blob: 1637e6fdbcfb3985832b774163a7ed192fcd4202 [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* The core AEC algorithm, which is presented with time-aligned signals.
*/
#include "aec_core.h"
#include <assert.h>
#include <math.h>
#include <stddef.h> // size_t
#include <stdlib.h>
#include <string.h>
#include "aec_rdft.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "delay_estimator_wrapper.h"
#include "ring_buffer.h"
#include "system_wrappers/interface/cpu_features_wrapper.h"
#include "typedefs.h"
// Buffer size (samples)
static const size_t kBufSizePartitions = 250; // 1 second of audio in 16 kHz.
// Noise suppression
static const int converged = 250;
// Metrics
static const int subCountLen = 4;
static const int countLen = 50;
// Quantities to control H band scaling for SWB input
static const int flagHbandCn = 1; // flag for adding comfort noise in H band
static const float cnScaleHband = (float)0.4; // scale for comfort noise in H band
// Initial bin for averaging nlp gain in low band
static const int freqAvgIc = PART_LEN / 2;
// Matlab code to produce table:
// win = sqrt(hanning(63)); win = [0 ; win(1:32)];
// fprintf(1, '\t%.14f, %.14f, %.14f,\n', win);
static const float sqrtHanning[65] = {
0.00000000000000f, 0.02454122852291f, 0.04906767432742f,
0.07356456359967f, 0.09801714032956f, 0.12241067519922f,
0.14673047445536f, 0.17096188876030f, 0.19509032201613f,
0.21910124015687f, 0.24298017990326f, 0.26671275747490f,
0.29028467725446f, 0.31368174039889f, 0.33688985339222f,
0.35989503653499f, 0.38268343236509f, 0.40524131400499f,
0.42755509343028f, 0.44961132965461f, 0.47139673682600f,
0.49289819222978f, 0.51410274419322f, 0.53499761988710f,
0.55557023301960f, 0.57580819141785f, 0.59569930449243f,
0.61523159058063f, 0.63439328416365f, 0.65317284295378f,
0.67155895484702f, 0.68954054473707f, 0.70710678118655f,
0.72424708295147f, 0.74095112535496f, 0.75720884650648f,
0.77301045336274f, 0.78834642762661f, 0.80320753148064f,
0.81758481315158f, 0.83146961230255f, 0.84485356524971f,
0.85772861000027f, 0.87008699110871f, 0.88192126434835f,
0.89322430119552f, 0.90398929312344f, 0.91420975570353f,
0.92387953251129f, 0.93299279883474f, 0.94154406518302f,
0.94952818059304f, 0.95694033573221f, 0.96377606579544f,
0.97003125319454f, 0.97570213003853f, 0.98078528040323f,
0.98527764238894f, 0.98917650996478f, 0.99247953459871f,
0.99518472667220f, 0.99729045667869f, 0.99879545620517f,
0.99969881869620f, 1.00000000000000f
};
// Matlab code to produce table:
// weightCurve = [0 ; 0.3 * sqrt(linspace(0,1,64))' + 0.1];
// fprintf(1, '\t%.4f, %.4f, %.4f, %.4f, %.4f, %.4f,\n', weightCurve);
const float WebRtcAec_weightCurve[65] = {
0.0000f, 0.1000f, 0.1378f, 0.1535f, 0.1655f, 0.1756f,
0.1845f, 0.1926f, 0.2000f, 0.2069f, 0.2134f, 0.2195f,
0.2254f, 0.2309f, 0.2363f, 0.2414f, 0.2464f, 0.2512f,
0.2558f, 0.2604f, 0.2648f, 0.2690f, 0.2732f, 0.2773f,
0.2813f, 0.2852f, 0.2890f, 0.2927f, 0.2964f, 0.3000f,
0.3035f, 0.3070f, 0.3104f, 0.3138f, 0.3171f, 0.3204f,
0.3236f, 0.3268f, 0.3299f, 0.3330f, 0.3360f, 0.3390f,
0.3420f, 0.3449f, 0.3478f, 0.3507f, 0.3535f, 0.3563f,
0.3591f, 0.3619f, 0.3646f, 0.3673f, 0.3699f, 0.3726f,
0.3752f, 0.3777f, 0.3803f, 0.3828f, 0.3854f, 0.3878f,
0.3903f, 0.3928f, 0.3952f, 0.3976f, 0.4000f
};
// Matlab code to produce table:
// overDriveCurve = [sqrt(linspace(0,1,65))' + 1];
// fprintf(1, '\t%.4f, %.4f, %.4f, %.4f, %.4f, %.4f,\n', overDriveCurve);
const float WebRtcAec_overDriveCurve[65] = {
1.0000f, 1.1250f, 1.1768f, 1.2165f, 1.2500f, 1.2795f,
1.3062f, 1.3307f, 1.3536f, 1.3750f, 1.3953f, 1.4146f,
1.4330f, 1.4507f, 1.4677f, 1.4841f, 1.5000f, 1.5154f,
1.5303f, 1.5449f, 1.5590f, 1.5728f, 1.5863f, 1.5995f,
1.6124f, 1.6250f, 1.6374f, 1.6495f, 1.6614f, 1.6731f,
1.6847f, 1.6960f, 1.7071f, 1.7181f, 1.7289f, 1.7395f,
1.7500f, 1.7603f, 1.7706f, 1.7806f, 1.7906f, 1.8004f,
1.8101f, 1.8197f, 1.8292f, 1.8385f, 1.8478f, 1.8570f,
1.8660f, 1.8750f, 1.8839f, 1.8927f, 1.9014f, 1.9100f,
1.9186f, 1.9270f, 1.9354f, 1.9437f, 1.9520f, 1.9601f,
1.9682f, 1.9763f, 1.9843f, 1.9922f, 2.0000f
};
// "Private" function prototypes.
static void ProcessBlock(aec_t* aec);
static void NonLinearProcessing(aec_t *aec, short *output, short *outputH);
static void GetHighbandGain(const float *lambda, float *nlpGainHband);
// Comfort_noise also computes noise for H band returned in comfortNoiseHband
static void ComfortNoise(aec_t *aec, float efw[2][PART_LEN1],
complex_t *comfortNoiseHband,
const float *noisePow, const float *lambda);
static void WebRtcAec_InitLevel(power_level_t *level);
static void WebRtcAec_InitStats(stats_t *stats);
static void UpdateLevel(power_level_t* level, float in[2][PART_LEN1]);
static void UpdateMetrics(aec_t *aec);
// Convert from time domain to frequency domain. Note that |time_data| are
// overwritten.
