| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* |
| * Contains the API functions for the AEC. |
| */ |
| #include "echo_cancellation.h" |
| |
| #include <math.h> |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| #include <stdio.h> |
| #endif |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "aec_core.h" |
| #include "aec_resampler.h" |
| #include "common_audio/signal_processing/include/signal_processing_library.h" |
| #include "ring_buffer.h" |
| #include "typedefs.h" |
| |
| // Maximum length of resampled signal. Must be an integer multiple of frames |
| // (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN |
| // The factor of 2 handles wb, and the + 1 is as a safety margin |
| // TODO(bjornv): Replace with kResamplerBufferSize |
| #define MAX_RESAMP_LEN (5 * FRAME_LEN) |
| |
| static const int kMaxBufSizeStart = 62; // In partitions |
| static const int sampMsNb = 8; // samples per ms in nb |
| // Target suppression levels for nlp modes |
| // log{0.001, 0.00001, 0.00000001} |
| static const float targetSupp[3] = {-6.9f, -11.5f, -18.4f}; |
| static const float minOverDrive[3] = {1.0f, 2.0f, 5.0f}; |
| static const int initCheck = 42; |
| |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| static int instance_count = 0; |
| #endif |
| |
| typedef struct { |
| int delayCtr; |
| int sampFreq; |
| int splitSampFreq; |
| int scSampFreq; |
| float sampFactor; // scSampRate / sampFreq |
| short nlpMode; |
| short autoOnOff; |
| short activity; |
| short skewMode; |
| int bufSizeStart; |
| //short bufResetCtr; // counts number of noncausal frames |
| int knownDelay; |
| |
| short initFlag; // indicates if AEC has been initialized |
| |
| // Variables used for averaging far end buffer size |
| short counter; |
| int sum; |
| short firstVal; |
| short checkBufSizeCtr; |
| |
| // Variables used for delay shifts |
| short msInSndCardBuf; |
| short filtDelay; // Filtered delay estimate. |
| int timeForDelayChange; |
| int ECstartup; |
| int checkBuffSize; |
| short lastDelayDiff; |
| |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| void* far_pre_buf_s16; // Time domain far-end pre-buffer in int16_t. |
| FILE *bufFile; |
| FILE *delayFile; |
| FILE *skewFile; |
| #endif |
| |
| // Structures |
| void *resampler; |
| |
| int skewFrCtr; |
| int resample; // if the skew is small enough we don't resample |
| int highSkewCtr; |
| float skew; |
| |
| void* far_pre_buf; // Time domain far-end pre-buffer. |
| |
| int lastError; |
| |
| aec_t *aec; |
| } aecpc_t; |
| |
| // Estimates delay to set the position of the far-end buffer read pointer |
| // (controlled by knownDelay) |
| static int EstBufDelay(aecpc_t *aecInst); |
| |
| WebRtc_Word32 WebRtcAec_Create(void **aecInst) |
| { |
| aecpc_t *aecpc; |
| if (aecInst == NULL) { |
| return -1; |
| } |
| |
| aecpc = malloc(sizeof(aecpc_t)); |
| *aecInst = aecpc; |
| if (aecpc == NULL) { |
| return -1; |
| } |
| |
| if (WebRtcAec_CreateAec(&aecpc->aec) == -1) { |
| WebRtcAec_Free(aecpc); |
| aecpc = NULL; |
| return -1; |
| } |
| |
| if (WebRtcAec_CreateResampler(&aecpc->resampler) == -1) { |
| WebRtcAec_Free(aecpc); |
| aecpc = NULL; |
| return -1; |
| } |
| // Create far-end pre-buffer. The buffer size has to be large enough for |
| // largest possible drift compensation (kResamplerBufferSize) + "almost" an |
| // FFT buffer (PART_LEN2 - 1). |
