blob: ba61d63eb6fc489b154e0d3e91eb841c9641adc7 [file] [log] [blame]
/*******************************************************************************
Intel(R) Gigabit Ethernet Linux driver
Copyright(c) 2007-2012 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/tcp.h>
#ifdef NETIF_F_TSO
#include <net/checksum.h>
#ifdef NETIF_F_TSO6
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#endif
#endif
#ifdef SIOCGMIIPHY
#include <linux/mii.h>
#endif
#ifdef SIOCETHTOOL
#include <linux/ethtool.h>
#endif
#include <linux/if_vlan.h>
#ifdef CONFIG_PM_RUNTIME
#include <linux/pm_runtime.h>
#endif /* CONFIG_PM_RUNTIME */
#include "igb.h"
#include "igb_vmdq.h"
#ifdef HAVE_PF_RING
#include "../../../../../../kernel/linux/pf_ring.h"
#endif
#if defined(DEBUG) || defined (DEBUG_DUMP) || defined (DEBUG_ICR) || defined(DEBUG_ITR)
#define DRV_DEBUG "_debug"
#else
#define DRV_DEBUG
#endif
#define DRV_HW_PERF
#define VERSION_SUFFIX
#define MAJ 4
#define MIN 1
#define BUILD 2
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." __stringify(BUILD) VERSION_SUFFIX DRV_DEBUG DRV_HW_PERF
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
"Intel(R) Gigabit Ethernet Network Driver";
static const char igb_copyright[] =
"Copyright (c) 2007-2012 Intel Corporation.";
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER) },
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
static void igb_setup_mrqc(struct igb_adapter *);
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_set_rx_mode(struct net_device *);
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
static void igb_dma_err_task(struct work_struct *);
static void igb_dma_err_timer(unsigned long data);
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
void igb_full_sync_mac_table(struct igb_adapter *adapter);
static int igb_set_mac(struct net_device *, void *);
static void igb_set_uta(struct igb_adapter *adapter);
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
static irqreturn_t igb_msix_ring(int irq, void *);
#ifdef IGB_DCA
static void igb_update_dca(struct igb_q_vector *);
static void igb_setup_dca(struct igb_adapter *);
#endif /* IGB_DCA */
static int igb_poll(struct napi_struct *, int);
static bool igb_clean_tx_irq(struct igb_q_vector *);
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
#ifdef HAVE_VLAN_RX_REGISTER
static void igb_vlan_mode(struct net_device *, struct vlan_group *);
#endif
#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
#else
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
#endif
static void igb_restore_vlan(struct igb_adapter *);
void igb_rar_set(struct igb_adapter *adapter, u32 index);
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
static void igb_process_mdd_event(struct igb_adapter *);
#ifdef IFLA_VF_MAX
static int igb_ndo_set_vf_mac( struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
struct ifla_vf_info *ivi);
static void igb_check_vf_rate_limit(struct igb_adapter *);
#endif
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
static int igb_check_vf_assignment(struct igb_adapter *adapter);
#ifdef HAVE_PCI_DEV_FLAGS_ASSIGNED
static int igb_find_enabled_vfs(struct igb_adapter *adapter);
#endif
#ifdef CONFIG_PM
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
static int igb_suspend(struct device *dev);
static int igb_resume(struct device *dev);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif /* CONFIG_PM_RUNTIME */
static const struct dev_pm_ops igb_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
#ifdef CONFIG_PM_RUNTIME
SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
igb_runtime_idle)
#endif /* CONFIG_PM_RUNTIME */
};
#else
static int igb_suspend(struct pci_dev *pdev, pm_message_t state);
static int igb_resume(struct pci_dev *pdev);
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
#endif /* CONFIG_PM */
#ifndef USE_REBOOT_NOTIFIER
static void igb_shutdown(struct pci_dev *);
#else
static int igb_notify_reboot(struct notifier_block *, unsigned long, void *);
static struct notifier_block igb_notifier_reboot = {
.notifier_call = igb_notify_reboot,
.next = NULL,
.priority = 0
};
#endif
#ifdef IGB_DCA
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
.notifier_call = igb_notify_dca,
.next = NULL,
.priority = 0
};
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
#ifdef HAVE_PCI_ERS
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);
static struct pci_error_handlers igb_err_handler = {
.error_detected = igb_io_error_detected,
.slot_reset = igb_io_slot_reset,
.resume = igb_io_resume,
};
#endif
static void igb_init_fw(struct igb_adapter *adapter);
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
static struct pci_driver igb_driver = {
.name = igb_driver_name,
.id_table = igb_pci_tbl,
.probe = igb_probe,
.remove = __devexit_p(igb_remove),
#ifdef CONFIG_PM
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
.driver.pm = &igb_pm_ops,
#else
.suspend = igb_suspend,
.resume = igb_resume,
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
#endif /* CONFIG_PM */
#ifndef USE_REBOOT_NOTIFIER
.shutdown = igb_shutdown,
#endif
#ifdef HAVE_PCI_ERS
.err_handler = &igb_err_handler
#endif
};
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static void igb_vfta_set(struct igb_adapter *adapter, u32 vid, bool add)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_host_mng_dhcp_cookie *mng_cookie = &hw->mng_cookie;
u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
u32 vfta;
/*
* if this is the management vlan the only option is to add it in so
* that the management pass through will continue to work
*/
if ((mng_cookie->status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
(vid == mng_cookie->vlan_id))
add = TRUE;
vfta = adapter->shadow_vfta[index];
if (add)
vfta |= mask;
else
vfta &= ~mask;
e1000_write_vfta(hw, index, vfta);
adapter->shadow_vfta[index] = vfta;
}
static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none, ..., 16=all)");
/**
* igb_init_module - Driver Registration Routine
*
* igb_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init igb_init_module(void)
{
int ret;
printk(KERN_INFO "%s - version %s\n",
igb_driver_string, igb_driver_version);
printk(KERN_INFO "%s\n", igb_copyright);
#ifdef IGB_SYSFS
/* only use IGB_PROCFS if IGB_SYSFS is not defined */
#else
#ifdef IGB_PROCFS
if (igb_procfs_topdir_init())
printk(KERN_INFO "Procfs failed to initialize topdir\n");
#endif /* IGB_PROCFS */
#endif /* IGB_SYSFS */
#ifdef IGB_DCA
dca_register_notify(&dca_notifier);
#endif
ret = pci_register_driver(&igb_driver);
#ifdef USE_REBOOT_NOTIFIER
if (ret >= 0) {
register_reboot_notifier(&igb_notifier_reboot);
}
#endif
return ret;
}
module_init(igb_init_module);
/**
* igb_exit_module - Driver Exit Cleanup Routine
*
* igb_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit igb_exit_module(void)
{
#ifdef IGB_DCA
dca_unregister_notify(&dca_notifier);
#endif
#ifdef USE_REBOOT_NOTIFIER
unregister_reboot_notifier(&igb_notifier_reboot);
#endif
pci_unregister_driver(&igb_driver);
#ifdef IGB_SYSFS
/* only compile IGB_PROCFS if IGB_SYSFS is not defined */
#else
#ifdef IGB_PROCFS
igb_procfs_topdir_exit();
#endif /* IGB_PROCFS */
#endif /* IGB_SYSFS */
}
module_exit(igb_exit_module);
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
* igb_cache_ring_register - Descriptor ring to register mapping
* @adapter: board private structure to initialize
*
* Once we know the feature-set enabled for the device, we'll cache
* the register offset the descriptor ring is assigned to.
**/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
int i = 0, j = 0;
u32 rbase_offset = adapter->vfs_allocated_count;
switch (adapter->hw.mac.type) {
case e1000_82576:
/* The queues are allocated for virtualization such that VF 0
* is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
* In order to avoid collision we start at the first free queue
* and continue consuming queues in the same sequence
*/
if ((adapter->rss_queues > 1) && adapter->vmdq_pools) {
for (; i < adapter->rss_queues; i++)
adapter->rx_ring[i]->reg_idx = rbase_offset +
Q_IDX_82576(i);
}
case e1000_82575:
case e1000_82580:
case e1000_i350:
case e1000_i210:
case e1000_i211:
default:
for (; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i]->reg_idx = rbase_offset + i;
for (; j < adapter->num_tx_queues; j++)
adapter->tx_ring[j]->reg_idx = rbase_offset + j;
break;
}
}
static void igb_free_queues(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++) {
kfree(adapter->tx_ring[i]);
adapter->tx_ring[i] = NULL;
}
for (i = 0; i < adapter->num_rx_queues; i++) {
kfree(adapter->rx_ring[i]);
adapter->rx_ring[i] = NULL;
}
adapter->num_rx_queues = 0;
adapter->num_tx_queues = 0;
}
/**
* igb_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
*
* We allocate one ring per queue at run-time since we don't know the
* number of queues at compile-time.