static void TimeToFrequency(float time_data[PART_LEN2],
float freq_data[2][PART_LEN1],
int window);
__inline static float MulRe(float aRe, float aIm, float bRe, float bIm)
{
return aRe * bRe - aIm * bIm;
}
__inline static float MulIm(float aRe, float aIm, float bRe, float bIm)
{
return aRe * bIm + aIm * bRe;
}
static int CmpFloat(const void *a, const void *b)
{
const float *da = (const float *)a;
const float *db = (const float *)b;
return (*da > *db) - (*da < *db);
}
int WebRtcAec_CreateAec(aec_t **aecInst)
{
aec_t *aec = malloc(sizeof(aec_t));
*aecInst = aec;
if (aec == NULL) {
return -1;
}
if (WebRtc_CreateBuffer(&aec->nearFrBuf,
FRAME_LEN + PART_LEN,
sizeof(int16_t)) == -1) {
WebRtcAec_FreeAec(aec);
aec = NULL;
return -1;
}
if (WebRtc_CreateBuffer(&aec->outFrBuf,
FRAME_LEN + PART_LEN,
sizeof(int16_t)) == -1) {
WebRtcAec_FreeAec(aec);
aec = NULL;
return -1;
}
if (WebRtc_CreateBuffer(&aec->nearFrBufH,
FRAME_LEN + PART_LEN,
sizeof(int16_t)) == -1) {
WebRtcAec_FreeAec(aec);
aec = NULL;
return -1;
}
if (WebRtc_CreateBuffer(&aec->outFrBufH,
FRAME_LEN + PART_LEN,
sizeof(int16_t)) == -1) {
WebRtcAec_FreeAec(aec);
aec = NULL;
return -1;
}
// Create far-end buffers.
if (WebRtc_CreateBuffer(&aec->far_buf, kBufSizePartitions,
sizeof(float) * 2 * PART_LEN1) == -1) {
WebRtcAec_FreeAec(aec);
aec = NULL;
return -1;
}
if (WebRtc_CreateBuffer(&aec->far_buf_windowed, kBufSizePartitions,
sizeof(float) * 2 * PART_LEN1) == -1) {
WebRtcAec_FreeAec(aec);
aec = NULL;
return -1;
}
#ifdef WEBRTC_AEC_DEBUG_DUMP
if (WebRtc_CreateBuffer(&aec->far_time_buf, kBufSizePartitions,
sizeof(int16_t) * PART_LEN) == -1) {
WebRtcAec_FreeAec(aec);
aec = NULL;
return -1;
}
#endif
if (WebRtc_CreateDelayEstimator(&aec->delay_estimator,
PART_LEN1,
kMaxDelayBlocks,
kLookaheadBlocks) == -1) {
WebRtcAec_FreeAec(aec);
aec = NULL;
return -1;
}
return 0;
}
int WebRtcAec_FreeAec(aec_t *aec)
{
if (aec == NULL) {
return -1;
}
WebRtc_FreeBuffer(aec->nearFrBuf);
WebRtc_FreeBuffer(aec->outFrBuf);
WebRtc_FreeBuffer(aec->nearFrBufH);
WebRtc_FreeBuffer(aec->outFrBufH);
WebRtc_FreeBuffer(aec->far_buf);
WebRtc_FreeBuffer(aec->far_buf_windowed);
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_FreeBuffer(aec->far_time_buf);
#endif
WebRtc_FreeDelayEstimator(aec->delay_estimator);
free(aec);
return 0;
}
static void FilterFar(aec_t *aec, float yf[2][PART_LEN1])
{
int i;
for (i = 0; i < NR_PART; i++) {
int j;
int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
int pos = i * PART_LEN1;
// Check for wrap
if (i + aec->xfBufBlockPos >= NR_PART) {
xPos -= NR_PART*(PART_LEN1);
}
for (j = 0; j < PART_LEN1; j++) {
yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j],
aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]);
yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j],
aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]);
}
}
}
static void ScaleErrorSignal(aec_t *aec, float ef[2][PART_LEN1])
{
int i;
float absEf;
for (i = 0; i < (PART_LEN1); i++) {
ef[0][i] /= (aec->xPow[i] + 1e-10f);
ef[1][i] /= (aec->xPow[i] + 1e-10f);
absEf = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
if (absEf > aec->errThresh) {
absEf = aec->errThresh / (absEf + 1e-10f);
ef[0][i] *= absEf;
ef[1][i] *= absEf;
}
// Stepsize factor
ef[0][i] *= aec->mu;
ef[1][i] *= aec->mu;
}
}
// Time-unconstrined filter adaptation.
// TODO(andrew): consider for a low-complexity mode.
//static void FilterAdaptationUnconstrained(aec_t *aec, float *fft,
// float ef[2][PART_LEN1]) {
// int i, j;
// for (i = 0; i < NR_PART; i++) {
// int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1);
// int pos;
// // Check for wrap
// if (i + aec->xfBufBlockPos >= NR_PART) {
// xPos -= NR_PART * PART_LEN1;
// }
//
// pos = i * PART_LEN1;
//
// for (j = 0; j < PART_LEN1; j++) {
// aec->wfBuf[pos + j][0] += MulRe(aec->xfBuf[xPos + j][0],
// -aec->xfBuf[xPos + j][1],
// ef[j][0], ef[j][1]);
// aec->wfBuf[pos + j][1] += MulIm(aec->xfBuf[xPos + j][0],
// -aec->xfBuf[xPos + j][1],
// ef[j][0], ef[j][1]);
// }
// }
//}
static void FilterAdaptation(aec_t *aec, float *fft, float ef[2][PART_LEN1]) {
int i, j;
for (i = 0; i < NR_PART; i++) {
int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1);
int pos;
// Check for wrap
if (i + aec->xfBufBlockPos >= NR_PART) {
xPos -= NR_PART * PART_LEN1;
}
pos = i * PART_LEN1;
for (j = 0; j < PART_LEN; j++) {
fft[2 * j] = MulRe(aec->xfBuf[0][xPos + j],
-aec->xfBuf[1][xPos + j],
ef[0][j], ef[1][j]);
fft[2 * j + 1] = MulIm(aec->xfBuf[0][xPos + j],
-aec->xfBuf[1][xPos + j],
ef[0][j], ef[1][j]);
}
fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN],
-aec->xfBuf[1][xPos + PART_LEN],
ef[0][PART_LEN], ef[1][PART_LEN]);
aec_rdft_inverse_128(fft);
memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
// fft scaling
{
float scale = 2.0f / PART_LEN2;
for (j = 0; j < PART_LEN; j++) {
fft[j] *= scale;
}
}
aec_rdft_forward_128(fft);
aec->wfBuf[0][pos] += fft[0];
aec->wfBuf[0][pos + PART_LEN] += fft[1];
for (j = 1; j < PART_LEN; j++) {
aec->wfBuf[0][pos + j] += fft[2 * j];
aec->wfBuf[1][pos + j] += fft[2 * j + 1];
}
}
}
static void OverdriveAndSuppress(aec_t *aec, float hNl[PART_LEN1],
const float hNlFb,
float efw[2][PART_LEN1]) {
int i;
for (i = 0; i < PART_LEN1; i++) {
// Weight subbands
if (hNl[i] > hNlFb) {
hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
(1 - WebRtcAec_weightCurve[i]) * hNl[i];
}
hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
// Suppress error signal
efw[0][i] *= hNl[i];
efw[1][i] *= hNl[i];
// Ooura fft returns incorrect sign on imaginary component. It matters here
// because we are making an additive change with comfort noise.
