together and divide by startup length |
| noiseU32[i] = WebRtcSpl_DivU32U16(tmpU32no1 + tmpU32no2, END_STARTUP_SHORT); |
| // Shift back if necessary |
| noiseU32[i] = WEBRTC_SPL_LSHIFT_U32(noiseU32[i], nShifts); |
| } |
| // Update new Q-domain for 'noiseU32' |
| qNoise = q_domain_to_use; |
| } |
| // compute average signal during END_STARTUP_LONG time: |
| // used to normalize spectral difference measure |
| if (inst->blockIndex < END_STARTUP_LONG) { |
| // substituting division with shift ending up in Q(-2*stages) |
| inst->timeAvgMagnEnergyTmp |
| += WEBRTC_SPL_RSHIFT_U32(inst->magnEnergy, |
| 2 * inst->normData + inst->stages - 1); |
| inst->timeAvgMagnEnergy = WebRtcSpl_DivU32U16(inst->timeAvgMagnEnergyTmp, |
| inst->blockIndex + 1); |
| } |
| |
| //start processing at frames == converged+1 |
| // STEP 1: compute prior and post SNR based on quantile noise estimates |
| |
| // compute direct decision (DD) estimate of prior SNR: needed for new method |
| satMax = (WebRtc_UWord32)1048575;// Largest possible value without getting overflow despite shifting 12 steps |
| postShifts = 6 + qMagn - qNoise; |
| nShifts = 5 - inst->prevQMagn + inst->prevQNoise; |
| for (i = 0; i < inst->magnLen; i++) { |
| // FLOAT: |
| // post SNR |
| // postLocSnr[i] = 0.0; |
| // if (magn[i] > noise[i]) |
| // { |
| // postLocSnr[i] = magn[i] / (noise[i] + 0.0001); |
| // } |
| // // previous post SNR |
| // // previous estimate: based on previous frame with gain filter (smooth is previous filter) |
| // |
| // prevNearSnr[i] = inst->prevMagnU16[i] / (inst->noisePrev[i] + 0.0001) * (inst->smooth[i]); |
| // |
| // // DD estimate is sum of two terms: current estimate and previous estimate |
| // // directed decision update of priorSnr (or we actually store [2*priorSnr+1]) |
| // |
| // priorLocSnr[i] = DD_PR_SNR * prevNearSnr[i] + (1.0 - DD_PR_SNR) * (postLocSnr[i] - 1.0); |
| |
| // calculate post SNR: output in Q11 |
| postLocSnr[i] = 2048; // 1.0 in Q11 |
| tmpU32no1 = WEBRTC_SPL_LSHIFT_U32((WebRtc_UWord32)magnU16[i], 6); // Q(6+qMagn) |
| if (postShifts < 0) { |
| tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(noiseU32[i], -postShifts); // Q(6+qMagn) |
| } else { |
| tmpU32no2 = WEBRTC_SPL_LSHIFT_U32(noiseU32[i], postShifts); // Q(6+qMagn) |
| } |
| if (tmpU32no1 > tmpU32no2) { |
| // Current magnitude larger than noise |
| tmpU32no1 = WEBRTC_SPL_LSHIFT_U32(tmpU32no1, 11); // Q(17+qMagn) |
| if (tmpU32no2 > 0) { |
| tmpU32no1 = WEBRTC_SPL_UDIV(tmpU32no1, tmpU32no2); // Q11 |
| postLocSnr[i] = WEBRTC_SPL_MIN(satMax, tmpU32no1); // Q11 |
| } else { |
| postLocSnr[i] = satMax; |
| } |
| } |
| |
| // calculate prevNearSnr[i] and save for later instead of recalculating it later |
| nearMagnEst = WEBRTC_SPL_UMUL_16_16(inst->prevMagnU16[i], inst->noiseSupFilter[i]); // Q(prevQMagn+14) |
| tmpU32no1 = WEBRTC_SPL_LSHIFT_U32(nearMagnEst, 3); // Q(prevQMagn+17) |
| tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(inst->prevNoiseU32[i], nShifts); // Q(prevQMagn+6) |
| |
| if (tmpU32no2 > 0) { |
| tmpU32no1 = WEBRTC_SPL_UDIV(tmpU32no1, tmpU32no2); // Q11 |
| tmpU32no1 = WEBRTC_SPL_MIN(satMax, tmpU32no1); // Q11 |
