blob: 93c6ccb8f3c22161fe2f49c16f8dc2faffd37026 [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "trace.h"
#include "internal_defines.h"
#include "jitter_estimator.h"
#include "rtt_filter.h"
#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
namespace webrtc {
VCMJitterEstimator::VCMJitterEstimator(WebRtc_Word32 vcmId, WebRtc_Word32 receiverId) :
_vcmId(vcmId),
_receiverId(receiverId),
_phi(0.97),
_psi(0.9999),
_alphaCountMax(400),
_beta(0.9994),
_thetaLow(0.000001),
_nackLimit(3),
_numStdDevDelayOutlier(15),
_numStdDevFrameSizeOutlier(3),
_noiseStdDevs(2.33), // ~Less than 1% chance
// (look up in normal distribution table)...
_noiseStdDevOffset(30.0), // ...of getting 30 ms freezes
_rttFilter(vcmId, receiverId)
{
Reset();
}
VCMJitterEstimator&
VCMJitterEstimator::operator=(const VCMJitterEstimator& rhs)
{
if (this != &rhs)
{
memcpy(_thetaCov, rhs._thetaCov, sizeof(_thetaCov));
memcpy(_Qcov, rhs._Qcov, sizeof(_Qcov));
_vcmId = rhs._vcmId;
_receiverId = rhs._receiverId;
_avgFrameSize = rhs._avgFrameSize;
_varFrameSize = rhs._varFrameSize;
_maxFrameSize = rhs._maxFrameSize;
_fsSum = rhs._fsSum;
_fsCount = rhs._fsCount;
_lastUpdateT = rhs._lastUpdateT;
_prevEstimate = rhs._prevEstimate;
_prevFrameSize = rhs._prevFrameSize;
_avgNoise = rhs._avgNoise;
_alphaCount = rhs._alphaCount;
_filterJitterEstimate = rhs._filterJitterEstimate;
_startupCount = rhs._startupCount;
_latestNackTimestamp = rhs._latestNackTimestamp;
_nackCount = rhs._nackCount;
_rttFilter = rhs._rttFilter;
}
return *this;
}
// Resets the JitterEstimate
void
VCMJitterEstimator::Reset()
{
_theta[0] = 1/(512e3/8);
_theta[1] = 0;
_varNoise = 4.0;
_thetaCov[0][0] = 1e-4;
_thetaCov[1][1] = 1e2;
_thetaCov[0][1] = _thetaCov[1][0] = 0;
_Qcov[0][0] = 2.5e-10;
_Qcov[1][1] = 1e-10;
_Qcov[0][1] = _Qcov[1][0] = 0;
_avgFrameSize = 500;
_maxFrameSize = 500;
_varFrameSize = 100;
_lastUpdateT = -1;
_prevEstimate = -1.0;
_prevFrameSize = 0;
_avgNoise = 0.0;
_alphaCount = 1;
_filterJitterEstimate = 0.0;
_latestNackTimestamp = 0;
_nackCount = 0;
_fsSum = 0;
_fsCount = 0;
_startupCount = 0;
_rttFilter.Reset();
}
void
VCMJitterEstimator::ResetNackCount()
{
_nackCount = 0;
}
// Updates the estimates with the new measurements
void
VCMJitterEstimator::UpdateEstimate(WebRtc_Word64 frameDelayMS, WebRtc_UWord32 frameSizeBytes,
bool incompleteFrame /* = false */)
{
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(_vcmId, _receiverId),
"Jitter estimate updated with: frameSize=%d frameDelayMS=%d",
frameSizeBytes, frameDelayMS);
if (frameSizeBytes == 0)
{
return;
}
int deltaFS = frameSizeBytes - _prevFrameSize;
if (_fsCount < kFsAccuStartupSamples)
{
_fsSum += frameSizeBytes;
_fsCount++;
}
else if (_fsCount == kFsAccuStartupSamples)
{
// Give the frame size filter
_avgFrameSize = static_cast<double>(_fsSum) /
static_cast<double>(_fsCount);
_fsCount++;
}
if (!incompleteFrame || frameSizeBytes > _avgFrameSize)
{
double avgFrameSize = _phi * _avgFrameSize +
(1 - _phi) * frameSizeBytes;
if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize))
{
// Only update the average frame size if this sample wasn't a
// key frame
_avgFrameSize = avgFrameSize;
}
// Update the variance anyway since we want to capture cases where we only get
// key frames.