**/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
struct igb_ring *ring;
int i;
for (i = 0; i < adapter->num_tx_queues; i++) {
ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
if (!ring)
goto err;
ring->count = adapter->tx_ring_count;
ring->queue_index = i;
ring->dev = pci_dev_to_dev(adapter->pdev);
ring->netdev = adapter->netdev;
/* For 82575, context index must be unique per ring. */
if (adapter->hw.mac.type == e1000_82575)
set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
adapter->tx_ring[i] = ring;
}
for (i = 0; i < adapter->num_rx_queues; i++) {
ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
if (!ring)
goto err;
ring->count = adapter->rx_ring_count;
ring->queue_index = i;
ring->dev = pci_dev_to_dev(adapter->pdev);
ring->netdev = adapter->netdev;
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
#endif
#ifndef HAVE_NDO_SET_FEATURES
/* enable rx checksum */
set_bit(IGB_RING_FLAG_RX_CSUM, &ring->flags);
#endif
/* set flag indicating ring supports SCTP checksum offload */
if (adapter->hw.mac.type >= e1000_82576)
set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
/* On i350, loopback VLAN packets have the tag byte-swapped */
if (adapter->hw.mac.type == e1000_i350)
set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
adapter->rx_ring[i] = ring;
}
igb_cache_ring_register(adapter);
return E1000_SUCCESS;
err:
igb_free_queues(adapter);
return -ENOMEM;
}
static void igb_configure_lli(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 port;
/* LLI should only be enabled for MSI-X or MSI interrupts */
if (!adapter->msix_entries && !(adapter->flags & IGB_FLAG_HAS_MSI))
return;
if (adapter->lli_port) {
/* use filter 0 for port */
port = htons((u16)adapter->lli_port);
E1000_WRITE_REG(hw, E1000_IMIR(0),
(port | E1000_IMIR_PORT_IM_EN));
E1000_WRITE_REG(hw, E1000_IMIREXT(0),
(E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
}
if (adapter->flags & IGB_FLAG_LLI_PUSH) {
/* use filter 1 for push flag */
E1000_WRITE_REG(hw, E1000_IMIR(1),
(E1000_IMIR_PORT_BP | E1000_IMIR_PORT_IM_EN));
E1000_WRITE_REG(hw, E1000_IMIREXT(1),
(E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_PSH));
}
if (adapter->lli_size) {
/* use filter 2 for size */
E1000_WRITE_REG(hw, E1000_IMIR(2),
(E1000_IMIR_PORT_BP | E1000_IMIR_PORT_IM_EN));
E1000_WRITE_REG(hw, E1000_IMIREXT(2),
(adapter->lli_size | E1000_IMIREXT_CTRL_BP));
}
}
/**
* igb_write_ivar - configure ivar for given MSI-X vector
* @hw: pointer to the HW structure
* @msix_vector: vector number we are allocating to a given ring
* @index: row index of IVAR register to write within IVAR table
* @offset: column offset of in IVAR, should be multiple of 8
*
* This function is intended to handle the writing of the IVAR register
* for adapters 82576 and newer. The IVAR table consists of 2 columns,
* each containing an cause allocation for an Rx and Tx ring, and a
* variable number of rows depending on the number of queues supported.
**/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
int index, int offset)
{
u32 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
/* clear any bits that are currently set */
ivar &= ~((u32)0xFF << offset);
/* write vector and valid bit */
ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
}
#define IGB_N0_QUEUE -1
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
int rx_queue = IGB_N0_QUEUE;
int tx_queue = IGB_N0_QUEUE;
u32 msixbm = 0;
if (q_vector->rx.ring)
rx_queue = q_vector->rx.ring->reg_idx;
if (q_vector->tx.ring)
tx_queue = q_vector->tx.ring->reg_idx;
switch (hw->mac.type) {
case e1000_82575:
/* The 82575 assigns vectors using a bitmask, which matches the
bitmask for the EICR/EIMS/EIMC registers. To assign one
or more queues to a vector, we write the appropriate bits
into the MSIXBM register for that vector. */
if (rx_queue > IGB_N0_QUEUE)
msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
if (tx_queue > IGB_N0_QUEUE)
msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
if (!adapter->msix_entries && msix_vector == 0)
msixbm |= E1000_EIMS_OTHER;
E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), msix_vector, msixbm);
q_vector->eims_value = msixbm;
break;
case e1000_82576:
/*
* 82576 uses a table that essentially consists of 2 columns
* with 8 rows. The ordering is column-major so we use the
* lower 3 bits as the row index, and the 4th bit as the
* column offset.
*/
if (rx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
rx_queue & 0x7,
(rx_queue & 0x8) << 1);
if (tx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
tx_queue & 0x7,
((tx_queue & 0x8) << 1) + 8);
q_vector->eims_value = 1 << msix_vector;
break;
case e1000_82580:
case e1000_i350:
case e1000_i210:
case e1000_i211:
/*
* On 82580 and newer adapters the scheme is similar to 82576
* however instead of ordering column-major we have things
* ordered row-major. So we traverse the table by using
* bit 0 as the column offset, and the remaining bits as the
* row index.
*/
if (rx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
rx_queue >> 1,
(rx_queue & 0x1) << 4);
if (tx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
tx_queue >> 1,
((tx_queue & 0x1) << 4) + 8);
q_vector->eims_value = 1 << msix_vector;
break;
default:
BUG();
break;
}
/* add q_vector eims value to global eims_enable_mask */
adapter->eims_enable_mask |= q_vector->eims_value;
/* configure q_vector to set itr on first interrupt */
q_vector->set_itr = 1;
}
/**
* igb_configure_msix - Configure MSI-X hardware
*
* igb_configure_msix sets up the hardware to properly
* generate MSI-X interrupts.
**/
static void igb_configure_msix(struct igb_adapter *adapter)
{
u32 tmp;
int i, vector = 0;
struct e1000_hw *hw = &adapter->hw;
adapter->eims_enable_mask = 0;
/* set vector for other causes, i.e. link changes */
switch (hw->mac.type) {
case e1000_82575:
tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
/* enable MSI-X PBA support*/
tmp |= E1000_CTRL_EXT_PBA_CLR;
/* Auto-Mask interrupts upon ICR read. */
tmp |= E1000_CTRL_EXT_EIAME;
tmp |= E1000_CTRL_EXT_IRCA;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
/* enable msix_other interrupt */
E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), vector++,
E1000_EIMS_OTHER);
adapter->eims_other = E1000_EIMS_OTHER;
break;
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i210:
case e1000_i211:
/* Turn on MSI-X capability first, or our settings
* won't stick. And it will take days to debug. */
E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
E1000_GPIE_PBA | E1000_GPIE_EIAME |
E1000_GPIE_NSICR);
/* enable msix_other interrupt */
adapter->eims_other = 1 << vector;
tmp = (vector++ | E1000_IVAR_VALID) << 8;
E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmp);
break;
default:
/* do nothing, since nothing else supports MSI-X */
break;
} /* switch (hw->mac.type) */
adapter->eims_enable_mask |= adapter->eims_other;
for (i = 0; i < adapter->num_q_vectors; i++)
igb_assign_vector(adapter->q_vector[i], vector++);
E1000_WRITE_FLUSH(hw);
}
/**
* igb_request_msix - Initialize MSI-X interrupts
*
* igb_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
**/
static int igb_request_msix(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
int i, err = 0, vector = 0;
err = request_irq(adapter->msix_entries[vector].vector,
&igb_msix_other, 0, netdev->name, adapter);
if (err)
goto out;
vector++;
for (i = 0; i < adapter->num_q_vectors; i++) {
struct igb_q_vector *q_vector = adapter->q_vector[i];
q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
if (q_vector->rx.ring && q_vector->tx.ring)
sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else if (q_vector->tx.ring)
sprintf(q_vector->name, "%s-tx-%u", netdev->name,
q_vector->tx.ring->queue_index);
else if (q_vector->rx.ring)
sprintf(q_vector->name, "%s-rx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else
sprintf(q_vector->name, "%s-unused", netdev->name);
err = request_irq(adapter->msix_entries[vector].vector,
igb_msix_ring, 0, q_vector->name,
q_vector);
if (err)
goto out;
vector++;
}
igb_configure_msix(adapter);
return 0;
out:
return err;
}
static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
if (adapter->msix_entries) {
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
pci_disable_msi(adapter->pdev);
}
}
/**
* igb_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
int v_idx;
for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
adapter->q_vector[v_idx] = NULL;
if (!q_vector)
continue;
netif_napi_del(&q_vector->napi);
#ifndef IGB_NO_LRO
if (q_vector->lrolist) {
__skb_queue_purge(&q_vector->lrolist->active);
vfree(q_vector->lrolist);
q_vector->lrolist = NULL;
}
#endif
kfree(q_vector);
}
adapter->num_q_vectors = 0;
}
/**
* igb_clear_interrupt_scheme - reset the device to a state of no interrupts
*
* This function resets the device so that it has 0 rx queues, tx queues, and
* MSI-X interrupts allocated.