| if (WebRtc_CreateBuffer(&aecpc->far_pre_buf, |
| PART_LEN2 + kResamplerBufferSize, |
| sizeof(float)) == -1) { |
| WebRtcAec_Free(aecpc); |
| aecpc = NULL; |
| return -1; |
| } |
| |
| aecpc->initFlag = 0; |
| aecpc->lastError = 0; |
| |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| if (WebRtc_CreateBuffer(&aecpc->far_pre_buf_s16, |
| PART_LEN2 + kResamplerBufferSize, |
| sizeof(int16_t)) == -1) { |
| WebRtcAec_Free(aecpc); |
| aecpc = NULL; |
| return -1; |
| } |
| { |
| char filename[64]; |
| sprintf(filename, "aec_far%d.pcm", instance_count); |
| aecpc->aec->farFile = fopen(filename, "wb"); |
| sprintf(filename, "aec_near%d.pcm", instance_count); |
| aecpc->aec->nearFile = fopen(filename, "wb"); |
| sprintf(filename, "aec_out%d.pcm", instance_count); |
| aecpc->aec->outFile = fopen(filename, "wb"); |
| sprintf(filename, "aec_out_linear%d.pcm", instance_count); |
| aecpc->aec->outLinearFile = fopen(filename, "wb"); |
| sprintf(filename, "aec_buf%d.dat", instance_count); |
| aecpc->bufFile = fopen(filename, "wb"); |
| sprintf(filename, "aec_skew%d.dat", instance_count); |
| aecpc->skewFile = fopen(filename, "wb"); |
| sprintf(filename, "aec_delay%d.dat", instance_count); |
| aecpc->delayFile = fopen(filename, "wb"); |
| instance_count++; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| WebRtc_Word32 WebRtcAec_Free(void *aecInst) |
| { |
| aecpc_t *aecpc = aecInst; |
| |
| if (aecpc == NULL) { |
| return -1; |
| } |
| |
| WebRtc_FreeBuffer(aecpc->far_pre_buf); |
| |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| WebRtc_FreeBuffer(aecpc->far_pre_buf_s16); |
| fclose(aecpc->aec->farFile); |
| fclose(aecpc->aec->nearFile); |
| fclose(aecpc->aec->outFile); |
| fclose(aecpc->aec->outLinearFile); |
| fclose(aecpc->bufFile); |
| fclose(aecpc->skewFile); |
| fclose(aecpc->delayFile); |
| #endif |
| |
| WebRtcAec_FreeAec(aecpc->aec); |
| WebRtcAec_FreeResampler(aecpc->resampler); |
| free(aecpc); |
| |
| return 0; |
| } |
| |
| WebRtc_Word32 WebRtcAec_Init(void *aecInst, WebRtc_Word32 sampFreq, WebRtc_Word32 scSampFreq) |
| { |
| aecpc_t *aecpc = aecInst; |
| AecConfig aecConfig; |
| |
| if (aecpc == NULL) { |
| return -1; |
| } |
| |
| if (sampFreq != 8000 && sampFreq != 16000 && sampFreq != 32000) { |
| aecpc->lastError = AEC_BAD_PARAMETER_ERROR; |
| return -1; |
| } |
| aecpc->sampFreq = sampFreq; |
| |
| if (scSampFreq < 1 || scSampFreq > 96000) { |
| aecpc->lastError = AEC_BAD_PARAMETER_ERROR; |
| return -1; |
| } |
| aecpc->scSampFreq = scSampFreq; |
| |
| // Initialize echo canceller core |
| if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) { |
| aecpc->lastError = AEC_UNSPECIFIED_ERROR; |
| return -1; |
| } |
| |
| if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) { |
| aecpc->lastError = AEC_UNSPECIFIED_ERROR; |
| return -1; |
| } |
| |
| if (WebRtc_InitBuffer(aecpc->far_pre_buf) == -1) { |
| aecpc->lastError = AEC_UNSPECIFIED_ERROR; |
| return -1; |
| } |
| WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); // Start overlap. |
| |
| aecpc->initFlag = initCheck; // indicates that initialization has been done |
| |
| if (aecpc->sampFreq == 32000) { |
| aecpc->splitSampFreq = 16000; |
| } |
| else { |
| aecpc->splitSampFreq = sampFreq; |
| } |
| |
| aecpc->skewFrCtr = 0; |
| aecpc->activity = 0; |
| |
| aecpc->delayCtr = 0; |
| |