efw[1][i] *= -1;
}
}
WebRtcAec_FilterFar_t WebRtcAec_FilterFar;
WebRtcAec_ScaleErrorSignal_t WebRtcAec_ScaleErrorSignal;
WebRtcAec_FilterAdaptation_t WebRtcAec_FilterAdaptation;
WebRtcAec_OverdriveAndSuppress_t WebRtcAec_OverdriveAndSuppress;
int WebRtcAec_InitAec(aec_t *aec, int sampFreq)
{
int i;
aec->sampFreq = sampFreq;
if (sampFreq == 8000) {
aec->mu = 0.6f;
aec->errThresh = 2e-6f;
}
else {
aec->mu = 0.5f;
aec->errThresh = 1.5e-6f;
}
if (WebRtc_InitBuffer(aec->nearFrBuf) == -1) {
return -1;
}
if (WebRtc_InitBuffer(aec->outFrBuf) == -1) {
return -1;
}
if (WebRtc_InitBuffer(aec->nearFrBufH) == -1) {
return -1;
}
if (WebRtc_InitBuffer(aec->outFrBufH) == -1) {
return -1;
}
// Initialize far-end buffers.
if (WebRtc_InitBuffer(aec->far_buf) == -1) {
return -1;
}
if (WebRtc_InitBuffer(aec->far_buf_windowed) == -1) {
return -1;
}
#ifdef WEBRTC_AEC_DEBUG_DUMP
if (WebRtc_InitBuffer(aec->far_time_buf) == -1) {
return -1;
}
#endif
aec->system_delay = 0;
if (WebRtc_InitDelayEstimator(aec->delay_estimator) != 0) {
return -1;
}
aec->delay_logging_enabled = 0;
memset(aec->delay_histogram, 0, sizeof(aec->delay_histogram));
// Default target suppression level
aec->targetSupp = -11.5;
aec->minOverDrive = 2.0;
// Sampling frequency multiplier
// SWB is processed as 160 frame size
if (aec->sampFreq == 32000) {
aec->mult = (short)aec->sampFreq / 16000;
}
else {
aec->mult = (short)aec->sampFreq / 8000;
}
aec->farBufWritePos = 0;
aec->farBufReadPos = 0;
aec->inSamples = 0;
aec->outSamples = 0;
aec->knownDelay = 0;
// Initialize buffers
memset(aec->dBuf, 0, sizeof(aec->dBuf));
memset(aec->eBuf, 0, sizeof(aec->eBuf));
// For H band
memset(aec->dBufH, 0, sizeof(aec->dBufH));
memset(aec->xPow, 0, sizeof(aec->xPow));
memset(aec->dPow, 0, sizeof(aec->dPow));
memset(aec->dInitMinPow, 0, sizeof(aec->dInitMinPow));
aec->noisePow = aec->dInitMinPow;
aec->noiseEstCtr = 0;
// Initial comfort noise power
for (i = 0; i < PART_LEN1; i++) {
aec->dMinPow[i] = 1.0e6f;
}
// Holds the last block written to
aec->xfBufBlockPos = 0;
// TODO: Investigate need for these initializations. Deleting them doesn't
// change the output at all and yields 0.4% overall speedup.
memset(aec->xfBuf, 0, sizeof(complex_t) * NR_PART * PART_LEN1);
memset(aec->wfBuf, 0, sizeof(complex_t) * NR_PART * PART_LEN1);
memset(aec->sde, 0, sizeof(complex_t) * PART_LEN1);
memset(aec->sxd, 0, sizeof(complex_t) * PART_LEN1);
memset(aec->xfwBuf, 0, sizeof(complex_t) * NR_PART * PART_LEN1);
memset(aec->se, 0, sizeof(float) * PART_LEN1);
// To prevent numerical instability in the first block.
for (i = 0; i < PART_LEN1; i++) {
aec->sd[i] = 1;
}
for (i = 0; i < PART_LEN1; i++) {
aec->sx[i] = 1;
}
memset(aec->hNs, 0, sizeof(aec->hNs));
memset(aec->outBuf, 0, sizeof(float) * PART_LEN);
aec->hNlFbMin = 1;
aec->hNlFbLocalMin = 1;
aec->hNlXdAvgMin = 1;
aec->hNlNewMin = 0;
aec->hNlMinCtr = 0;
aec->overDrive = 2;
aec->overDriveSm = 2;
aec->delayIdx = 0;
aec->stNearState = 0;
aec->echoState = 0;
aec->divergeState = 0;
aec->seed = 777;
aec->delayEstCtr = 0;
// Metrics disabled by default
aec->metricsMode = 0;
WebRtcAec_InitMetrics(aec);
// Assembly optimization
WebRtcAec_FilterFar = FilterFar;
WebRtcAec_ScaleErrorSignal = ScaleErrorSignal;
WebRtcAec_FilterAdaptation = FilterAdaptation;
WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppress;
#if defined(WEBRTC_ARCH_X86_FAMILY)
if (WebRtc_GetCPUInfo(kSSE2)) {
WebRtcAec_InitAec_SSE2();
}
#endif
aec_rdft_init();
return 0;
}
void WebRtcAec_InitMetrics(aec_t *aec)
{
aec->stateCounter = 0;
WebRtcAec_InitLevel(&aec->farlevel);
WebRtcAec_InitLevel(&aec->nearlevel);
WebRtcAec_InitLevel(&aec->linoutlevel);
WebRtcAec_InitLevel(&aec->nlpoutlevel);
WebRtcAec_InitStats(&aec->erl);
WebRtcAec_InitStats(&aec->erle);
WebRtcAec_InitStats(&aec->aNlp);
WebRtcAec_InitStats(&aec->rerl);
}
void WebRtcAec_BufferFarendPartition(aec_t *aec, const float* farend) {
float fft[PART_LEN2];
float xf[2][PART_LEN1];
// Check if the buffer is full, and in that case flush the oldest data.
if (WebRtc_available_write(aec->far_buf) < 1) {
WebRtc_MoveReadPtr(aec->far_buf, 1);
WebRtc_MoveReadPtr(aec->far_buf_windowed, 1);
aec->system_delay -= PART_LEN;
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_MoveReadPtr(aec->far_time_buf, 1);
#endif
}
// Convert far-end partition to the frequency domain without windowing.
memcpy(fft, farend, sizeof(float) * PART_LEN2);
TimeToFrequency(fft, xf, 0);
WebRtc_WriteBuffer(aec->far_buf, &xf[0][0], 1);
// Convert far-end partition to the frequency domain with windowing.
memcpy(fft, farend, sizeof(float) * PART_LEN2);
TimeToFrequency(fft, xf, 1);
WebRtc_WriteBuffer(aec->far_buf_windowed, &xf[0][0], 1);
}
void WebRtcAec_ProcessFrame(aec_t *aec,
const short *nearend,
const short *nearendH,
int knownDelay)
{
// For each frame the process is as follows:
// 1) If the system_delay indicates on being too small for processing a
// frame we stuff the buffer with enough data for 10 ms.