*/
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
igb_free_queues(adapter);
igb_free_q_vectors(adapter);
igb_reset_interrupt_capability(adapter);
}
/**
* igb_process_mdd_event
* @adapter - board private structure
*
* Identify a malicious VF, disable the VF TX/RX queues and log a message.
*/
static void igb_process_mdd_event(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 lvmmc, vfte, vfre, mdfb;
u8 vf_queue;
lvmmc = E1000_READ_REG(hw, E1000_LVMMC);
vf_queue = lvmmc >> 29;
/* VF index cannot be bigger or equal to VFs allocated */
if (vf_queue >= adapter->vfs_allocated_count)
return;
netdev_info(adapter->netdev,
"VF %d misbehaved. VF queues are disabled. "
"VM misbehavior code is 0x%x\n", vf_queue, lvmmc);
/* Disable VFTE and VFRE related bits */
vfte = E1000_READ_REG(hw, E1000_VFTE);
vfte &= ~(1 << vf_queue);
E1000_WRITE_REG(hw, E1000_VFTE, vfte);
vfre = E1000_READ_REG(hw, E1000_VFRE);
vfre &= ~(1 << vf_queue);
E1000_WRITE_REG(hw, E1000_VFRE, vfre);
/* Disable MDFB related bit. Clear on write */
mdfb = E1000_READ_REG(hw, E1000_MDFB);
mdfb |= (1 << vf_queue);
E1000_WRITE_REG(hw, E1000_MDFB, mdfb);
/* Reset the specific VF */
E1000_WRITE_REG(hw, E1000_VTCTRL(vf_queue), E1000_VTCTRL_RST);
}
/**
* igb_disable_mdd
* @adapter - board private structure
*
* Disable MDD behavior in the HW
**/
static void igb_disable_mdd(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg;
if (hw->mac.type != e1000_i350)
return;
reg = E1000_READ_REG(hw, E1000_DTXCTL);
reg &= (~E1000_DTXCTL_MDP_EN);
E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
}
/**
* igb_enable_mdd
* @adapter - board private structure
*
* Enable the HW to detect malicious driver and sends an interrupt to
* the driver.
**/
static void igb_enable_mdd(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg;
/* Only available on i350 device */
if (hw->mac.type != e1000_i350)
return;
reg = E1000_READ_REG(hw, E1000_DTXCTL);
reg |= E1000_DTXCTL_MDP_EN;
E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
}
/**
* igb_reset_sriov_capability - disable SR-IOV if enabled
*
* Attempt to disable single root IO virtualization capabilites present in the
* kernel.
**/
static void igb_reset_sriov_capability(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
/* reclaim resources allocated to VFs */
if (adapter->vf_data) {
if (!igb_check_vf_assignment(adapter)) {
/*
* disable iov and allow time for transactions to
* clear
*/
pci_disable_sriov(pdev);
msleep(500);
dev_info(pci_dev_to_dev(pdev), "IOV Disabled\n");
} else {
dev_info(pci_dev_to_dev(pdev), "IOV Not Disabled\n "
"VF(s) are assigned to guests!\n");
}
/* Disable Malicious Driver Detection */
igb_disable_mdd(adapter);
/* free vf data storage */
kfree(adapter->vf_data);
adapter->vf_data = NULL;
/* switch rings back to PF ownership */
E1000_WRITE_REG(hw, E1000_IOVCTL,
E1000_IOVCTL_REUSE_VFQ);
E1000_WRITE_FLUSH(hw);
msleep(100);
}
adapter->vfs_allocated_count = 0;
}
/**
* igb_set_sriov_capability - setup SR-IOV if supported
*
* Attempt to enable single root IO virtualization capabilites present in the
* kernel.
**/
static void igb_set_sriov_capability(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int old_vfs = 0;
int i;
#ifdef HAVE_PCI_DEV_FLAGS_ASSIGNED
old_vfs = igb_find_enabled_vfs(adapter);
#endif
if (old_vfs) {
dev_info(pci_dev_to_dev(pdev),
"%d pre-allocated VFs found - override "
"max_vfs setting of %d\n", old_vfs,
adapter->vfs_allocated_count);
adapter->vfs_allocated_count = old_vfs;
}
/* no VFs requested, do nothing */
if (!adapter->vfs_allocated_count)
return;
/* allocate vf data storage */
adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
sizeof(struct vf_data_storage),
GFP_KERNEL);
if (adapter->vf_data) {
if (!old_vfs) {
if (pci_enable_sriov(pdev,
adapter->vfs_allocated_count))
goto err_out;
}
for (i = 0; i < adapter->vfs_allocated_count; i++)
igb_vf_configure(adapter, i);
/* DMA Coalescing is not supported in IOV mode. */
if (adapter->hw.mac.type >= e1000_i350)
adapter->dmac = IGB_DMAC_DISABLE;
if (adapter->hw.mac.type < e1000_i350)
adapter->flags |= IGB_FLAG_DETECT_BAD_DMA;
return;
}
err_out:
kfree(adapter->vf_data);
adapter->vf_data = NULL;
adapter->vfs_allocated_count = 0;
dev_warn(pci_dev_to_dev(pdev),
"Failed to initialize SR-IOV virtualization\n");
}
/**
* igb_set_interrupt_capability - set MSI or MSI-X if supported
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int err;
int numvecs, i;
/* Number of supported queues. */
adapter->num_rx_queues = adapter->rss_queues;
if (adapter->vmdq_pools > 1)
adapter->num_rx_queues += adapter->vmdq_pools - 1;
#ifdef HAVE_TX_MQ
if (adapter->vmdq_pools)
adapter->num_tx_queues = adapter->vmdq_pools;
else
adapter->num_tx_queues = adapter->num_rx_queues;
#else
adapter->num_tx_queues = max_t(u32, 1, adapter->vmdq_pools);
#endif
switch (adapter->int_mode) {
case IGB_INT_MODE_MSIX:
/* start with one vector for every rx queue */
numvecs = adapter->num_rx_queues;
/* if tx handler is seperate add 1 for every tx queue */
if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
numvecs += adapter->num_tx_queues;
/* store the number of vectors reserved for queues */
adapter->num_q_vectors = numvecs;
/* add 1 vector for link status interrupts */
numvecs++;
adapter->msix_entries = kcalloc(numvecs,
sizeof(struct msix_entry),
GFP_KERNEL);
if (adapter->msix_entries) {
for (i = 0; i < numvecs; i++)
adapter->msix_entries[i].entry = i;
err = pci_enable_msix(pdev,
adapter->msix_entries, numvecs);
if (err == 0)
break;
}
/* MSI-X failed, so fall through and try MSI */
dev_warn(pci_dev_to_dev(pdev), "Failed to initialize MSI-X interrupts. "
"Falling back to MSI interrupts.\n");
igb_reset_interrupt_capability(adapter);
case IGB_INT_MODE_MSI:
if (!pci_enable_msi(pdev))
adapter->flags |= IGB_FLAG_HAS_MSI;
else
dev_warn(pci_dev_to_dev(pdev), "Failed to initialize MSI "
"interrupts. Falling back to legacy "
"interrupts.\n");
/* Fall through */
case IGB_INT_MODE_LEGACY:
/* disable advanced features and set number of queues to 1 */
igb_reset_sriov_capability(adapter);
adapter->vmdq_pools = 0;
adapter->rss_queues = 1;
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
adapter->num_rx_queues = 1;
adapter->num_tx_queues = 1;
adapter->num_q_vectors = 1;
/* Don't do anything; this is system default */
break;
}
#ifdef HAVE_TX_MQ
/* Notify the stack of the (possibly) reduced Tx Queue count. */
#ifdef CONFIG_NETDEVICES_MULTIQUEUE
adapter->netdev->egress_subqueue_count = adapter->num_tx_queues;
#else
adapter->netdev->real_num_tx_queues =
(adapter->vmdq_pools ? 1 : adapter->num_tx_queues);
#endif /* CONFIG_NETDEVICES_MULTIQUEUE */
#endif /* HAVE_TX_MQ */
}
/**
* igb_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
struct igb_q_vector *q_vector;
struct e1000_hw *hw = &adapter->hw;
int v_idx;
for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
if (!q_vector)
goto err_out;
q_vector->adapter = adapter;
q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
q_vector->itr_val = IGB_START_ITR;
netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
adapter->q_vector[v_idx] = q_vector;
#ifndef IGB_NO_LRO
if (v_idx < adapter->num_rx_queues) {
int size = sizeof(struct igb_lro_list);
q_vector->lrolist = vzalloc(size);
if (!q_vector->lrolist)
goto err_out;
__skb_queue_head_init(&q_vector->lrolist->active);
}
#endif /* IGB_NO_LRO */
}
return 0;
err_out:
igb_free_q_vectors(adapter);
return -ENOMEM;
}
static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
int ring_idx, int v_idx)
{
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
q_vector->rx.ring = adapter->rx_ring[ring_idx];
q_vector->rx.ring->q_vector = q_vector;
q_vector->rx.count++;
q_vector->itr_val = adapter->rx_itr_setting;
if (q_vector->itr_val && q_vector->itr_val <= 3)
q_vector->itr_val = IGB_START_ITR;
}
static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
int ring_idx, int v_idx)
{
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
q_vector->tx.ring = adapter->tx_ring[ring_idx];
q_vector->tx.ring->q_vector = q_vector;
q_vector->tx.count++;
q_vector->itr_val = adapter->tx_itr_setting;
q_vector->tx.work_limit = adapter->tx_work_limit;
if (q_vector->itr_val && q_vector->itr_val <= 3)
q_vector->itr_val = IGB_START_ITR;
}
/**
* igb_map_ring_to_vector - maps allocated queues to vectors
*
* This function maps the recently allocated queues to vectors.