| aecpc->sum = 0; |
| aecpc->counter = 0; |
| aecpc->checkBuffSize = 1; |
| aecpc->firstVal = 0; |
| |
| aecpc->ECstartup = 1; |
| aecpc->bufSizeStart = 0; |
| aecpc->checkBufSizeCtr = 0; |
| aecpc->filtDelay = 0; |
| aecpc->timeForDelayChange = 0; |
| aecpc->knownDelay = 0; |
| aecpc->lastDelayDiff = 0; |
| |
| aecpc->skew = 0; |
| aecpc->resample = kAecFalse; |
| aecpc->highSkewCtr = 0; |
| aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq; |
| |
| // Default settings. |
| aecConfig.nlpMode = kAecNlpModerate; |
| aecConfig.skewMode = kAecFalse; |
| aecConfig.metricsMode = kAecFalse; |
| aecConfig.delay_logging = kAecFalse; |
| |
| if (WebRtcAec_set_config(aecpc, aecConfig) == -1) { |
| aecpc->lastError = AEC_UNSPECIFIED_ERROR; |
| return -1; |
| } |
| |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| if (WebRtc_InitBuffer(aecpc->far_pre_buf_s16) == -1) { |
| aecpc->lastError = AEC_UNSPECIFIED_ERROR; |
| return -1; |
| } |
| WebRtc_MoveReadPtr(aecpc->far_pre_buf_s16, -PART_LEN); // Start overlap. |
| #endif |
| |
| return 0; |
| } |
| |
| // only buffer L band for farend |
| WebRtc_Word32 WebRtcAec_BufferFarend(void *aecInst, const WebRtc_Word16 *farend, |
| WebRtc_Word16 nrOfSamples) |
| { |
| aecpc_t *aecpc = aecInst; |
| WebRtc_Word32 retVal = 0; |
| int newNrOfSamples = (int) nrOfSamples; |
| short newFarend[MAX_RESAMP_LEN]; |
| const int16_t* farend_ptr = farend; |
| float tmp_farend[MAX_RESAMP_LEN]; |
| const float* farend_float = tmp_farend; |
| float skew; |
| int i = 0; |
| |
| if (aecpc == NULL) { |
| return -1; |
| } |
| |
| if (farend == NULL) { |
| aecpc->lastError = AEC_NULL_POINTER_ERROR; |
| return -1; |
| } |
| |
| if (aecpc->initFlag != initCheck) { |
| aecpc->lastError = AEC_UNINITIALIZED_ERROR; |
| return -1; |
| } |
| |
| // number of samples == 160 for SWB input |
| if (nrOfSamples != 80 && nrOfSamples != 160) { |
| aecpc->lastError = AEC_BAD_PARAMETER_ERROR; |
| return -1; |
| } |
| |
| skew = aecpc->skew; |
| |
| if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { |
| // Resample and get a new number of samples |
| newNrOfSamples = WebRtcAec_ResampleLinear(aecpc->resampler, |
| farend, |
| nrOfSamples, |
| skew, |
| newFarend); |
| farend_ptr = (const int16_t*) newFarend; |
| } |
| |
| aecpc->aec->system_delay += newNrOfSamples; |
| |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| WebRtc_WriteBuffer(aecpc->far_pre_buf_s16, farend_ptr, |
| (size_t) newNrOfSamples); |
| #endif |
| // Cast to float and write the time-domain data to |far_pre_buf|. |
| for (i = 0; i < newNrOfSamples; i++) { |
| tmp_farend[i] = (float) farend_ptr[i]; |
| } |
| WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_float, |
| (size_t) newNrOfSamples); |
| |
| // Transform to frequency domain if we have enough data. |
| while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) { |
| // We have enough data to pass to the FFT, hence read PART_LEN2 samples. |
| WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**) &farend_float, tmp_farend, |
| PART_LEN2); |
| |
| WebRtcAec_BufferFarendPartition(aecpc->aec, farend_float); |
| |
| // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing. |
| WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| WebRtc_ReadBuffer(aecpc->far_pre_buf_s16, (void**) &farend_ptr, newFarend, |
| PART_LEN2); |
