| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "audio_buffer.h" |
| |
| #include "signal_processing_library.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| enum { |
| kSamplesPer8kHzChannel = 80, |
| kSamplesPer16kHzChannel = 160, |
| kSamplesPer32kHzChannel = 320 |
| }; |
| |
| void StereoToMono(const int16_t* left, const int16_t* right, |
| int16_t* out, int samples_per_channel) { |
| assert(left != NULL && right != NULL && out != NULL); |
| for (int i = 0; i < samples_per_channel; i++) { |
| int32_t data32 = (static_cast<int32_t>(left[i]) + |
| static_cast<int32_t>(right[i])) >> 1; |
| |
| out[i] = WebRtcSpl_SatW32ToW16(data32); |
| } |
| } |
| } // namespace |
| |
| struct AudioChannel { |
| AudioChannel() { |
| memset(data, 0, sizeof(data)); |
| } |
| |
| int16_t data[kSamplesPer32kHzChannel]; |
| }; |
| |
| struct SplitAudioChannel { |
| SplitAudioChannel() { |
| memset(low_pass_data, 0, sizeof(low_pass_data)); |
| memset(high_pass_data, 0, sizeof(high_pass_data)); |
| memset(analysis_filter_state1, 0, sizeof(analysis_filter_state1)); |
| memset(analysis_filter_state2, 0, sizeof(analysis_filter_state2)); |
| memset(synthesis_filter_state1, 0, sizeof(synthesis_filter_state1)); |
| memset(synthesis_filter_state2, 0, sizeof(synthesis_filter_state2)); |
| } |
| |
| int16_t low_pass_data[kSamplesPer16kHzChannel]; |
| int16_t high_pass_data[kSamplesPer16kHzChannel]; |
| |
| WebRtc_Word32 analysis_filter_state1[6]; |
| WebRtc_Word32 analysis_filter_state2[6]; |
| WebRtc_Word32 synthesis_filter_state1[6]; |
| WebRtc_Word32 synthesis_filter_state2[6]; |
| }; |
| |
| // TODO(andrew): check range of input parameters? |
| AudioBuffer::AudioBuffer(int max_num_channels, |
| int samples_per_channel) |
| : max_num_channels_(max_num_channels), |
| num_channels_(0), |
| num_mixed_channels_(0), |
| num_mixed_low_pass_channels_(0), |
| data_was_mixed_(false), |
| samples_per_channel_(samples_per_channel), |
| samples_per_split_channel_(samples_per_channel), |
| reference_copied_(false), |
| activity_(AudioFrame::kVadUnknown), |
| is_muted_(false), |
| data_(NULL), |
| channels_(NULL), |
| split_channels_(NULL), |
| mixed_channels_(NULL), |
| mixed_low_pass_channels_(NULL), |
| low_pass_reference_channels_(NULL) { |
| if (max_num_channels_ > 1) { |
| channels_.reset(new AudioChannel[max_num_channels_]); |
| mixed_channels_.reset(new AudioChannel[max_num_channels_]); |
| mixed_low_pass_channels_.reset(new AudioChannel[max_num_channels_]); |
| } |
| low_pass_reference_channels_.reset(new AudioChannel[max_num_channels_]); |
| |
| if (samples_per_channel_ == kSamplesPer32kHzChannel) { |
| split_channels_.reset(new SplitAudioChannel[max_num_channels_]); |
| samples_per_split_channel_ = kSamplesPer16kHzChannel; |
| } |
| } |
| |
| AudioBuffer::~AudioBuffer() {} |
| |
| int16_t* AudioBuffer::data(int channel) const { |
| assert(channel >= 0 && channel < num_channels_); |
| if (data_ != NULL) { |
| return data_; |
| } |
| |
| return channels_[channel].data; |
| } |
| |
| int16_t* AudioBuffer::low_pass_split_data(int channel) const { |
| assert(channel >= 0 && channel < num_channels_); |
| if (split_channels_.get() == NULL) { |
| return data(channel); |
| } |
| |
| return split_channels_[channel].low_pass_data; |
| } |
| |
| int16_t* AudioBuffer::high_pass_split_data(int channel) const { |
| assert(channel >= 0 && channel < num_channels_); |
| if (split_channels_.get() == NULL) { |
| return NULL; |
| } |
| |
| return split_channels_[channel].high_pass_data; |
| } |
| |
| int16_t* AudioBuffer::mixed_data(int channel) const { |
| assert(channel >= 0 && channel < num_mixed_channels_); |
| |
| return mixed_channels_[channel].data; |
| } |
| |
| int16_t* AudioBuffer::mixed_low_pass_data(int channel) const { |
| assert(channel >= 0 && channel < num_mixed_low_pass_channels_); |
| |
| return mixed_low_pass_channels_[channel].data; |
| } |
| |
| int16_t* AudioBuffer::low_pass_reference(int channel) const { |
| assert(channel >= 0 && channel < num_channels_); |
| if (!reference_copied_) { |
| return NULL; |
| } |
| |
| return low_pass_reference_channels_[channel].data; |
| } |
| |
| WebRtc_Word32* AudioBuffer::analysis_filter_state1(int channel) const { |
| assert(channel >= 0 && channel < num_channels_); |
| return split_channels_[channel].analysis_filter_state1; |
| } |
| |
| WebRtc_Word32* AudioBuffer::analysis_filter_state2(int channel) const { |
| assert(channel >= 0 && channel < num_channels_); |
| return split_channels_[channel].analysis_filter_state2; |