**/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
int i;
int v_idx = 0;
if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
(adapter->num_q_vectors < adapter->num_tx_queues))
return -ENOMEM;
if (adapter->num_q_vectors >=
(adapter->num_rx_queues + adapter->num_tx_queues)) {
for (i = 0; i < adapter->num_rx_queues; i++)
igb_map_rx_ring_to_vector(adapter, i, v_idx++);
for (i = 0; i < adapter->num_tx_queues; i++)
igb_map_tx_ring_to_vector(adapter, i, v_idx++);
} else {
for (i = 0; i < adapter->num_rx_queues; i++) {
if (i < adapter->num_tx_queues)
igb_map_tx_ring_to_vector(adapter, i, v_idx);
igb_map_rx_ring_to_vector(adapter, i, v_idx++);
}
for (; i < adapter->num_tx_queues; i++)
igb_map_tx_ring_to_vector(adapter, i, v_idx++);
}
return 0;
}
/**
* igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
*
* This function initializes the interrupts and allocates all of the queues.
**/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int err;
igb_set_interrupt_capability(adapter);
err = igb_alloc_q_vectors(adapter);
if (err) {
dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for vectors\n");
goto err_alloc_q_vectors;
}
err = igb_alloc_queues(adapter);
if (err) {
dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n");
goto err_alloc_queues;
}
err = igb_map_ring_to_vector(adapter);
if (err) {
dev_err(pci_dev_to_dev(pdev), "Invalid q_vector to ring mapping\n");
goto err_map_queues;
}
return 0;
err_map_queues:
igb_free_queues(adapter);
err_alloc_queues:
igb_free_q_vectors(adapter);
err_alloc_q_vectors:
igb_reset_interrupt_capability(adapter);
return err;
}
/**
* igb_request_irq - initialize interrupts
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static int igb_request_irq(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int err = 0;
if (adapter->msix_entries) {
err = igb_request_msix(adapter);
if (!err)
goto request_done;
/* fall back to MSI */
igb_clear_interrupt_scheme(adapter);
igb_reset_sriov_capability(adapter);
if (!pci_enable_msi(pdev))
adapter->flags |= IGB_FLAG_HAS_MSI;
igb_free_all_tx_resources(adapter);
igb_free_all_rx_resources(adapter);
adapter->num_tx_queues = 1;
adapter->num_rx_queues = 1;
adapter->num_q_vectors = 1;
err = igb_alloc_q_vectors(adapter);
if (err) {
dev_err(pci_dev_to_dev(pdev),
"Unable to allocate memory for vectors\n");
goto request_done;
}
err = igb_alloc_queues(adapter);
if (err) {
dev_err(pci_dev_to_dev(pdev),
"Unable to allocate memory for queues\n");
igb_free_q_vectors(adapter);
goto request_done;
}
igb_setup_all_tx_resources(adapter);
igb_setup_all_rx_resources(adapter);
}
igb_assign_vector(adapter->q_vector[0], 0);
if (adapter->flags & IGB_FLAG_HAS_MSI) {
err = request_irq(pdev->irq, &igb_intr_msi, 0,
netdev->name, adapter);
if (!err)
goto request_done;
/* fall back to legacy interrupts */
igb_reset_interrupt_capability(adapter);
adapter->flags &= ~IGB_FLAG_HAS_MSI;
}
err = request_irq(pdev->irq, &igb_intr, IRQF_SHARED,
netdev->name, adapter);
if (err)
dev_err(pci_dev_to_dev(pdev), "Error %d getting interrupt\n",
err);
request_done:
return err;
}
static void igb_free_irq(struct igb_adapter *adapter)
{
if (adapter->msix_entries) {
int vector = 0, i;
free_irq(adapter->msix_entries[vector++].vector, adapter);
for (i = 0; i < adapter->num_q_vectors; i++)
free_irq(adapter->msix_entries[vector++].vector,
adapter->q_vector[i]);
} else {
free_irq(adapter->pdev->irq, adapter);
}
}
/**
* igb_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void igb_irq_disable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/*
* we need to be careful when disabling interrupts. The VFs are also
* mapped into these registers and so clearing the bits can cause
* issues on the VF drivers so we only need to clear what we set
*/
if (adapter->msix_entries) {
u32 regval = E1000_READ_REG(hw, E1000_EIAM);
E1000_WRITE_REG(hw, E1000_EIAM, regval & ~adapter->eims_enable_mask);
E1000_WRITE_REG(hw, E1000_EIMC, adapter->eims_enable_mask);
regval = E1000_READ_REG(hw, E1000_EIAC);
E1000_WRITE_REG(hw, E1000_EIAC, regval & ~adapter->eims_enable_mask);
}
E1000_WRITE_REG(hw, E1000_IAM, 0);
E1000_WRITE_REG(hw, E1000_IMC, ~0);
E1000_WRITE_FLUSH(hw);
if (adapter->msix_entries) {
int vector = 0, i;
synchronize_irq(adapter->msix_entries[vector++].vector);
for (i = 0; i < adapter->num_q_vectors; i++)
synchronize_irq(adapter->msix_entries[vector++].vector);
} else {
synchronize_irq(adapter->pdev->irq);
}
}
/**
* igb_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static void igb_irq_enable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->msix_entries) {
u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
u32 regval = E1000_READ_REG(hw, E1000_EIAC);
E1000_WRITE_REG(hw, E1000_EIAC, regval | adapter->eims_enable_mask);
regval = E1000_READ_REG(hw, E1000_EIAM);
E1000_WRITE_REG(hw, E1000_EIAM, regval | adapter->eims_enable_mask);
E1000_WRITE_REG(hw, E1000_EIMS, adapter->eims_enable_mask);
if (adapter->vfs_allocated_count) {
E1000_WRITE_REG(hw, E1000_MBVFIMR, 0xFF);
ims |= E1000_IMS_VMMB;
/* For I350 device only enable MDD interrupts */
if ((adapter->mdd) &&
(adapter->hw.mac.type == e1000_i350))
ims |= E1000_IMS_MDDET;
}
E1000_WRITE_REG(hw, E1000_IMS, ims);
} else {
E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK |
E1000_IMS_DRSTA);
E1000_WRITE_REG(hw, E1000_IAM, IMS_ENABLE_MASK |
E1000_IMS_DRSTA);
}
}
static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 vid = adapter->hw.mng_cookie.vlan_id;
u16 old_vid = adapter->mng_vlan_id;
if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
/* add VID to filter table */
igb_vfta_set(adapter, vid, TRUE);
adapter->mng_vlan_id = vid;
} else {
adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
}
if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
(vid != old_vid) &&
#ifdef HAVE_VLAN_RX_REGISTER
!vlan_group_get_device(adapter->vlgrp, old_vid)) {
#else
!test_bit(old_vid, adapter->active_vlans)) {
#endif
/* remove VID from filter table */
igb_vfta_set(adapter, old_vid, FALSE);
}
}
/**
* igb_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded.