| WebRtc_WriteBuffer(aecpc->aec->far_time_buf, &farend_ptr[PART_LEN], 1); |
| WebRtc_MoveReadPtr(aecpc->far_pre_buf_s16, -PART_LEN); |
| #endif |
| } |
| |
| return retVal; |
| } |
| |
| WebRtc_Word32 WebRtcAec_Process(void *aecInst, const WebRtc_Word16 *nearend, |
| const WebRtc_Word16 *nearendH, WebRtc_Word16 *out, WebRtc_Word16 *outH, |
| WebRtc_Word16 nrOfSamples, WebRtc_Word16 msInSndCardBuf, WebRtc_Word32 skew) |
| { |
| aecpc_t *aecpc = aecInst; |
| WebRtc_Word32 retVal = 0; |
| short i; |
| short nBlocks10ms; |
| short nFrames; |
| // Limit resampling to doubling/halving of signal |
| const float minSkewEst = -0.5f; |
| const float maxSkewEst = 1.0f; |
| |
| if (aecpc == NULL) { |
| return -1; |
| } |
| |
| if (nearend == NULL) { |
| aecpc->lastError = AEC_NULL_POINTER_ERROR; |
| return -1; |
| } |
| |
| if (out == NULL) { |
| aecpc->lastError = AEC_NULL_POINTER_ERROR; |
| return -1; |
| } |
| |
| if (aecpc->initFlag != initCheck) { |
| aecpc->lastError = AEC_UNINITIALIZED_ERROR; |
| return -1; |
| } |
| |
| // number of samples == 160 for SWB input |
| if (nrOfSamples != 80 && nrOfSamples != 160) { |
| aecpc->lastError = AEC_BAD_PARAMETER_ERROR; |
| return -1; |
| } |
| |
| // Check for valid pointers based on sampling rate |
| if (aecpc->sampFreq == 32000 && nearendH == NULL) { |
| aecpc->lastError = AEC_NULL_POINTER_ERROR; |
| return -1; |
| } |
| |
| if (msInSndCardBuf < 0) { |
| msInSndCardBuf = 0; |
| aecpc->lastError = AEC_BAD_PARAMETER_WARNING; |
| retVal = -1; |
| } |
| else if (msInSndCardBuf > 500) { |
| msInSndCardBuf = 500; |
| aecpc->lastError = AEC_BAD_PARAMETER_WARNING; |
| retVal = -1; |
| } |
| // TODO(andrew): we need to investigate if this +10 is really wanted. |
| msInSndCardBuf += 10; |
| aecpc->msInSndCardBuf = msInSndCardBuf; |
| |
| if (aecpc->skewMode == kAecTrue) { |
| if (aecpc->skewFrCtr < 25) { |
| aecpc->skewFrCtr++; |
| } |
| else { |
| retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew); |
| if (retVal == -1) { |
| aecpc->skew = 0; |
| aecpc->lastError = AEC_BAD_PARAMETER_WARNING; |
| } |
| |
| aecpc->skew /= aecpc->sampFactor*nrOfSamples; |
| |
| if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) { |
| aecpc->resample = kAecFalse; |
| } |
| else { |
| aecpc->resample = kAecTrue; |
| } |
| |
| if (aecpc->skew < minSkewEst) { |
| aecpc->skew = minSkewEst; |
| } |
| else if (aecpc->skew > maxSkewEst) { |
| aecpc->skew = maxSkewEst; |
| } |
| |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile); |
| #endif |
| } |
| } |
| |
| nFrames = nrOfSamples / FRAME_LEN; |
| nBlocks10ms = nFrames / aecpc->aec->mult; |
| |
| if (aecpc->ECstartup) { |
| if (nearend != out) { |
| // Only needed if they don't already point to the same place. |
| memcpy(out, nearend, sizeof(short) * nrOfSamples); |
| } |
| |
| // The AEC is in the start up mode |
| // AEC is disabled until the system delay is OK |
| |
| // Mechanism to ensure that the system delay is reasonably stable. |
| if (aecpc->checkBuffSize) { |
| aecpc->checkBufSizeCtr++; |
| // Before we fill up the far-end buffer we require the system delay |
| // to be stable (+/-8 ms) compared to the first value. This |
| // comparison is made during the following 6 consecutive 10 ms |
| // blocks. If it seems to be stable then we start to fill up the |
| // far-end buffer. |
| if (aecpc->counter == 0) { |
| aecpc->firstVal = aecpc->msInSndCardBuf; |