// 2) Adjust the buffer to the system delay, by moving the read pointer.
// 3) If we can't move read pointer due to buffer size limitations we
// flush/stuff the buffer.
// 4) Process as many partitions as possible.
// 5) Update the |system_delay| with respect to a full frame of FRAME_LEN
// samples. Even though we will have data left to process (we work with
// partitions) we consider updating a whole frame, since that's the
// amount of data we input and output in audio_processing.
// TODO(bjornv): Investigate how we should round the delay difference; right
// now we know that incoming |knownDelay| is underestimated when it's less
// than |aec->knownDelay|. We therefore, round (-32) in that direction. In
// the other direction, we don't have this situation, but might flush one
// partition too little. This can cause non-causality, which should be
// investigated. Maybe, allow for a non-symmetric rounding, like -16.
int move_elements = (aec->knownDelay - knownDelay - 32) / PART_LEN;
int moved_elements = 0;
// TODO(bjornv): Change the near-end buffer handling to be the same as for
// far-end, that is, with a near_pre_buf.
// Buffer the near-end frame.
WebRtc_WriteBuffer(aec->nearFrBuf, nearend, FRAME_LEN);
// For H band
if (aec->sampFreq == 32000) {
WebRtc_WriteBuffer(aec->nearFrBufH, nearendH, FRAME_LEN);
}
// 1) At most we process |aec->mult|+1 partitions in 10 ms. Make sure we
// have enough far-end data for that by stuffing the buffer if the
// |system_delay| indicates others.
if (aec->system_delay < FRAME_LEN) {
// We don't have enough data so we rewind 10 ms.
WebRtc_MoveReadPtr(aec->far_buf_windowed, -(aec->mult + 1));
aec->system_delay -= WebRtc_MoveReadPtr(aec->far_buf, -(aec->mult + 1)) *
PART_LEN;
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_MoveReadPtr(aec->far_time_buf, -(aec->mult + 1));
#endif
}
// 2) Compensate for a possible change in the system delay.
WebRtc_MoveReadPtr(aec->far_buf_windowed, move_elements);
moved_elements = WebRtc_MoveReadPtr(aec->far_buf, move_elements);
aec->knownDelay -= moved_elements * PART_LEN;
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_MoveReadPtr(aec->far_time_buf, move_elements);
#endif
// 4) Process as many blocks as possible.
while (WebRtc_available_read(aec->nearFrBuf) >= PART_LEN) {
ProcessBlock(aec);
}
// 5) Update system delay with respect to the entire frame.
aec->system_delay -= FRAME_LEN;
}
static void ProcessBlock(aec_t* aec) {
int i;
float d[PART_LEN], y[PART_LEN], e[PART_LEN], dH[PART_LEN];
float scale;
float fft[PART_LEN2];
float xf[2][PART_LEN1], yf[2][PART_LEN1], ef[2][PART_LEN1];
float df[2][PART_LEN1];
float far_spectrum = 0.0f;
float near_spectrum = 0.0f;
float abs_far_spectrum[PART_LEN1];
float abs_near_spectrum[PART_LEN1];
const float gPow[2] = {0.9f, 0.1f};
// Noise estimate constants.
const int noiseInitBlocks = 500 * aec->mult;
const float step = 0.1f;
const float ramp = 1.0002f;
const float gInitNoise[2] = {0.999f, 0.001f};
int16_t nearend[PART_LEN];
int16_t* nearend_ptr = NULL;
int16_t output[PART_LEN];
int16_t outputH[PART_LEN];
float* xf_ptr = NULL;
memset(dH, 0, sizeof(dH));
if (aec->sampFreq == 32000) {
// Get the upper band first so we can reuse |nearend|.
WebRtc_ReadBuffer(aec->nearFrBufH,
(void**) &nearend_ptr,
nearend,
PART_LEN);
for (i = 0; i < PART_LEN; i++) {
dH[i] = (float) (nearend_ptr[i]);
}
memcpy(aec->dBufH + PART_LEN, dH, sizeof(float) * PART_LEN);
}
WebRtc_ReadBuffer(aec->nearFrBuf, (void**) &nearend_ptr, nearend, PART_LEN);
// ---------- Ooura fft ----------
// Concatenate old and new nearend blocks.
for (i = 0; i < PART_LEN; i++) {
d[i] = (float) (nearend_ptr[i]);
}
memcpy(aec->dBuf + PART_LEN, d, sizeof(float) * PART_LEN);
#ifdef WEBRTC_AEC_DEBUG_DUMP
{
int16_t farend[PART_LEN];
int16_t* farend_ptr = NULL;
WebRtc_ReadBuffer(aec->far_time_buf, (void**) &farend_ptr, farend, 1);
fwrite(farend_ptr, sizeof(int16_t), PART_LEN, aec->farFile);
fwrite(nearend_ptr, sizeof(int16_t), PART_LEN, aec->nearFile);
}
#endif
// We should always have at least one element stored in |far_buf|.
assert(WebRtc_available_read(aec->far_buf) > 0);
WebRtc_ReadBuffer(aec->far_buf, (void**) &xf_ptr, &xf[0][0], 1);
// Near fft
memcpy(fft, aec->dBuf, sizeof(float) * PART_LEN2);
TimeToFrequency(fft, df, 0);
// Power smoothing
for (i = 0; i < PART_LEN1; i++) {
far_spectrum = (xf_ptr[i] * xf_ptr[i]) +
(xf_ptr[PART_LEN1 + i] * xf_ptr[PART_LEN1 + i]);
aec->xPow[i] = gPow[0] * aec->xPow[i] + gPow[1] * NR_PART * far_spectrum;
// Calculate absolute spectra
abs_far_spectrum[i] = sqrtf(far_spectrum);
near_spectrum = df[0][i] * df[0][i] + df[1][i] * df[1][i];
aec->dPow[i] = gPow[0] * aec->dPow[i] + gPow[1] * near_spectrum;
// Calculate absolute spectra
abs_near_spectrum[i] = sqrtf(near_spectrum);
}
// Estimate noise power. Wait until dPow is more stable.
if (aec->noiseEstCtr > 50) {
for (i = 0; i < PART_LEN1; i++) {
if (aec->dPow[i] < aec->dMinPow[i]) {
aec->dMinPow[i] = (aec->dPow[i] + step * (aec->dMinPow[i] -
aec->dPow[i])) * ramp;
}
else {
aec->dMinPow[i] *= ramp;
}
}
}
// Smooth increasing noise power from zero at the start,
// to avoid a sudden burst of comfort noise.