*
**/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware take over control of h/w */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
/**
* igb_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded.
*
**/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware know the driver has taken over */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
/**
* igb_configure - configure the hardware for RX and TX
* @adapter: private board structure
**/
static void igb_configure(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i;
igb_get_hw_control(adapter);
igb_set_rx_mode(netdev);
igb_restore_vlan(adapter);
igb_setup_tctl(adapter);
igb_setup_mrqc(adapter);
igb_setup_rctl(adapter);
igb_configure_tx(adapter);
igb_configure_rx(adapter);
e1000_rx_fifo_flush_82575(&adapter->hw);
#ifdef CONFIG_NETDEVICES_MULTIQUEUE
if (adapter->num_tx_queues > 1)
netdev->features |= NETIF_F_MULTI_QUEUE;
else
netdev->features &= ~NETIF_F_MULTI_QUEUE;
#endif
/* call igb_desc_unused which always leaves
* at least 1 descriptor unused to make sure
* next_to_use != next_to_clean */
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = adapter->rx_ring[i];
igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
}
}
/**
* igb_power_up_link - Power up the phy/serdes link
* @adapter: address of board private structure
**/
void igb_power_up_link(struct igb_adapter *adapter)
{
e1000_phy_hw_reset(&adapter->hw);
if (adapter->hw.phy.media_type == e1000_media_type_copper)
e1000_power_up_phy(&adapter->hw);
else
e1000_power_up_fiber_serdes_link(&adapter->hw);
}
/**
* igb_power_down_link - Power down the phy/serdes link
* @adapter: address of board private structure
*/
static void igb_power_down_link(struct igb_adapter *adapter)
{
if (adapter->hw.phy.media_type == e1000_media_type_copper)
e1000_power_down_phy(&adapter->hw);
else
e1000_shutdown_fiber_serdes_link(&adapter->hw);
}
/**
* igb_up - Open the interface and prepare it to handle traffic
* @adapter: board private structure
**/
int igb_up(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
/* hardware has been reset, we need to reload some things */
igb_configure(adapter);
clear_bit(__IGB_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&(adapter->q_vector[i]->napi));
if (adapter->msix_entries)
igb_configure_msix(adapter);
else
igb_assign_vector(adapter->q_vector[0], 0);
igb_configure_lli(adapter);
/* Clear any pending interrupts. */
E1000_READ_REG(hw, E1000_ICR);
igb_irq_enable(adapter);
/* notify VFs that reset has been completed */
if (adapter->vfs_allocated_count) {
u32 reg_data = E1000_READ_REG(hw, E1000_CTRL_EXT);
reg_data |= E1000_CTRL_EXT_PFRSTD;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg_data);
}
netif_tx_start_all_queues(adapter->netdev);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
schedule_work(&adapter->dma_err_task);
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
return 0;
}
void igb_down(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 tctl, rctl;
int i;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer */
set_bit(__IGB_DOWN, &adapter->state);
/* disable receives in the hardware */
rctl = E1000_READ_REG(hw, E1000_RCTL);
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
/* flush and sleep below */
netif_tx_stop_all_queues(netdev);
/* disable transmits in the hardware */
tctl = E1000_READ_REG(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_EN;
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
/* flush both disables and wait for them to finish */
E1000_WRITE_FLUSH(hw);
usleep_range(10000, 20000);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_disable(&(adapter->q_vector[i]->napi));
igb_irq_disable(adapter);
del_timer_sync(&adapter->watchdog_timer);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
del_timer_sync(&adapter->dma_err_timer);
del_timer_sync(&adapter->phy_info_timer);
netif_carrier_off(netdev);
/* record the stats before reset*/
igb_update_stats(adapter);
adapter->link_speed = 0;
adapter->link_duplex = 0;
#ifdef HAVE_PCI_ERS
if (!pci_channel_offline(adapter->pdev))
igb_reset(adapter);
#else
igb_reset(adapter);
#endif
igb_clean_all_tx_rings(adapter);
igb_clean_all_rx_rings(adapter);
#ifdef IGB_DCA
/* since we reset the hardware DCA settings were cleared */
igb_setup_dca(adapter);
#endif
}
void igb_reinit_locked(struct igb_adapter *adapter)
{
WARN_ON(in_interrupt());
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
igb_down(adapter);
igb_up(adapter);
clear_bit(__IGB_RESETTING, &adapter->state);
}
void igb_reset(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
struct e1000_fc_info *fc = &hw->fc;
u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
switch (mac->type) {
case e1000_i350:
case e1000_82580:
pba = E1000_READ_REG(hw, E1000_RXPBS);
pba = e1000_rxpbs_adjust_82580(pba);
break;
case e1000_82576:
pba = E1000_READ_REG(hw, E1000_RXPBS);
pba &= E1000_RXPBS_SIZE_MASK_82576;
break;
case e1000_82575:
case e1000_i210:
case e1000_i211:
default:
pba = E1000_PBA_34K;
break;
}
if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
(mac->type < e1000_82576)) {
/* adjust PBA for jumbo frames */
E1000_WRITE_REG(hw, E1000_PBA, pba);
/* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accommodate two full transmit packets,
* rounded up to the next 1KB and expressed in KB. Likewise,
* the Rx FIFO should be large enough to accommodate at least
* one full receive packet and is similarly rounded up and
* expressed in KB. */
pba = E1000_READ_REG(hw, E1000_PBA);
/* upper 16 bits has Tx packet buffer allocation size in KB */
tx_space = pba >> 16;
/* lower 16 bits has Rx packet buffer allocation size in KB */
pba &= 0xffff;
/* the tx fifo also stores 16 bytes of information about the tx
* but don't include ethernet FCS because hardware appends it */
min_tx_space = (adapter->max_frame_size +
sizeof(union e1000_adv_tx_desc) -
ETH_FCS_LEN) * 2;
min_tx_space = ALIGN(min_tx_space, 1024);
min_tx_space >>= 10;
/* software strips receive CRC, so leave room for it */
min_rx_space = adapter->max_frame_size;
min_rx_space = ALIGN(min_rx_space, 1024);
min_rx_space >>= 10;
/* If current Tx allocation is less than the min Tx FIFO size,
* and the min Tx FIFO size is less than the current Rx FIFO
* allocation, take space away from current Rx allocation */
if (tx_space < min_tx_space &&
((min_tx_space - tx_space) < pba)) {
pba = pba - (min_tx_space - tx_space);
/* if short on rx space, rx wins and must trump tx
* adjustment */
if (pba < min_rx_space)
pba = min_rx_space;
}
E1000_WRITE_REG(hw, E1000_PBA, pba);
}
/* flow control settings */
/* The high water mark must be low enough to fit one full frame
* (or the size used for early receive) above it in the Rx FIFO.
* Set it to the lower of:
* - 90% of the Rx FIFO size, or
* - the full Rx FIFO size minus one full frame */
hwm = min(((pba << 10) * 9 / 10),
((pba << 10) - 2 * adapter->max_frame_size));
fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
fc->low_water = fc->high_water - 16;
fc->pause_time = 0xFFFF;
fc->send_xon = 1;
fc->current_mode = fc->requested_mode;
/* disable receive for all VFs and wait one second */
if (adapter->vfs_allocated_count) {
int i;
/*
* Clear all flags except indication that the PF has set
* the VF MAC addresses administratively
*/
for (i = 0 ; i < adapter->vfs_allocated_count; i++)
adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
/* ping all the active vfs to let them know we are going down */
igb_ping_all_vfs(adapter);
/* disable transmits and receives */
E1000_WRITE_REG(hw, E1000_VFRE, 0);
E1000_WRITE_REG(hw, E1000_VFTE, 0);
}
/* Allow time for pending master requests to run */
e1000_reset_hw(hw);
E1000_WRITE_REG(hw, E1000_WUC, 0);
if (e1000_init_hw(hw))
dev_err(pci_dev_to_dev(pdev), "Hardware Error\n");
/*
* Flow control settings reset on hardware reset, so guarantee flow
* control is off when forcing speed.