| aecpc->sum = 0; |
| } |
| |
| if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) < |
| WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) { |
| aecpc->sum += aecpc->msInSndCardBuf; |
| aecpc->counter++; |
| } |
| else { |
| aecpc->counter = 0; |
| } |
| |
| if (aecpc->counter * nBlocks10ms >= 6) { |
| // The far-end buffer size is determined in partitions of |
| // PART_LEN samples. Use 75% of the average value of the system |
| // delay as buffer size to start with. |
| aecpc->bufSizeStart = WEBRTC_SPL_MIN((3 * aecpc->sum * |
| aecpc->aec->mult * 8) / (4 * aecpc->counter * PART_LEN), |
| kMaxBufSizeStart); |
| // Buffer size has now been determined. |
| aecpc->checkBuffSize = 0; |
| } |
| |
| if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) { |
| // For really bad systems, don't disable the echo canceller for |
| // more than 0.5 sec. |
| aecpc->bufSizeStart = WEBRTC_SPL_MIN((aecpc->msInSndCardBuf * |
| aecpc->aec->mult * 3) / 40, kMaxBufSizeStart); |
| aecpc->checkBuffSize = 0; |
| } |
| } |
| |
| // If |checkBuffSize| changed in the if-statement above. |
| if (!aecpc->checkBuffSize) { |
| // The system delay is now reasonably stable (or has been unstable |
| // for too long). When the far-end buffer is filled with |
| // approximately the same amount of data as reported by the system |
| // we end the startup phase. |
| int overhead_elements = aecpc->aec->system_delay / PART_LEN - |
| aecpc->bufSizeStart; |
| if (overhead_elements == 0) { |
| // Enable the AEC |
| aecpc->ECstartup = 0; |
| } else if (overhead_elements > 0) { |
| WebRtc_MoveReadPtr(aecpc->aec->far_buf_windowed, |
| overhead_elements); |
| WebRtc_MoveReadPtr(aecpc->aec->far_buf, overhead_elements); |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| WebRtc_MoveReadPtr(aecpc->aec->far_time_buf, overhead_elements); |
| #endif |
| // TODO(bjornv): Do we need a check on how much we actually |
| // moved the read pointer? It should always be possible to move |
| // the pointer |overhead_elements| since we have only added data |
| // to the buffer and no delay compensation nor AEC processing |
| // has been done. |
| aecpc->aec->system_delay -= overhead_elements * PART_LEN; |
| |
| // Enable the AEC |
| aecpc->ECstartup = 0; |
| } |
| } |
| } else { |
| // AEC is enabled. |
| |
| int out_elements = 0; |
| |
| EstBufDelay(aecpc); |
| |
| // Note that 1 frame is supported for NB and 2 frames for WB. |
| for (i = 0; i < nFrames; i++) { |
| int16_t* out_ptr = NULL; |
| int16_t out_tmp[FRAME_LEN]; |
| |
| // Call the AEC. |
| WebRtcAec_ProcessFrame(aecpc->aec, |
| &nearend[FRAME_LEN * i], |
| &nearendH[FRAME_LEN * i], |
| aecpc->knownDelay); |
| // TODO(bjornv): Re-structure such that we don't have to pass |
| // |aecpc->knownDelay| as input. Change name to something like |
| // |system_buffer_diff|. |
| |
| // Stuff the out buffer if we have less than a frame to output. |
| // This should only happen for the first frame. |
| out_elements = (int) WebRtc_available_read(aecpc->aec->outFrBuf); |
| if (out_elements < FRAME_LEN) { |
| WebRtc_MoveReadPtr(aecpc->aec->outFrBuf, |
| out_elements - FRAME_LEN); |
| if (aecpc->sampFreq == 32000) { |
| WebRtc_MoveReadPtr(aecpc->aec->outFrBufH, |
| out_elements - FRAME_LEN); |
| } |
| } |
| |
| // Obtain an output frame. |
| WebRtc_ReadBuffer(aecpc->aec->outFrBuf, (void**) &out_ptr, |