if (aec->noiseEstCtr < noiseInitBlocks) {
aec->noiseEstCtr++;
for (i = 0; i < PART_LEN1; i++) {
if (aec->dMinPow[i] > aec->dInitMinPow[i]) {
aec->dInitMinPow[i] = gInitNoise[0] * aec->dInitMinPow[i] +
gInitNoise[1] * aec->dMinPow[i];
}
else {
aec->dInitMinPow[i] = aec->dMinPow[i];
}
}
aec->noisePow = aec->dInitMinPow;
}
else {
aec->noisePow = aec->dMinPow;
}
// Block wise delay estimation used for logging
if (aec->delay_logging_enabled) {
int delay_estimate = 0;
// Estimate the delay
delay_estimate = WebRtc_DelayEstimatorProcessFloat(aec->delay_estimator,
abs_far_spectrum,
abs_near_spectrum,
PART_LEN1);
if (delay_estimate >= 0) {
// Update delay estimate buffer.
aec->delay_histogram[delay_estimate]++;
}
}
// Update the xfBuf block position.
aec->xfBufBlockPos--;
if (aec->xfBufBlockPos == -1) {
aec->xfBufBlockPos = NR_PART - 1;
}
// Buffer xf
memcpy(aec->xfBuf[0] + aec->xfBufBlockPos * PART_LEN1, xf_ptr,
sizeof(float) * PART_LEN1);
memcpy(aec->xfBuf[1] + aec->xfBufBlockPos * PART_LEN1, &xf_ptr[PART_LEN1],
sizeof(float) * PART_LEN1);
memset(yf[0], 0, sizeof(float) * (PART_LEN1 * 2));
// Filter far
WebRtcAec_FilterFar(aec, yf);
// Inverse fft to obtain echo estimate and error.
fft[0] = yf[0][0];
fft[1] = yf[0][PART_LEN];
for (i = 1; i < PART_LEN; i++) {
fft[2 * i] = yf[0][i];
fft[2 * i + 1] = yf[1][i];
}
aec_rdft_inverse_128(fft);
scale = 2.0f / PART_LEN2;
for (i = 0; i < PART_LEN; i++) {
y[i] = fft[PART_LEN + i] * scale; // fft scaling
}
for (i = 0; i < PART_LEN; i++) {
e[i] = d[i] - y[i];
}
// Error fft
memcpy(aec->eBuf + PART_LEN, e, sizeof(float) * PART_LEN);
memset(fft, 0, sizeof(float) * PART_LEN);
memcpy(fft + PART_LEN, e, sizeof(float) * PART_LEN);
// TODO(bjornv): Change to use TimeToFrequency().
aec_rdft_forward_128(fft);
ef[1][0] = 0;
ef[1][PART_LEN] = 0;
ef[0][0] = fft[0];
ef[0][PART_LEN] = fft[1];
for (i = 1; i < PART_LEN; i++) {
ef[0][i] = fft[2 * i];
ef[1][i] = fft[2 * i + 1];
}
if (aec->metricsMode == 1) {
// Note that the first PART_LEN samples in fft (before transformation) are
// zero. Hence, the scaling by two in UpdateLevel() should not be
// performed. That scaling is taken care of in UpdateMetrics() instead.
UpdateLevel(&aec->linoutlevel, ef);
}
// Scale error signal inversely with far power.
WebRtcAec_ScaleErrorSignal(aec, ef);
WebRtcAec_FilterAdaptation(aec, fft, ef);
NonLinearProcessing(aec, output, outputH);
if (aec->metricsMode == 1) {
// Update power levels and echo metrics
UpdateLevel(&aec->farlevel, (float (*)[PART_LEN1]) xf_ptr);
UpdateLevel(&aec->nearlevel, df);
UpdateMetrics(aec);
}
// Store the output block.
WebRtc_WriteBuffer(aec->outFrBuf, output, PART_LEN);
// For H band
if (aec->sampFreq == 32000) {
WebRtc_WriteBuffer(aec->outFrBufH, outputH, PART_LEN);
}
#ifdef WEBRTC_AEC_DEBUG_DUMP
{
int16_t eInt16[PART_LEN];
for (i = 0; i < PART_LEN; i++) {
eInt16[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, e[i],
WEBRTC_SPL_WORD16_MIN);
}
fwrite(eInt16, sizeof(int16_t), PART_LEN, aec->outLinearFile);
fwrite(output, sizeof(int16_t), PART_LEN, aec->outFile);
}
#endif
}
static void NonLinearProcessing(aec_t *aec, short *output, short *outputH)
{
float efw[2][PART_LEN1], dfw[2][PART_LEN1], xfw[2][PART_LEN1];
complex_t comfortNoiseHband[PART_LEN1];
float fft[PART_LEN2];
float scale, dtmp;
float nlpGainHband;
int i, j, pos;
// Coherence and non-linear filter
float cohde[PART_LEN1], cohxd[PART_LEN1];
float hNlDeAvg, hNlXdAvg;
float hNl[PART_LEN1];
float hNlPref[PREF_BAND_SIZE];
float hNlFb = 0, hNlFbLow = 0;
const float prefBandQuant = 0.75f, prefBandQuantLow = 0.5f;
const int prefBandSize = PREF_BAND_SIZE / aec->mult;
const int minPrefBand = 4 / aec->mult;
// Near and error power sums
float sdSum = 0, seSum = 0;
// Power estimate smoothing coefficients
const float gCoh[2][2] = {{0.9f, 0.1f}, {0.93f, 0.07f}};
const float *ptrGCoh = gCoh[aec->mult - 1];
// Filter energy
float wfEnMax = 0, wfEn = 0;
const int delayEstInterval = 10 * aec->mult;
float* xfw_ptr = NULL;
aec->delayEstCtr++;
if (aec->delayEstCtr == delayEstInterval) {
aec->delayEstCtr = 0;
}
// initialize comfort noise for H band
memset(comfortNoiseHband, 0, sizeof(comfortNoiseHband));
nlpGainHband = (float)0.0;
dtmp = (float)0.0;
// Measure energy in each filter partition to determine delay.
// TODO: Spread by computing one partition per block?
if (aec->delayEstCtr == 0) {
wfEnMax = 0;
aec->delayIdx = 0;
for (i = 0; i < NR_PART; i++) {
pos = i * PART_LEN1;
wfEn = 0;
for (j = 0; j < PART_LEN1; j++) {
wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] +
aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j];
}
if (wfEn > wfEnMax) {
wfEnMax = wfEn;
aec->delayIdx = i;
}
}
}
// We should always have at least one element stored in |far_buf|.
assert(WebRtc_available_read(aec->far_buf_windowed) > 0);
// NLP
WebRtc_ReadBuffer(aec->far_buf_windowed, (void**) &xfw_ptr, &xfw[0][0], 1);
// TODO(bjornv): Investigate if we can reuse |far_buf_windowed| instead of
// |xfwBuf|.