_varFrameSize = VCM_MAX(_phi * _varFrameSize + (1 - _phi) *
(frameSizeBytes - avgFrameSize) *
(frameSizeBytes - avgFrameSize), 1.0);
}
// Update max frameSize estimate
_maxFrameSize = VCM_MAX(_psi * _maxFrameSize, static_cast<double>(frameSizeBytes));
if (_prevFrameSize == 0)
{
_prevFrameSize = frameSizeBytes;
return;
}
_prevFrameSize = frameSizeBytes;
// Only update the Kalman filter if the sample is not considered
// an extreme outlier. Even if it is an extreme outlier from a
// delay point of view, if the frame size also is large the
// deviation is probably due to an incorrect line slope.
double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS);
if (abs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) ||
frameSizeBytes > _avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize))
{
// Update the variance of the deviation from the
// line given by the Kalman filter
EstimateRandomJitter(deviation, incompleteFrame);
// Prevent updating with frames which have been congested by a large
// frame, and therefore arrives almost at the same time as that frame.
// This can occur when we receive a large frame (key frame) which
// has been delayed. The next frame is of normal size (delta frame),
// and thus deltaFS will be << 0. This removes all frame samples
// which arrives after a key frame.
if ((!incompleteFrame || deviation >= 0.0) &&
static_cast<double>(deltaFS) > - 0.25 * _maxFrameSize)
{
// Update the Kalman filter with the new data
KalmanEstimateChannel(frameDelayMS, deltaFS);
}
}
else
{
int nStdDev = (deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier;
EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame);
}
// Post process the total estimated jitter
if (_startupCount >= kStartupDelaySamples)
{
PostProcessEstimate();
}
else
{
_startupCount++;
}
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(_vcmId, _receiverId),
"Framesize statistics: max=%f average=%f", _maxFrameSize, _avgFrameSize);
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(_vcmId, _receiverId),
"The estimated slope is: theta=(%f, %f)", _theta[0], _theta[1]);
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(_vcmId, _receiverId),
"Random jitter: mean=%f variance=%f", _avgNoise, _varNoise);
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(_vcmId, _receiverId),
"Current jitter estimate: %f", _filterJitterEstimate);
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(_vcmId, _receiverId),
"Current max RTT: %u", _rttFilter.RttMs());
}
// Updates the nack/packet ratio
void
VCMJitterEstimator::FrameNacked()
{
// Wait until _nackLimit retransmissions has been received,
// then always add ~1 RTT delay.
// TODO(holmer): Should we ever remove the additional delay if the
// the packet losses seem to have stopped? We could for instance scale
// the number of RTTs to add with the amount of retransmissions in a given
// time interval, or similar.
if (_nackCount < _nackLimit)
{
_nackCount++;
}
}
// Updates Kalman estimate of the channel
// The caller is expected to sanity check the inputs.
void
VCMJitterEstimator::KalmanEstimateChannel(WebRtc_Word64 frameDelayMS,
WebRtc_Word32 deltaFSBytes)
{
double Mh[2];
double hMh_sigma;
double kalmanGain[2];
double measureRes;
double t00, t01;
// Kalman filtering
// Prediction
// M = M + Q
_thetaCov[0][0] += _Qcov[0][0];
_thetaCov[0][1] += _Qcov[0][1];
_thetaCov[1][0] += _Qcov[1][0];
_thetaCov[1][1] += _Qcov[1][1];
// Kalman gain
// K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h')
// h = [dFS 1]
// Mh = M*h'
// hMh_sigma = h*M*h' + R
Mh[0] = _thetaCov[0][0] * deltaFSBytes + _thetaCov[0][1];
Mh[1] = _thetaCov[1][0] * deltaFSBytes + _thetaCov[1][1];
// sigma weights measurements with a small deltaFS as noisy and
// measurements with large deltaFS as good
if (_maxFrameSize < 1.0)