| } |
| |
| WebRtc_Word32* AudioBuffer::synthesis_filter_state1(int channel) const { |
| assert(channel >= 0 && channel < num_channels_); |
| return split_channels_[channel].synthesis_filter_state1; |
| } |
| |
| WebRtc_Word32* AudioBuffer::synthesis_filter_state2(int channel) const { |
| assert(channel >= 0 && channel < num_channels_); |
| return split_channels_[channel].synthesis_filter_state2; |
| } |
| |
| void AudioBuffer::set_activity(AudioFrame::VADActivity activity) { |
| activity_ = activity; |
| } |
| |
| AudioFrame::VADActivity AudioBuffer::activity() const { |
| return activity_; |
| } |
| |
| bool AudioBuffer::is_muted() const { |
| return is_muted_; |
| } |
| |
| int AudioBuffer::num_channels() const { |
| return num_channels_; |
| } |
| |
| int AudioBuffer::samples_per_channel() const { |
| return samples_per_channel_; |
| } |
| |
| int AudioBuffer::samples_per_split_channel() const { |
| return samples_per_split_channel_; |
| } |
| |
| // TODO(andrew): Do deinterleaving and mixing in one step? |
| void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) { |
| assert(frame->_audioChannel <= max_num_channels_); |
| assert(frame->_payloadDataLengthInSamples == samples_per_channel_); |
| |
| num_channels_ = frame->_audioChannel; |
| data_was_mixed_ = false; |
| num_mixed_channels_ = 0; |
| num_mixed_low_pass_channels_ = 0; |
| reference_copied_ = false; |
| activity_ = frame->_vadActivity; |
| is_muted_ = false; |
| if (frame->_energy == 0) { |
| is_muted_ = true; |
| } |
| |
| if (num_channels_ == 1) { |
| // We can get away with a pointer assignment in this case. |
| data_ = frame->_payloadData; |
| return; |
| } |
| |
| int16_t* interleaved = frame->_payloadData; |
| for (int i = 0; i < num_channels_; i++) { |
| int16_t* deinterleaved = channels_[i].data; |
| int interleaved_idx = i; |
| for (int j = 0; j < samples_per_channel_; j++) { |
| deinterleaved[j] = interleaved[interleaved_idx]; |
| interleaved_idx += num_channels_; |
| } |
| } |
| } |
| |
| void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const { |
| assert(frame->_audioChannel == num_channels_); |
| assert(frame->_payloadDataLengthInSamples == samples_per_channel_); |
| frame->_vadActivity = activity_; |
| |
| if (!data_changed) { |
| return; |
| } |
| |
| if (num_channels_ == 1) { |
| if (data_was_mixed_) { |
| memcpy(frame->_payloadData, |
| channels_[0].data, |
| sizeof(int16_t) * samples_per_channel_); |
| } else { |
| // These should point to the same buffer in this case. |
| assert(data_ == frame->_payloadData); |
| } |
| |
| return; |
| } |
| |
| int16_t* interleaved = frame->_payloadData; |
| for (int i = 0; i < num_channels_; i++) { |
| int16_t* deinterleaved = channels_[i].data; |
| int interleaved_idx = i; |
| for (int j = 0; j < samples_per_channel_; j++) { |
| interleaved[interleaved_idx] = deinterleaved[j]; |
| interleaved_idx += num_channels_; |
| } |
| } |
| } |
| |
| // TODO(andrew): would be good to support the no-mix case with pointer |
| // assignment. |
| // TODO(andrew): handle mixing to multiple channels? |
| void AudioBuffer::Mix(int num_mixed_channels) { |
| // We currently only support the stereo to mono case. |
| assert(num_channels_ == 2); |
| assert(num_mixed_channels == 1); |
| |
| StereoToMono(channels_[0].data, |
| channels_[1].data, |
| channels_[0].data, |
| samples_per_channel_); |
| |
| num_channels_ = num_mixed_channels; |
| data_was_mixed_ = true; |
| } |
| |
| void AudioBuffer::CopyAndMix(int num_mixed_channels) { |
| // We currently only support the stereo to mono case. |
| assert(num_channels_ == 2); |
| assert(num_mixed_channels == 1); |
| |
| StereoToMono(channels_[0].data, |
| channels_[1].data, |
| mixed_channels_[0].data, |
| samples_per_channel_); |
| |
| num_mixed_channels_ = num_mixed_channels; |
| } |
| |
| void AudioBuffer::CopyAndMixLowPass(int num_mixed_channels) { |
| // We currently only support the stereo to mono case. |
| assert(num_channels_ == 2); |
| assert(num_mixed_channels == 1); |
| |
| StereoToMono(low_pass_split_data(0), |
| low_pass_split_data(1), |
| mixed_low_pass_channels_[0].data, |
| samples_per_split_channel_); |
| |
| num_mixed_low_pass_channels_ = num_mixed_channels; |
| } |
| |
| void AudioBuffer::CopyLowPassToReference() { |
| reference_copied_ = true; |
| for (int i = 0; i < num_channels_; i++) { |
| memcpy(low_pass_reference_channels_[i].data, |
| low_pass_split_data(i), |
| sizeof(int16_t) * samples_per_split_channel_); |
| } |
| } |
| } // namespace webrtc |