// Buffer far.
memcpy(aec->xfwBuf, xfw_ptr, sizeof(float) * 2 * PART_LEN1);
// Use delayed far.
memcpy(xfw, aec->xfwBuf + aec->delayIdx * PART_LEN1, sizeof(xfw));
// Windowed near fft
for (i = 0; i < PART_LEN; i++) {
fft[i] = aec->dBuf[i] * sqrtHanning[i];
fft[PART_LEN + i] = aec->dBuf[PART_LEN + i] * sqrtHanning[PART_LEN - i];
}
aec_rdft_forward_128(fft);
dfw[1][0] = 0;
dfw[1][PART_LEN] = 0;
dfw[0][0] = fft[0];
dfw[0][PART_LEN] = fft[1];
for (i = 1; i < PART_LEN; i++) {
dfw[0][i] = fft[2 * i];
dfw[1][i] = fft[2 * i + 1];
}
// Windowed error fft
for (i = 0; i < PART_LEN; i++) {
fft[i] = aec->eBuf[i] * sqrtHanning[i];
fft[PART_LEN + i] = aec->eBuf[PART_LEN + i] * sqrtHanning[PART_LEN - i];
}
aec_rdft_forward_128(fft);
efw[1][0] = 0;
efw[1][PART_LEN] = 0;
efw[0][0] = fft[0];
efw[0][PART_LEN] = fft[1];
for (i = 1; i < PART_LEN; i++) {
efw[0][i] = fft[2 * i];
efw[1][i] = fft[2 * i + 1];
}
// Smoothed PSD
for (i = 0; i < PART_LEN1; i++) {
aec->sd[i] = ptrGCoh[0] * aec->sd[i] + ptrGCoh[1] *
(dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
aec->se[i] = ptrGCoh[0] * aec->se[i] + ptrGCoh[1] *
(efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
// We threshold here to protect against the ill-effects of a zero farend.
// The threshold is not arbitrarily chosen, but balances protection and
// adverse interaction with the algorithm's tuning.
// TODO: investigate further why this is so sensitive.
aec->sx[i] = ptrGCoh[0] * aec->sx[i] + ptrGCoh[1] *
WEBRTC_SPL_MAX(xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i], 15);
aec->sde[i][0] = ptrGCoh[0] * aec->sde[i][0] + ptrGCoh[1] *
(dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
aec->sde[i][1] = ptrGCoh[0] * aec->sde[i][1] + ptrGCoh[1] *
(dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
aec->sxd[i][0] = ptrGCoh[0] * aec->sxd[i][0] + ptrGCoh[1] *
(dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
aec->sxd[i][1] = ptrGCoh[0] * aec->sxd[i][1] + ptrGCoh[1] *
(dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
sdSum += aec->sd[i];
seSum += aec->se[i];
}
// Divergent filter safeguard.
if (aec->divergeState == 0) {
if (seSum > sdSum) {
aec->divergeState = 1;
}
}
else {
if (seSum * 1.05f < sdSum) {
aec->divergeState = 0;
}
}
if (aec->divergeState == 1) {
memcpy(efw, dfw, sizeof(efw));
}
// Reset if error is significantly larger than nearend (13 dB).
if (seSum > (19.95f * sdSum)) {
memset(aec->wfBuf, 0, sizeof(aec->wfBuf));
}
// Subband coherence
for (i = 0; i < PART_LEN1; i++) {
cohde[i] = (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) /
(aec->sd[i] * aec->se[i] + 1e-10f);
cohxd[i] = (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) /
(aec->sx[i] * aec->sd[i] + 1e-10f);
}
hNlXdAvg = 0;
for (i = minPrefBand; i < prefBandSize + minPrefBand; i++) {
hNlXdAvg += cohxd[i];
}
hNlXdAvg /= prefBandSize;
hNlXdAvg = 1 - hNlXdAvg;
hNlDeAvg = 0;
for (i = minPrefBand; i < prefBandSize + minPrefBand; i++) {
hNlDeAvg += cohde[i];
}
hNlDeAvg /= prefBandSize;
if (hNlXdAvg < 0.75f && hNlXdAvg < aec->hNlXdAvgMin) {
aec->hNlXdAvgMin = hNlXdAvg;
}
if (hNlDeAvg > 0.98f && hNlXdAvg > 0.9f) {
aec->stNearState = 1;
}
else if (hNlDeAvg < 0.95f || hNlXdAvg < 0.8f) {
aec->stNearState = 0;
}
if (aec->hNlXdAvgMin == 1) {
aec->echoState = 0;
aec->overDrive = aec->minOverDrive;
if (aec->stNearState == 1) {
memcpy(hNl, cohde, sizeof(hNl));
hNlFb = hNlDeAvg;
hNlFbLow = hNlDeAvg;
}
else {
for (i = 0; i < PART_LEN1; i++) {
hNl[i] = 1 - cohxd[i];
}
hNlFb = hNlXdAvg;
hNlFbLow = hNlXdAvg;
}
}
else {
if (aec->stNearState == 1) {
aec->echoState = 0;
memcpy(hNl, cohde, sizeof(hNl));
hNlFb = hNlDeAvg;
hNlFbLow = hNlDeAvg;
}
else {
aec->echoState = 1;
for (i = 0; i < PART_LEN1; i++) {
hNl[i] = WEBRTC_SPL_MIN(cohde[i], 1 - cohxd[i]);
}
// Select an order statistic from the preferred bands.
// TODO: Using quicksort now, but a selection algorithm may be preferred.
memcpy(hNlPref, &hNl[minPrefBand], sizeof(float) * prefBandSize);
qsort(hNlPref, prefBandSize, sizeof(float), CmpFloat);
hNlFb = hNlPref[(int)floor(prefBandQuant * (prefBandSize - 1))];
hNlFbLow = hNlPref[(int)floor(prefBandQuantLow * (prefBandSize - 1))];
}
}
// Track the local filter minimum to determine suppression overdrive.
if (hNlFbLow < 0.6f && hNlFbLow < aec->hNlFbLocalMin) {
aec->hNlFbLocalMin = hNlFbLow;
aec->hNlFbMin = hNlFbLow;
aec->hNlNewMin = 1;
aec->hNlMinCtr = 0;
}
aec->hNlFbLocalMin = WEBRTC_SPL_MIN(aec->hNlFbLocalMin + 0.0008f / aec->mult, 1);
aec->hNlXdAvgMin = WEBRTC_SPL_MIN(aec->hNlXdAvgMin + 0.0006f / aec->mult, 1);
if (aec->hNlNewMin == 1) {
aec->hNlMinCtr++;
}
if (aec->hNlMinCtr == 2) {
aec->hNlNewMin = 0;
aec->hNlMinCtr = 0;
aec->overDrive = WEBRTC_SPL_MAX(aec->targetSupp /
((float)log(aec->hNlFbMin + 1e-10f) + 1e-10f), aec->minOverDrive);
}
// Smooth the overdrive.
if (aec->overDrive < aec->overDriveSm) {
aec->overDriveSm = 0.99f * aec->overDriveSm + 0.01f * aec->overDrive;
}
else {
aec->overDriveSm = 0.9f * aec->overDriveSm + 0.1f * aec->overDrive;
}
WebRtcAec_OverdriveAndSuppress(aec, hNl, hNlFb, efw);
// Add comfort noise.
ComfortNoise(aec, efw, comfortNoiseHband, aec->noisePow, hNl);
// TODO(bjornv): Investigate how to take the windowing below into account if
// needed.
if (aec->metricsMode == 1) {
// Note that we have a scaling by two in the time domain |eBuf|.