| out_tmp, FRAME_LEN); |
| memcpy(&out[FRAME_LEN * i], out_ptr, sizeof(int16_t) * FRAME_LEN); |
| // For H band |
| if (aecpc->sampFreq == 32000) { |
| WebRtc_ReadBuffer(aecpc->aec->outFrBufH, (void**) &out_ptr, |
| out_tmp, FRAME_LEN); |
| memcpy(&outH[FRAME_LEN * i], out_ptr, |
| sizeof(int16_t) * FRAME_LEN); |
| } |
| } |
| } |
| |
| #ifdef WEBRTC_AEC_DEBUG_DUMP |
| { |
| int16_t far_buf_size_ms = (int16_t) (aecpc->aec->system_delay / |
| (sampMsNb * aecpc->aec->mult)); |
| fwrite(&far_buf_size_ms, 2, 1, aecpc->bufFile); |
| fwrite(&(aecpc->knownDelay), sizeof(aecpc->knownDelay), 1, aecpc->delayFile); |
| } |
| #endif |
| |
| return retVal; |
| } |
| |
| WebRtc_Word32 WebRtcAec_set_config(void *aecInst, AecConfig config) |
| { |
| aecpc_t *aecpc = aecInst; |
| |
| if (aecpc == NULL) { |
| return -1; |
| } |
| |
| if (aecpc->initFlag != initCheck) { |
| aecpc->lastError = AEC_UNINITIALIZED_ERROR; |
| return -1; |
| } |
| |
| if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) { |
| aecpc->lastError = AEC_BAD_PARAMETER_ERROR; |
| return -1; |
| } |
| aecpc->skewMode = config.skewMode; |
| |
| if (config.nlpMode != kAecNlpConservative && config.nlpMode != |
| kAecNlpModerate && config.nlpMode != kAecNlpAggressive) { |
| aecpc->lastError = AEC_BAD_PARAMETER_ERROR; |
| return -1; |
| } |
| aecpc->nlpMode = config.nlpMode; |
| aecpc->aec->targetSupp = targetSupp[aecpc->nlpMode]; |
| aecpc->aec->minOverDrive = minOverDrive[aecpc->nlpMode]; |
| |
| if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) { |
| aecpc->lastError = AEC_BAD_PARAMETER_ERROR; |
| return -1; |
| } |
| aecpc->aec->metricsMode = config.metricsMode; |
| if (aecpc->aec->metricsMode == kAecTrue) { |
| WebRtcAec_InitMetrics(aecpc->aec); |
| } |
| |
| if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) { |
| aecpc->lastError = AEC_BAD_PARAMETER_ERROR; |
| return -1; |
| } |
| aecpc->aec->delay_logging_enabled = config.delay_logging; |
| if (aecpc->aec->delay_logging_enabled == kAecTrue) { |
| memset(aecpc->aec->delay_histogram, 0, sizeof(aecpc->aec->delay_histogram)); |
| } |
| |
| return 0; |
| } |
| |
| WebRtc_Word32 WebRtcAec_get_config(void *aecInst, AecConfig *config) |
| { |
| aecpc_t *aecpc = aecInst; |
| |
| if (aecpc == NULL) { |
| return -1; |
| } |
| |
| if (config == NULL) { |
| aecpc->lastError = AEC_NULL_POINTER_ERROR; |
| return -1; |
| } |
| |
| if (aecpc->initFlag != initCheck) { |
| aecpc->lastError = AEC_UNINITIALIZED_ERROR; |
| return -1; |
| } |
| |
| config->nlpMode = aecpc->nlpMode; |
| config->skewMode = aecpc->skewMode; |
| config->metricsMode = aecpc->aec->metricsMode; |
| config->delay_logging = aecpc->aec->delay_logging_enabled; |
| |
| return 0; |
| } |
| |
| WebRtc_Word32 WebRtcAec_get_echo_status(void *aecInst, WebRtc_Word16 *status) |
| { |
| aecpc_t *aecpc = aecInst; |
| |
| if (aecpc == NULL) { |
| return -1; |
| } |
| |
| if (status == NULL) { |
| aecpc->lastError = AEC_NULL_POINTER_ERROR; |
| return -1; |
| } |
| |
| if (aecpc->initFlag != initCheck) { |
| aecpc->lastError = AEC_UNINITIALIZED_ERROR; |
| return -1; |
| } |
| |
| *status = aecpc->aec->echoState; |
| |
| return 0; |
| } |
| |
| WebRtc_Word32 WebRtcAec_GetMetrics(void *aecInst, AecMetrics *metrics) |
| { |
| const float upweight = 0.7f; |
| float dtmp; |
| short stmp; |
| aecpc_t *aecpc = aecInst; |