*/
if (!hw->mac.autoneg)
e1000_force_mac_fc(hw);
igb_init_dmac(adapter, pba);
/* Re-initialize the thermal sensor on i350 devices. */
if (mac->type == e1000_i350 && hw->bus.func == 0) {
/*
* If present, re-initialize the external thermal sensor
* interface.
*/
if (adapter->ets)
e1000_set_i2c_bb(hw);
e1000_init_thermal_sensor_thresh(hw);
}
if (!netif_running(adapter->netdev))
igb_power_down_link(adapter);
igb_update_mng_vlan(adapter);
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
E1000_WRITE_REG(hw, E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
#ifdef CONFIG_IGB_PTP
/* Re-enable PTP, where applicable. */
igb_ptp_reset(adapter);
#endif /* CONFIG_IGB_PTP */
e1000_get_phy_info(hw);
}
#ifdef HAVE_NDO_SET_FEATURES
static netdev_features_t igb_fix_features(struct net_device *netdev,
netdev_features_t features)
{
/*
* Since there is no support for separate tx vlan accel
* enabled make sure tx flag is cleared if rx is.
*/
if (!(features & NETIF_F_HW_VLAN_RX))
features &= ~NETIF_F_HW_VLAN_TX;
/* If Rx checksum is disabled, then LRO should also be disabled */
if (!(features & NETIF_F_RXCSUM))
features &= ~NETIF_F_LRO;
return features;
}
static int igb_set_features(struct net_device *netdev,
netdev_features_t features)
{
u32 changed = netdev->features ^ features;
if (changed & NETIF_F_HW_VLAN_RX)
igb_vlan_mode(netdev, features);
return 0;
}
#endif /* HAVE_NDO_SET_FEATURES */
#ifdef HAVE_NET_DEVICE_OPS
static const struct net_device_ops igb_netdev_ops = {
.ndo_open = igb_open,
.ndo_stop = igb_close,
.ndo_start_xmit = igb_xmit_frame,
.ndo_get_stats = igb_get_stats,
.ndo_set_rx_mode = igb_set_rx_mode,
.ndo_set_mac_address = igb_set_mac,
.ndo_change_mtu = igb_change_mtu,
.ndo_do_ioctl = igb_ioctl,
.ndo_tx_timeout = igb_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
#ifdef IFLA_VF_MAX
.ndo_set_vf_mac = igb_ndo_set_vf_mac,
.ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
.ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
.ndo_get_vf_config = igb_ndo_get_vf_config,
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = igb_netpoll,
#endif
#ifdef HAVE_NDO_SET_FEATURES
.ndo_fix_features = igb_fix_features,
.ndo_set_features = igb_set_features,
#endif
#ifdef HAVE_VLAN_RX_REGISTER
.ndo_vlan_rx_register = igb_vlan_mode,
#endif
};
#ifdef CONFIG_IGB_VMDQ_NETDEV
static const struct net_device_ops igb_vmdq_ops = {
.ndo_open = &igb_vmdq_open,
.ndo_stop = &igb_vmdq_close,
.ndo_start_xmit = &igb_vmdq_xmit_frame,
.ndo_get_stats = &igb_vmdq_get_stats,
.ndo_set_rx_mode = &igb_vmdq_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = &igb_vmdq_set_mac,
.ndo_change_mtu = &igb_vmdq_change_mtu,
.ndo_tx_timeout = &igb_vmdq_tx_timeout,
.ndo_vlan_rx_register = &igb_vmdq_vlan_rx_register,
.ndo_vlan_rx_add_vid = &igb_vmdq_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = &igb_vmdq_vlan_rx_kill_vid,
};
#endif /* CONFIG_IGB_VMDQ_NETDEV */
#endif /* HAVE_NET_DEVICE_OPS */
#ifdef CONFIG_IGB_VMDQ_NETDEV
void igb_assign_vmdq_netdev_ops(struct net_device *vnetdev)
{
#ifdef HAVE_NET_DEVICE_OPS
vnetdev->netdev_ops = &igb_vmdq_ops;
#else
dev->open = &igb_vmdq_open;
dev->stop = &igb_vmdq_close;
dev->hard_start_xmit = &igb_vmdq_xmit_frame;
dev->get_stats = &igb_vmdq_get_stats;
#ifdef HAVE_SET_RX_MODE
dev->set_rx_mode = &igb_vmdq_set_rx_mode;
#endif
dev->set_multicast_list = &igb_vmdq_set_rx_mode;
dev->set_mac_address = &igb_vmdq_set_mac;
dev->change_mtu = &igb_vmdq_change_mtu;
#ifdef HAVE_TX_TIMEOUT
dev->tx_timeout = &igb_vmdq_tx_timeout;
#endif
#ifdef NETIF_F_HW_VLAN_TX
dev->vlan_rx_register = &igb_vmdq_vlan_rx_register;
dev->vlan_rx_add_vid = &igb_vmdq_vlan_rx_add_vid;
dev->vlan_rx_kill_vid = &igb_vmdq_vlan_rx_kill_vid;
#endif
#endif
igb_vmdq_set_ethtool_ops(vnetdev);
vnetdev->watchdog_timeo = 5 * HZ;
}
int igb_init_vmdq_netdevs(struct igb_adapter *adapter)
{
int pool, err = 0, base_queue;
struct net_device *vnetdev;
struct igb_vmdq_adapter *vmdq_adapter;
for (pool = 1; pool < adapter->vmdq_pools; pool++) {
int qpp = (!adapter->rss_queues ? 1 : adapter->rss_queues);
base_queue = pool * qpp;
vnetdev = alloc_etherdev(sizeof(struct igb_vmdq_adapter));
if (!vnetdev) {
err = -ENOMEM;
break;
}
vmdq_adapter = netdev_priv(vnetdev);
vmdq_adapter->vnetdev = vnetdev;
vmdq_adapter->real_adapter = adapter;
vmdq_adapter->rx_ring = adapter->rx_ring[base_queue];
vmdq_adapter->tx_ring = adapter->tx_ring[base_queue];
igb_assign_vmdq_netdev_ops(vnetdev);
snprintf(vnetdev->name, IFNAMSIZ, "%sv%d",
adapter->netdev->name, pool);
vnetdev->features = adapter->netdev->features;
#ifdef HAVE_NETDEV_VLAN_FEATURES
vnetdev->vlan_features = adapter->netdev->vlan_features;
#endif
adapter->vmdq_netdev[pool-1] = vnetdev;
err = register_netdev(vnetdev);
if (err)
break;
}
return err;
}
int igb_remove_vmdq_netdevs(struct igb_adapter *adapter)
{
int pool, err = 0;
for (pool = 1; pool < adapter->vmdq_pools; pool++) {
unregister_netdev(adapter->vmdq_netdev[pool-1]);
free_netdev(adapter->vmdq_netdev[pool-1]);
adapter->vmdq_netdev[pool-1] = NULL;
}
return err;
}
#endif /* CONFIG_IGB_VMDQ_NETDEV */
/**
* igb_set_fw_version - Configure version string for ethtool
* @adapter: adapter struct
*
**/
static void igb_set_fw_version(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_fw_version fw;
e1000_get_fw_version(hw, &fw);
switch (hw->mac.type) {
case e1000_i211:
snprintf(adapter->fw_version, sizeof(adapter->fw_version),
"%2d.%2d-%d",
fw.invm_major, fw.invm_minor, fw.invm_img_type);
break;
default:
/* if option rom is valid, display its version too*/
if (fw.or_valid) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d, 0x%08x, %d.%d.%d",
fw.eep_major, fw.eep_minor, fw.etrack_id,
fw.or_major, fw.or_build, fw.or_patch);
/* no option rom */
} else {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d, 0x%08x",
fw.eep_major, fw.eep_minor, fw.etrack_id);
}
break;
}
return;
}
/**
* igb_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in igb_pci_tbl
*
* Returns 0 on success, negative on failure
*
* igb_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int __devinit igb_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct igb_adapter *adapter;
struct e1000_hw *hw;
u16 eeprom_data = 0;
u8 pba_str[E1000_PBANUM_LENGTH];
s32 ret_val;
static int global_quad_port_a; /* global quad port a indication */
int i, err, pci_using_dac;
static int cards_found;
err = pci_enable_device_mem(pdev);
if (err)
return err;
pci_using_dac = 0;
err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
if (!err) {
err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
if (!err)
pci_using_dac = 1;
} else {
err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
if (err) {
err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
if (err) {
IGB_ERR("No usable DMA configuration, "
"aborting\n");
goto err_dma;
}
}
}
#ifndef HAVE_ASPM_QUIRKS
/* 82575 requires that the pci-e link partner disable the L0s state */
switch (pdev->device) {
case E1000_DEV_ID_82575EB_COPPER:
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82575GB_QUAD_COPPER:
pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S);
default:
break;
}
#endif /* HAVE_ASPM_QUIRKS */