// In addition the time domain signal is windowed before transformation,
// losing half the energy on the average. We take care of the first
// scaling only in UpdateMetrics().
UpdateLevel(&aec->nlpoutlevel, efw);
}
// Inverse error fft.
fft[0] = efw[0][0];
fft[1] = efw[0][PART_LEN];
for (i = 1; i < PART_LEN; i++) {
fft[2*i] = efw[0][i];
// Sign change required by Ooura fft.
fft[2*i + 1] = -efw[1][i];
}
aec_rdft_inverse_128(fft);
// Overlap and add to obtain output.
scale = 2.0f / PART_LEN2;
for (i = 0; i < PART_LEN; i++) {
fft[i] *= scale; // fft scaling
fft[i] = fft[i]*sqrtHanning[i] + aec->outBuf[i];
// Saturation protection
output[i] = (short)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, fft[i],
WEBRTC_SPL_WORD16_MIN);
fft[PART_LEN + i] *= scale; // fft scaling
aec->outBuf[i] = fft[PART_LEN + i] * sqrtHanning[PART_LEN - i];
}
// For H band
if (aec->sampFreq == 32000) {
// H band gain
// average nlp over low band: average over second half of freq spectrum
// (4->8khz)
GetHighbandGain(hNl, &nlpGainHband);
// Inverse comfort_noise
if (flagHbandCn == 1) {
fft[0] = comfortNoiseHband[0][0];
fft[1] = comfortNoiseHband[PART_LEN][0];
for (i = 1; i < PART_LEN; i++) {
fft[2*i] = comfortNoiseHband[i][0];
fft[2*i + 1] = comfortNoiseHband[i][1];
}
aec_rdft_inverse_128(fft);
scale = 2.0f / PART_LEN2;
}
// compute gain factor
for (i = 0; i < PART_LEN; i++) {
dtmp = (float)aec->dBufH[i];
dtmp = (float)dtmp * nlpGainHband; // for variable gain
// add some comfort noise where Hband is attenuated
if (flagHbandCn == 1) {
fft[i] *= scale; // fft scaling
dtmp += cnScaleHband * fft[i];
}
// Saturation protection
outputH[i] = (short)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, dtmp,
WEBRTC_SPL_WORD16_MIN);
}
}
// Copy the current block to the old position.
memcpy(aec->dBuf, aec->dBuf + PART_LEN, sizeof(float) * PART_LEN);
memcpy(aec->eBuf, aec->eBuf + PART_LEN, sizeof(float) * PART_LEN);
// Copy the current block to the old position for H band
if (aec->sampFreq == 32000) {
memcpy(aec->dBufH, aec->dBufH + PART_LEN, sizeof(float) * PART_LEN);
}
memmove(aec->xfwBuf + PART_LEN1, aec->xfwBuf, sizeof(aec->xfwBuf) -
sizeof(complex_t) * PART_LEN1);
}
static void GetHighbandGain(const float *lambda, float *nlpGainHband)
{
int i;
nlpGainHband[0] = (float)0.0;
for (i = freqAvgIc; i < PART_LEN1 - 1; i++) {
nlpGainHband[0] += lambda[i];
}
nlpGainHband[0] /= (float)(PART_LEN1 - 1 - freqAvgIc);
}
static void ComfortNoise(aec_t *aec, float efw[2][PART_LEN1],
complex_t *comfortNoiseHband, const float *noisePow, const float *lambda)
{
int i, num;
float rand[PART_LEN];
float noise, noiseAvg, tmp, tmpAvg;
WebRtc_Word16 randW16[PART_LEN];
complex_t u[PART_LEN1];
const float pi2 = 6.28318530717959f;
// Generate a uniform random array on [0 1]
WebRtcSpl_RandUArray(randW16, PART_LEN, &aec->seed);
for (i = 0; i < PART_LEN; i++) {
rand[i] = ((float)randW16[i]) / 32768;
}
// Reject LF noise
u[0][0] = 0;
u[0][1] = 0;
for (i = 1; i < PART_LEN1; i++) {
tmp = pi2 * rand[i - 1];
noise = sqrtf(noisePow[i]);
u[i][0] = noise * (float)cos(tmp);
u[i][1] = -noise * (float)sin(tmp);
}
u[PART_LEN][1] = 0;
for (i = 0; i < PART_LEN1; i++) {
// This is the proper weighting to match the background noise power
tmp = sqrtf(WEBRTC_SPL_MAX(1 - lambda[i] * lambda[i], 0));
//tmp = 1 - lambda[i];
efw[0][i] += tmp * u[i][0];
efw[1][i] += tmp * u[i][1];
}
// For H band comfort noise
// TODO: don't compute noise and "tmp" twice. Use the previous results.
noiseAvg = 0.0;
tmpAvg = 0.0;
num = 0;
if (aec->sampFreq == 32000 && flagHbandCn == 1) {
// average noise scale
// average over second half of freq spectrum (i.e., 4->8khz)
// TODO: we shouldn't need num. We know how many elements we're summing.
for (i = PART_LEN1 >> 1; i < PART_LEN1; i++) {
num++;
noiseAvg += sqrtf(noisePow[i]);
}
noiseAvg /= (float)num;
// average nlp scale
// average over second half of freq spectrum (i.e., 4->8khz)
// TODO: we shouldn't need num. We know how many elements we're summing.
num = 0;
for (i = PART_LEN1 >> 1; i < PART_LEN1; i++) {
num++;
tmpAvg += sqrtf(WEBRTC_SPL_MAX(1 - lambda[i] * lambda[i], 0));
}
tmpAvg /= (float)num;
// Use average noise for H band
// TODO: we should probably have a new random vector here.
// Reject LF noise
u[0][0] = 0;
u[0][1] = 0;
for (i = 1; i < PART_LEN1; i++) {
tmp = pi2 * rand[i - 1];
// Use average noise for H band
u[i][0] = noiseAvg * (float)cos(tmp);
u[i][1] = -noiseAvg * (float)sin(tmp);
}
u[PART_LEN][1] = 0;
for (i = 0; i < PART_LEN1; i++) {
// Use average NLP weight for H band
comfortNoiseHband[i][0] = tmpAvg * u[i][0];
comfortNoiseHband[i][1] = tmpAvg * u[i][1];
}
}
}
static void WebRtcAec_InitLevel(power_level_t *level)
{
const float bigFloat = 1E17f;
level->averagelevel = 0;
level->framelevel = 0;
level->minlevel = bigFloat;
level->frsum = 0;
level->sfrsum = 0;
level->frcounter = 0;
level->sfrcounter = 0;
}
static void WebRtcAec_InitStats(stats_t *stats)
{
stats->instant = offsetLevel;
stats->average = offsetLevel;
stats->max = offsetLevel;
stats->min = offsetLevel * (-1);
stats->sum = 0;
stats->hisum = 0;
stats->himean = offsetLevel;
stats->counter = 0;
stats->hicounter = 0;
}
static void UpdateLevel(power_level_t* level, float in[2][PART_LEN1]) {
// Do the energy calculation in the frequency domain. The FFT is performed on
// a segment of PART_LEN2 samples due to overlap, but we only want the energy
// of half that data (the last PART_LEN samples). Parseval's relation states
// that the energy is preserved according to
//
// \sum_{n=0}^{N-1} |x(n)|^2 = 1/N * \sum_{n=0}^{N-1} |X(n)|^2
// = ENERGY,
//
// where N = PART_LEN2. Since we are only interested in calculating the energy
// for the last PART_LEN samples we approximate by calculating ENERGY and
// divide by 2,
//
// \sum_{n=N/2}^{N-1} |x(n)|^2 ~= ENERGY / 2
//
// Since we deal with real valued time domain signals we only store frequency
// bins [0, PART_LEN], which is what |in| consists of. To calculate ENERGY we
// need to add the contribution from the missing part in
// [PART_LEN+1, PART_LEN2-1]. These values are, up to a phase shift, identical
// with the values in [1, PART_LEN-1], hence multiply those values by 2. This
// is the values in the for loop below, but multiplication by 2 and division
// by 2 cancel.