{
return;
}
double sigma = (300.0 * exp(-abs(static_cast<double>(deltaFSBytes)) /
(1e0 * _maxFrameSize)) + 1) * sqrt(_varNoise);
if (sigma < 1.0)
{
sigma = 1.0;
}
hMh_sigma = deltaFSBytes * Mh[0] + Mh[1] + sigma;
if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) || (hMh_sigma > -1e-9 && hMh_sigma <= 0))
{
assert(false);
return;
}
kalmanGain[0] = Mh[0] / hMh_sigma;
kalmanGain[1] = Mh[1] / hMh_sigma;
// Correction
// theta = theta + K*(dT - h*theta)
measureRes = frameDelayMS - (deltaFSBytes * _theta[0] + _theta[1]);
_theta[0] += kalmanGain[0] * measureRes;
_theta[1] += kalmanGain[1] * measureRes;
if (_theta[0] < _thetaLow)
{
_theta[0] = _thetaLow;
}
// M = (I - K*h)*M
t00 = _thetaCov[0][0];
t01 = _thetaCov[0][1];
_thetaCov[0][0] = (1 - kalmanGain[0] * deltaFSBytes) * t00 -
kalmanGain[0] * _thetaCov[1][0];
_thetaCov[0][1] = (1 - kalmanGain[0] * deltaFSBytes) * t01 -
kalmanGain[0] * _thetaCov[1][1];
_thetaCov[1][0] = _thetaCov[1][0] * (1 - kalmanGain[1]) -
kalmanGain[1] * deltaFSBytes * t00;
_thetaCov[1][1] = _thetaCov[1][1] * (1 - kalmanGain[1]) -
kalmanGain[1] * deltaFSBytes * t01;
// Covariance matrix, must be positive semi-definite
assert(_thetaCov[0][0] + _thetaCov[1][1] >= 0 &&
_thetaCov[0][0] * _thetaCov[1][1] - _thetaCov[0][1] * _thetaCov[1][0] >= 0 &&
_thetaCov[0][0] >= 0);
}
// Calculate difference in delay between a sample and the
// expected delay estimated by the Kalman filter
double
VCMJitterEstimator::DeviationFromExpectedDelay(WebRtc_Word64 frameDelayMS,
WebRtc_Word32 deltaFSBytes) const
{
return frameDelayMS - (_theta[0] * deltaFSBytes + _theta[1]);
}
// Estimates the random jitter by calculating the variance of the
// sample distance from the line given by theta.
void
VCMJitterEstimator::EstimateRandomJitter(double d_dT, bool incompleteFrame)
{
double alpha;
if (_alphaCount == 0)
{
assert(_alphaCount > 0);
return;
}
alpha = static_cast<double>(_alphaCount - 1) / static_cast<double>(_alphaCount);
_alphaCount++;
if (_alphaCount > _alphaCountMax)
{
_alphaCount = _alphaCountMax;
}
double avgNoise = alpha * _avgNoise + (1 - alpha) * d_dT;
double varNoise = alpha * _varNoise +
(1 - alpha) * (d_dT - _avgNoise) * (d_dT - _avgNoise);
if (!incompleteFrame || varNoise > _varNoise)
{
_avgNoise = avgNoise;
_varNoise = varNoise;
}
if (_varNoise < 1.0)
{
// The variance should never be zero, since we might get
// stuck and consider all samples as outliers.
_varNoise = 1.0;
}
}
double
VCMJitterEstimator::NoiseThreshold() const
{
double noiseThreshold = _noiseStdDevs * sqrt(_varNoise) - _noiseStdDevOffset;
if (noiseThreshold < 1.0)
{
noiseThreshold = 1.0;
}
return noiseThreshold;
}
// Calculates the current jitter estimate from the filtered estimates
double
VCMJitterEstimator::CalculateEstimate()
{
double ret = _theta[0] * (_maxFrameSize - _avgFrameSize) + NoiseThreshold();
// A very low estimate (or negative) is neglected
if (ret < 1.0) {
if (_prevEstimate <= 0.01)
{
ret = 1.0;
}
else
{
ret = _prevEstimate;
}
}
if (ret > 10000.0) // Sanity
{
ret = 10000.0;
}
_prevEstimate = ret;
return ret;
}
void
VCMJitterEstimator::PostProcessEstimate()
{
_filterJitterEstimate = CalculateEstimate();
}
void
VCMJitterEstimator::UpdateRtt(WebRtc_UWord32 rttMs)
{
_rttFilter.Update(rttMs);
}
void
VCMJitterEstimator::UpdateMaxFrameSize(WebRtc_UWord32 frameSizeBytes)
{
if (_maxFrameSize < frameSizeBytes)
{
_maxFrameSize = frameSizeBytes;
}
}
// Returns the current filtered estimate if available,
// otherwise tries to calculate an estimate.
double
VCMJitterEstimator::GetJitterEstimate(double rttMultiplier)
{
double jitterMS = CalculateEstimate();
if (_filterJitterEstimate > jitterMS)
{
jitterMS = _filterJitterEstimate;
}
if (_nackCount >= _nackLimit)
{
return jitterMS + _rttFilter.RttMs() * rttMultiplier;
}
return jitterMS;
}
}