err = pci_request_selected_regions(pdev,
pci_select_bars(pdev,
IORESOURCE_MEM),
igb_driver_name);
if (err)
goto err_pci_reg;
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
err = -ENOMEM;
#ifdef HAVE_TX_MQ
netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
IGB_MAX_TX_QUEUES);
#else
netdev = alloc_etherdev(sizeof(struct igb_adapter));
#endif /* HAVE_TX_MQ */
if (!netdev)
goto err_alloc_etherdev;
SET_MODULE_OWNER(netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
hw = &adapter->hw;
hw->back = adapter;
adapter->port_num = hw->bus.func;
adapter->msg_enable = (1 << debug) - 1;
#ifdef HAVE_PCI_ERS
err = pci_save_state(pdev);
if (err)
goto err_ioremap;
#endif
err = -EIO;
hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!hw->hw_addr)
goto err_ioremap;
#ifdef HAVE_NET_DEVICE_OPS
netdev->netdev_ops = &igb_netdev_ops;
#else /* HAVE_NET_DEVICE_OPS */
netdev->open = &igb_open;
netdev->stop = &igb_close;
netdev->get_stats = &igb_get_stats;
#ifdef HAVE_SET_RX_MODE
netdev->set_rx_mode = &igb_set_rx_mode;
#endif
netdev->set_multicast_list = &igb_set_rx_mode;
netdev->set_mac_address = &igb_set_mac;
netdev->change_mtu = &igb_change_mtu;
netdev->do_ioctl = &igb_ioctl;
#ifdef HAVE_TX_TIMEOUT
netdev->tx_timeout = &igb_tx_timeout;
#endif
netdev->vlan_rx_register = igb_vlan_mode;
netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
#ifdef CONFIG_NET_POLL_CONTROLLER
netdev->poll_controller = igb_netpoll;
#endif
netdev->hard_start_xmit = &igb_xmit_frame;
#endif /* HAVE_NET_DEVICE_OPS */
igb_set_ethtool_ops(netdev);
#ifdef HAVE_TX_TIMEOUT
netdev->watchdog_timeo = 5 * HZ;
#endif
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
adapter->bd_number = cards_found;
/* setup the private structure */
err = igb_sw_init(adapter);
if (err)
goto err_sw_init;
e1000_get_bus_info(hw);
hw->phy.autoneg_wait_to_complete = FALSE;
hw->mac.adaptive_ifs = FALSE;
/* Copper options */
if (hw->phy.media_type == e1000_media_type_copper) {
hw->phy.mdix = AUTO_ALL_MODES;
hw->phy.disable_polarity_correction = FALSE;
hw->phy.ms_type = e1000_ms_hw_default;
}
if (e1000_check_reset_block(hw))
dev_info(pci_dev_to_dev(pdev),
"PHY reset is blocked due to SOL/IDER session.\n");
/*
* features is initialized to 0 in allocation, it might have bits
* set by igb_sw_init so we should use an or instead of an
* assignment.
*/
netdev->features |= NETIF_F_SG |
NETIF_F_IP_CSUM |
#ifdef NETIF_F_IPV6_CSUM
NETIF_F_IPV6_CSUM |
#endif
#ifdef NETIF_F_TSO
NETIF_F_TSO |
#ifdef NETIF_F_TSO6
NETIF_F_TSO6 |
#endif
#endif /* NETIF_F_TSO */
#ifdef NETIF_F_RXHASH
NETIF_F_RXHASH |
#endif
#ifdef HAVE_NDO_SET_FEATURES
NETIF_F_RXCSUM |
#endif
NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_TX;
#ifdef HAVE_NDO_SET_FEATURES
/* copy netdev features into list of user selectable features */
netdev->hw_features |= netdev->features;
#ifndef IGB_NO_LRO
/* give us the option of enabling LRO later */
netdev->hw_features |= NETIF_F_LRO;
#endif
#else
#ifdef NETIF_F_GRO
/* this is only needed on kernels prior to 2.6.39 */
netdev->features |= NETIF_F_GRO;
#endif
#endif
/* set this bit last since it cannot be part of hw_features */
netdev->features |= NETIF_F_HW_VLAN_FILTER;
#ifdef HAVE_NETDEV_VLAN_FEATURES
netdev->vlan_features |= NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM |
NETIF_F_SG;
#endif
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
if (hw->mac.type >= e1000_82576)
netdev->features |= NETIF_F_SCTP_CSUM;
adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
#ifdef DEBUG
if (adapter->dmac != IGB_DMAC_DISABLE)
printk("%s: DMA Coalescing is enabled..\n", netdev->name);
#endif
/* before reading the NVM, reset the controller to put the device in a
* known good starting state */
e1000_reset_hw(hw);
/* make sure the NVM is good */
if (e1000_validate_nvm_checksum(hw) < 0) {
dev_err(pci_dev_to_dev(pdev), "The NVM Checksum Is Not"
" Valid\n");
err = -EIO;
goto err_eeprom;
}
/* copy the MAC address out of the NVM */
if (e1000_read_mac_addr(hw))
dev_err(pci_dev_to_dev(pdev), "NVM Read Error\n");
memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
#ifdef ETHTOOL_GPERMADDR
memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->perm_addr)) {
#else
if (!is_valid_ether_addr(netdev->dev_addr)) {
#endif
dev_err(pci_dev_to_dev(pdev), "Invalid MAC Address\n");
err = -EIO;
goto err_eeprom;
}
memcpy(&adapter->mac_table[0].addr, hw->mac.addr, netdev->addr_len);
adapter->mac_table[0].queue = adapter->vfs_allocated_count;
adapter->mac_table[0].state = (IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE);
igb_rar_set(adapter, 0);
/* get firmware version for ethtool -i */
igb_set_fw_version(adapter);
setup_timer(&adapter->watchdog_timer, &igb_watchdog,
(unsigned long) adapter);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
setup_timer(&adapter->dma_err_timer, &igb_dma_err_timer,
(unsigned long) adapter);
setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
(unsigned long) adapter);
INIT_WORK(&adapter->reset_task, igb_reset_task);
INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
INIT_WORK(&adapter->dma_err_task, igb_dma_err_task);
/* Initialize link properties that are user-changeable */
adapter->fc_autoneg = true;
hw->mac.autoneg = true;
hw->phy.autoneg_advertised = 0x2f;
hw->fc.requested_mode = e1000_fc_default;
hw->fc.current_mode = e1000_fc_default;
e1000_validate_mdi_setting(hw);
/* By default, support wake on port A */
if (hw->bus.func == 0)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
/* Check the NVM for wake support for non-port A ports */
if (hw->mac.type >= e1000_82580)
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
&eeprom_data);
else if (hw->bus.func == 1)
e1000_read_nvm(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
if (eeprom_data & IGB_EEPROM_APME)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
/* now that we have the eeprom settings, apply the special cases where
* the eeprom may be wrong or the board simply won't support wake on
* lan on a particular port */
switch (pdev->device) {
case E1000_DEV_ID_82575GB_QUAD_COPPER:
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82576_FIBER:
case E1000_DEV_ID_82576_SERDES:
/* Wake events only supported on port A for dual fiber
* regardless of eeprom setting */
if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FUNC_1)
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
case E1000_DEV_ID_82576_QUAD_COPPER:
case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
/* if quad port adapter, disable WoL on all but port A */
if (global_quad_port_a != 0)
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
else
adapter->flags |= IGB_FLAG_QUAD_PORT_A;
/* Reset for multiple quad port adapters */
if (++global_quad_port_a == 4)
global_quad_port_a = 0;
break;
default:
/* If the device can't wake, don't set software support */
if (!device_can_wakeup(&adapter->pdev->dev))
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
}
/* initialize the wol settings based on the eeprom settings */
if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
adapter->wol |= E1000_WUFC_MAG;
/* Some vendors want WoL disabled by default, but still supported */