// TODO(bjornv): Investigate reusing energy calculations performed at other
// places in the code.
int k = 1;
// Imaginary parts are zero at end points and left out of the calculation.
float energy = (in[0][0] * in[0][0]) / 2;
energy += (in[0][PART_LEN] * in[0][PART_LEN]) / 2;
for (k = 1; k < PART_LEN; k++) {
energy += (in[0][k] * in[0][k] + in[1][k] * in[1][k]);
}
energy /= PART_LEN2;
level->sfrsum += energy;
level->sfrcounter++;
if (level->sfrcounter > subCountLen) {
level->framelevel = level->sfrsum / (subCountLen * PART_LEN);
level->sfrsum = 0;
level->sfrcounter = 0;
if (level->framelevel > 0) {
if (level->framelevel < level->minlevel) {
level->minlevel = level->framelevel; // New minimum.
} else {
level->minlevel *= (1 + 0.001f); // Small increase.
}
}
level->frcounter++;
level->frsum += level->framelevel;
if (level->frcounter > countLen) {
level->averagelevel = level->frsum / countLen;
level->frsum = 0;
level->frcounter = 0;
}
}
}
static void UpdateMetrics(aec_t *aec)
{
float dtmp, dtmp2;
const float actThresholdNoisy = 8.0f;
const float actThresholdClean = 40.0f;
const float safety = 0.99995f;
const float noisyPower = 300000.0f;
float actThreshold;
float echo, suppressedEcho;
if (aec->echoState) { // Check if echo is likely present
aec->stateCounter++;
}
if (aec->farlevel.frcounter == 0) {
if (aec->farlevel.minlevel < noisyPower) {
actThreshold = actThresholdClean;
}
else {
actThreshold = actThresholdNoisy;
}
if ((aec->stateCounter > (0.5f * countLen * subCountLen))
&& (aec->farlevel.sfrcounter == 0)
// Estimate in active far-end segments only
&& (aec->farlevel.averagelevel > (actThreshold * aec->farlevel.minlevel))
) {
// Subtract noise power
echo = aec->nearlevel.averagelevel - safety * aec->nearlevel.minlevel;
// ERL
dtmp = 10 * (float)log10(aec->farlevel.averagelevel /
aec->nearlevel.averagelevel + 1e-10f);
dtmp2 = 10 * (float)log10(aec->farlevel.averagelevel / echo + 1e-10f);
aec->erl.instant = dtmp;
if (dtmp > aec->erl.max) {
aec->erl.max = dtmp;
}
if (dtmp < aec->erl.min) {
aec->erl.min = dtmp;
}
aec->erl.counter++;
aec->erl.sum += dtmp;
aec->erl.average = aec->erl.sum / aec->erl.counter;
// Upper mean
if (dtmp > aec->erl.average) {
aec->erl.hicounter++;
aec->erl.hisum += dtmp;
aec->erl.himean = aec->erl.hisum / aec->erl.hicounter;
}
// A_NLP
dtmp = 10 * (float)log10(aec->nearlevel.averagelevel /
(2 * aec->linoutlevel.averagelevel) + 1e-10f);
// subtract noise power
suppressedEcho = 2 * (aec->linoutlevel.averagelevel -
safety * aec->linoutlevel.minlevel);
dtmp2 = 10 * (float)log10(echo / suppressedEcho + 1e-10f);
aec->aNlp.instant = dtmp2;
if (dtmp > aec->aNlp.max) {
aec->aNlp.max = dtmp;
}
if (dtmp < aec->aNlp.min) {
aec->aNlp.min = dtmp;
}
aec->aNlp.counter++;
aec->aNlp.sum += dtmp;
aec->aNlp.average = aec->aNlp.sum / aec->aNlp.counter;
// Upper mean
if (dtmp > aec->aNlp.average) {
aec->aNlp.hicounter++;
aec->aNlp.hisum += dtmp;
aec->aNlp.himean = aec->aNlp.hisum / aec->aNlp.hicounter;
}
// ERLE
// subtract noise power
suppressedEcho = 2 * (aec->nlpoutlevel.averagelevel -
safety * aec->nlpoutlevel.minlevel);
dtmp = 10 * (float)log10(aec->nearlevel.averagelevel /
(2 * aec->nlpoutlevel.averagelevel) + 1e-10f);
dtmp2 = 10 * (float)log10(echo / suppressedEcho + 1e-10f);
dtmp = dtmp2;
aec->erle.instant = dtmp;
if (dtmp > aec->erle.max) {
aec->erle.max = dtmp;
}
if (dtmp < aec->erle.min) {
aec->erle.min = dtmp;
}
aec->erle.counter++;
aec->erle.sum += dtmp;
aec->erle.average = aec->erle.sum / aec->erle.counter;
// Upper mean
if (dtmp > aec->erle.average) {
aec->erle.hicounter++;
aec->erle.hisum += dtmp;
aec->erle.himean = aec->erle.hisum / aec->erle.hicounter;
}
}
aec->stateCounter = 0;
}
}
static void TimeToFrequency(float time_data[PART_LEN2],
float freq_data[2][PART_LEN1],
int window) {
int i = 0;
// TODO(bjornv): Should we have a different function/wrapper for windowed FFT?
if (window) {
for (i = 0; i < PART_LEN; i++) {
time_data[i] *= sqrtHanning[i];
time_data[PART_LEN + i] *= sqrtHanning[PART_LEN - i];
}
}
aec_rdft_forward_128(time_data);
// Reorder.
freq_data[1][0] = 0;
freq_data[1][PART_LEN] = 0;
freq_data[0][0] = time_data[0];
freq_data[0][PART_LEN] = time_data[1];
for (i = 1; i < PART_LEN; i++) {
freq_data[0][i] = time_data[2 * i];
freq_data[1][i] = time_data[2 * i + 1];
}
}