| } else { |
| tmpU32no1 = satMax; // Q11 |
| } |
| prevNearSnr[i] = tmpU32no1; // Q11 |
| |
| //directed decision update of priorSnr |
| tmpU32no1 = WEBRTC_SPL_UMUL_32_16(prevNearSnr[i], DD_PR_SNR_Q11); // Q22 |
| tmpU32no2 = WEBRTC_SPL_UMUL_32_16(postLocSnr[i] - 2048, ONE_MINUS_DD_PR_SNR_Q11); // Q22 |
| priorSnr = tmpU32no1 + tmpU32no2 + 512; // Q22 (added 512 for rounding) |
| // priorLocSnr = 1 + 2*priorSnr |
| priorLocSnr[i] = 2048 + WEBRTC_SPL_RSHIFT_U32(priorSnr, 10); // Q11 |
| } // end of loop over frequencies |
| // done with step 1: DD computation of prior and post SNR |
| |
| // STEP 2: compute speech/noise likelihood |
| |
| //compute difference of input spectrum with learned/estimated noise spectrum |
| WebRtcNsx_ComputeSpectralDifference(inst, magnU16); |
| //compute histograms for determination of parameters (thresholds and weights for features) |
| //parameters are extracted once every window time (=inst->modelUpdate) |
| //counter update |
| inst->cntThresUpdate++; |
| flag = (int)(inst->cntThresUpdate == inst->modelUpdate); |
| //update histogram |
| WebRtcNsx_FeatureParameterExtraction(inst, flag); |
| //compute model parameters |
| if (flag) { |
| inst->cntThresUpdate = 0; // Reset counter |
| //update every window: |
| // get normalization for spectral difference for next window estimate |
| |
| // Shift to Q(-2*stages) |
| inst->curAvgMagnEnergy = WEBRTC_SPL_RSHIFT_U32(inst->curAvgMagnEnergy, STAT_UPDATES); |
| |
| tmpU32no1 = (inst->curAvgMagnEnergy + inst->timeAvgMagnEnergy + 1) >> 1; //Q(-2*stages) |
| // Update featureSpecDiff |
| if ((tmpU32no1 != inst->timeAvgMagnEnergy) && (inst->featureSpecDiff) && |
| (inst->timeAvgMagnEnergy > 0)) { |
| norm32no1 = 0; |
| tmpU32no3 = tmpU32no1; |
| while (0xFFFF0000 & tmpU32no3) { |
| tmpU32no3 >>= 1; |
| norm32no1++; |
| } |
| tmpU32no2 = inst->featureSpecDiff; |
| while (0xFFFF0000 & tmpU32no2) { |
| tmpU32no2 >>= 1; |
| norm32no1++; |
| } |
| tmpU32no3 = WEBRTC_SPL_UMUL(tmpU32no3, tmpU32no2); |
| tmpU32no3 = WEBRTC_SPL_UDIV(tmpU32no3, inst->timeAvgMagnEnergy); |
| if (WebRtcSpl_NormU32(tmpU32no3) < norm32no1) { |
| inst->featureSpecDiff = 0x007FFFFF; |
| } else { |
| inst->featureSpecDiff = WEBRTC_SPL_MIN(0x007FFFFF, |
| WEBRTC_SPL_LSHIFT_U32(tmpU32no3, norm32no1)); |
| } |
| } |
| |
| inst->timeAvgMagnEnergy = tmpU32no1; // Q(-2*stages) |
| inst->curAvgMagnEnergy = 0; |
| } |
| |
| //compute speech/noise probability |
| WebRtcNsx_SpeechNoiseProb(inst, nonSpeechProbFinal, priorLocSnr, postLocSnr); |
| |
| //time-avg parameter for noise update |
| gammaNoise = NOISE_UPDATE_Q8; // Q8 |
| |
| maxNoiseU32 = 0; |
| postShifts = inst->prevQNoise - qMagn; |
| nShifts = inst->prevQMagn - qMagn; |
| for (i = 0; i < inst->magnLen; i++) { |
| // temporary noise update: use it for speech frames if update value is less than previous |
| // the formula has been rewritten into: |
| // noiseUpdate = noisePrev[i] + (1 - gammaNoise) * nonSpeechProb * (magn[i] - noisePrev[i]) |
| |
| if (postShifts < 0) { |
| tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(magnU16[i], -postShifts); // Q(prevQNoise) |
|