| |
| if (aecpc == NULL) { |
| return -1; |
| } |
| |
| if (metrics == NULL) { |
| aecpc->lastError = AEC_NULL_POINTER_ERROR; |
| return -1; |
| } |
| |
| if (aecpc->initFlag != initCheck) { |
| aecpc->lastError = AEC_UNINITIALIZED_ERROR; |
| return -1; |
| } |
| |
| // ERL |
| metrics->erl.instant = (short) aecpc->aec->erl.instant; |
| |
| if ((aecpc->aec->erl.himean > offsetLevel) && (aecpc->aec->erl.average > offsetLevel)) { |
| // Use a mix between regular average and upper part average |
| dtmp = upweight * aecpc->aec->erl.himean + (1 - upweight) * aecpc->aec->erl.average; |
| metrics->erl.average = (short) dtmp; |
| } |
| else { |
| metrics->erl.average = offsetLevel; |
| } |
| |
| metrics->erl.max = (short) aecpc->aec->erl.max; |
| |
| if (aecpc->aec->erl.min < (offsetLevel * (-1))) { |
| metrics->erl.min = (short) aecpc->aec->erl.min; |
| } |
| else { |
| metrics->erl.min = offsetLevel; |
| } |
| |
| // ERLE |
| metrics->erle.instant = (short) aecpc->aec->erle.instant; |
| |
| if ((aecpc->aec->erle.himean > offsetLevel) && (aecpc->aec->erle.average > offsetLevel)) { |
| // Use a mix between regular average and upper part average |
| dtmp = upweight * aecpc->aec->erle.himean + (1 - upweight) * aecpc->aec->erle.average; |
| metrics->erle.average = (short) dtmp; |
| } |
| else { |
| metrics->erle.average = offsetLevel; |
| } |
| |
| metrics->erle.max = (short) aecpc->aec->erle.max; |
| |
| if (aecpc->aec->erle.min < (offsetLevel * (-1))) { |
| metrics->erle.min = (short) aecpc->aec->erle.min; |
| } else { |
| metrics->erle.min = offsetLevel; |
| } |
| |
| // RERL |
| if ((metrics->erl.average > offsetLevel) && (metrics->erle.average > offsetLevel)) { |
| stmp = metrics->erl.average + metrics->erle.average; |
| } |
| else { |
| stmp = offsetLevel; |
| } |
| metrics->rerl.average = stmp; |
| |
| // No other statistics needed, but returned for completeness |
| metrics->rerl.instant = stmp; |
| metrics->rerl.max = stmp; |
| metrics->rerl.min = stmp; |
| |
| // A_NLP |
| metrics->aNlp.instant = (short) aecpc->aec->aNlp.instant; |
| |
| if ((aecpc->aec->aNlp.himean > offsetLevel) && (aecpc->aec->aNlp.average > offsetLevel)) { |
| // Use a mix between regular average and upper part average |
| dtmp = upweight * aecpc->aec->aNlp.himean + (1 - upweight) * aecpc->aec->aNlp.average; |
| metrics->aNlp.average = (short) dtmp; |
| } |
| else { |
| metrics->aNlp.average = offsetLevel; |
| } |
| |
| metrics->aNlp.max = (short) aecpc->aec->aNlp.max; |
| |
| if (aecpc->aec->aNlp.min < (offsetLevel * (-1))) { |
| metrics->aNlp.min = (short) aecpc->aec->aNlp.min; |
| } |
| else { |
| metrics->aNlp.min = offsetLevel; |
| } |
| |
| return 0; |
| } |
| |
| int WebRtcAec_GetDelayMetrics(void* handle, int* median, int* std) { |
| aecpc_t* self = handle; |
| int i = 0; |
| int delay_values = 0; |
| int num_delay_values = 0; |
| int my_median = 0; |
| const int kMsPerBlock = (PART_LEN * 1000) / self->splitSampFreq; |
| float l1_norm = 0; |
| |
| if (self == NULL) { |
| return -1; |
| } |
| if (median == NULL) { |
| self->lastError = AEC_NULL_POINTER_ERROR; |
| return -1; |
| } |
| if (std == NULL) { |
| self->lastError = AEC_NULL_POINTER_ERROR; |
| return -1; |
| } |
| if (self->initFlag != initCheck) { |
| self->lastError = AEC_UNINITIALIZED_ERROR; |
| return -1; |
| } |
| if (self->aec->delay_logging_enabled == 0) { |
| // Logging disabled |
| self->lastError = AEC_UNSUPPORTED_FUNCTION_ERROR; |
| return -1; |
| } |
| |
| // Get number of delay values since last update |
| for (i = 0; i < kHistorySizeBlocks; i++) { |
| num_delay_values += self->aec->delay_histogram[i]; |
| } |
| if (num_delay_values == 0) { |
| // We have no new delay value data. Even though -1 is a valid estimate, it |
| // will practically never be used since multiples of |kMsPerBlock| will |
| // always be returned. |
| *median = -1; |
| *std = -1; |
| return 0; |
| } |
| |
| delay_values = num_delay_values >> 1; // Start value for median count down |
| // Get median of delay values since last update |
| for (i = 0; i < kHistorySizeBlocks; i++) { |
| delay_values -= self->aec->delay_histogram[i]; |
| if (delay_values < 0) { |
| my_median = i; |
| break; |
| } |
| } |
| // Account for lookahead. |
| *median = (my_median - kLookaheadBlocks) * kMsPerBlock; |
| |
| // Calculate the L1 norm, with median value as central moment |
| for (i = 0; i < kHistorySizeBlocks; i++) { |
| l1_norm += (float) (fabs(i - my_median) * self->aec->delay_histogram[i]); |
| } |
| *std = (int) (l1_norm / (float) num_delay_values + 0.5f) * kMsPerBlock; |
| |
| // Reset histogram |
| memset(self->aec->delay_histogram, 0, sizeof(self->aec->delay_histogram)); |
| |
| return 0; |
| } |
| |
| WebRtc_Word32 WebRtcAec_get_version(WebRtc_Word8 *versionStr, WebRtc_Word16 len) |
| { |
| const char version[] = "AEC 2.5.0"; |
| const short versionLen = (short)strlen(version) + 1; // +1 for null-termination |
| |
| if (versionStr == NULL) { |
| return -1; |
| } |
| |
| if (versionLen > len) { |
| return -1; |
| } |
| |
| strncpy(versionStr, version, versionLen); |
| return 0; |
| } |
| |
| WebRtc_Word32 WebRtcAec_get_error_code(void *aecInst) |
| { |
| aecpc_t *aecpc = aecInst; |
| |
| if (aecpc == NULL) { |
| return -1; |
| } |
| |
| return aecpc->lastError; |
| } |
| |
| static int EstBufDelay(aecpc_t* aecpc) { |
| int nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->aec->mult; |
| int current_delay = nSampSndCard - aecpc->aec->system_delay; |
| int delay_difference = 0; |
| |
| // Before we proceed with the delay estimate filtering we: |
| // 1) Compensate for the frame that will be read. |
| // 2) Compensate for drift resampling. |
| |
| // 1) Compensating for the frame(s) that will be read/processed. |
| current_delay += FRAME_LEN * aecpc->aec->mult; |
| |
| // 2) Account for resampling frame delay. |
| if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { |
| current_delay -= kResamplingDelay; |
| } |
| |
| aecpc->filtDelay = WEBRTC_SPL_MAX(0, (short) (0.8 * aecpc->filtDelay + |
| 0.2 * current_delay)); |
| |
| delay_difference = aecpc->filtDelay - aecpc->knownDelay; |
| if (delay_difference > 224) { |
| if (aecpc->lastDelayDiff < 96) { |
| aecpc->timeForDelayChange = 0; |
| } else { |
| aecpc->timeForDelayChange++; |
| } |
| } else if (delay_difference < 96 && aecpc->knownDelay > 0) { |
| if (aecpc->lastDelayDiff > 224) { |
| aecpc->timeForDelayChange = 0; |
| } else { |
| aecpc->timeForDelayChange++; |
| } |
| } else { |
| aecpc->timeForDelayChange = 0; |
| } |
| aecpc->lastDelayDiff = delay_difference; |
| |
| if (aecpc->timeForDelayChange > 25) { |
| aecpc->knownDelay = WEBRTC_SPL_MAX((int) aecpc->filtDelay - 160, 0); |
| } |
| |
| return 0; |
| } |