if ((hw->mac.type == e1000_i350) &&
(pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
adapter->wol = 0;
}
device_set_wakeup_enable(pci_dev_to_dev(adapter->pdev),
adapter->flags & IGB_FLAG_WOL_SUPPORTED);
/* reset the hardware with the new settings */
igb_reset(adapter);
/* let the f/w know that the h/w is now under the control of the
* driver. */
igb_get_hw_control(adapter);
strncpy(netdev->name, "eth%d", IFNAMSIZ);
err = register_netdev(netdev);
if (err)
goto err_register;
#ifdef CONFIG_IGB_VMDQ_NETDEV
err = igb_init_vmdq_netdevs(adapter);
if (err)
goto err_register;
#endif
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
#ifdef IGB_DCA
if (dca_add_requester(&pdev->dev) == E1000_SUCCESS) {
adapter->flags |= IGB_FLAG_DCA_ENABLED;
dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
igb_setup_dca(adapter);
}
#endif
#ifdef CONFIG_IGB_PTP
/* do hw tstamp init after resetting */
igb_ptp_init(adapter);
#endif /* CONFIG_IGB_PTP */
dev_info(pci_dev_to_dev(pdev), "Intel(R) Gigabit Ethernet Network Connection\n");
/* print bus type/speed/width info */
dev_info(pci_dev_to_dev(pdev), "%s: (PCIe:%s:%s) ",
netdev->name,
((hw->bus.speed == e1000_bus_speed_2500) ? "2.5GT/s" :
(hw->bus.speed == e1000_bus_speed_5000) ? "5.0GT/s" :
"unknown"),
((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
(hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
(hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
"unknown"));
dev_info(pci_dev_to_dev(pdev), "%s: MAC: ", netdev->name);
for (i = 0; i < 6; i++)
printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
ret_val = e1000_read_pba_string(hw, pba_str, E1000_PBANUM_LENGTH);
if (ret_val)
strcpy(pba_str, "Unknown");
dev_info(pci_dev_to_dev(pdev), "%s: PBA No: %s\n", netdev->name,
pba_str);
/* Initialize the thermal sensor on i350 devices. */
if (hw->mac.type == e1000_i350) {
if (hw->bus.func == 0) {
u16 ets_word;
/*
* Read the NVM to determine if this i350 device
* supports an external thermal sensor.
*/
e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_word);
if (ets_word != 0x0000 && ets_word != 0xFFFF)
adapter->ets = true;
else
adapter->ets = false;
}
#ifdef IGB_SYSFS
igb_sysfs_init(adapter);
#else
#ifdef IGB_PROCFS
igb_procfs_init(adapter);
#endif /* IGB_PROCFS */
#endif /* IGB_SYSFS */
} else {
adapter->ets = false;
}
switch (hw->mac.type) {
case e1000_i350:
case e1000_i210:
case e1000_i211:
/* Enable EEE for internal copper PHY devices */
if (hw->phy.media_type == e1000_media_type_copper)
e1000_set_eee_i350(hw);
/* send driver version info to firmware */
igb_init_fw(adapter);
break;
default:
break;
}
#ifndef IGB_NO_LRO
if (netdev->features & NETIF_F_LRO)
dev_info(pci_dev_to_dev(pdev), "Internal LRO is enabled \n");
else
dev_info(pci_dev_to_dev(pdev), "LRO is disabled \n");
#endif
dev_info(pci_dev_to_dev(pdev),
"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
adapter->msix_entries ? "MSI-X" :
(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
adapter->num_rx_queues, adapter->num_tx_queues);
cards_found++;
pm_runtime_put_noidle(&pdev->dev);
return 0;
err_register:
igb_release_hw_control(adapter);
err_eeprom:
if (!e1000_check_reset_block(hw))
e1000_phy_hw_reset(hw);
if (hw->flash_address)
iounmap(hw->flash_address);
err_sw_init:
igb_clear_interrupt_scheme(adapter);
igb_reset_sriov_capability(adapter);
iounmap(hw->hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* igb_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* igb_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void __devexit igb_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pm_runtime_get_noresume(&pdev->dev);
#ifdef CONFIG_IGB_PTP
igb_ptp_stop(adapter);
#endif /* CONFIG_IGB_PTP */
/* flush_scheduled work may reschedule our watchdog task, so
* explicitly disable watchdog tasks from being rescheduled */
set_bit(__IGB_DOWN, &adapter->state);
del_timer_sync(&adapter->watchdog_timer);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
del_timer_sync(&adapter->dma_err_timer);
del_timer_sync(&adapter->phy_info_timer);
flush_scheduled_work();
#ifdef IGB_DCA
if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
dev_info(pci_dev_to_dev(pdev), "DCA disabled\n");
dca_remove_requester(&pdev->dev);
adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_DISABLE);
}
#endif
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant. */
igb_release_hw_control(adapter);
unregister_netdev(netdev);
#ifdef CONFIG_IGB_VMDQ_NETDEV
igb_remove_vmdq_netdevs(adapter);
#endif
igb_clear_interrupt_scheme(adapter);
igb_reset_sriov_capability(adapter);
iounmap(hw->hw_addr);
if (hw->flash_address)
iounmap(hw->flash_address);
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
#ifdef IGB_SYSFS
igb_sysfs_exit(adapter);
#else
#ifdef IGB_PROCFS
igb_procfs_exit(adapter);
#endif /* IGB_PROCFS */
#endif /* IGB_SYSFS */
kfree(adapter->mac_table);
kfree(adapter->shadow_vfta);
free_netdev(netdev);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
/**
* igb_sw_init - Initialize general software structures (struct igb_adapter)
* @adapter: board private structure to initialize
*
* igb_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
/* set default ring sizes */
adapter->tx_ring_count = IGB_DEFAULT_TXD;
adapter->rx_ring_count = IGB_DEFAULT_RXD;
/* set default work limits */
adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
VLAN_HLEN;
/* Initialize the hardware-specific values */
if (e1000_setup_init_funcs(hw, TRUE)) {
dev_err(pci_dev_to_dev(pdev), "Hardware Initialization Failure\n");
return -EIO;
}
igb_check_options(adapter);
adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
hw->mac.rar_entry_count,
GFP_ATOMIC);
/* Setup and initialize a copy of the hw vlan table array */
adapter->shadow_vfta = (u32 *)kzalloc(sizeof(u32) * E1000_VFTA_ENTRIES,
GFP_ATOMIC);
/* These calls may decrease the number of queues */
if (hw->mac.type < e1000_i210) {
igb_set_sriov_capability(adapter);
}
if (igb_init_interrupt_scheme(adapter)) {
dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n");
return -ENOMEM;
}
/* Explicitly disable IRQ since the NIC can be in any state. */
igb_irq_disable(adapter);
set_bit(__IGB_DOWN, &adapter->state);
return 0;
}
/**
* igb_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int __igb_open(struct net_device *netdev, bool resuming)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
#ifdef CONFIG_PM_RUNTIME
struct pci_dev *pdev = adapter->pdev;
#endif /* CONFIG_PM_RUNTIME */
int err;
int i;
/* disallow open during test */
if (test_bit(__IGB_TESTING, &adapter->state)) {
WARN_ON(resuming);
return -EBUSY;
}
#ifdef CONFIG_PM_RUNTIME
if (!resuming)
pm_runtime_get_sync(&pdev->dev);
#endif /* CONFIG_PM_RUNTIME */
netif_carrier_off(netdev);
/* allocate transmit descriptors */
err = igb_setup_all_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = igb_setup_all_rx_resources(adapter);
if (err)
goto err_setup_rx;
igb_power_up_link(adapter);
/* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our
* clean_rx handler before we do so. */
igb_configure(adapter);
err = igb_request_irq(adapter);
if (err)
goto err_req_irq;
/* From here on the code is the same as igb_up() */
clear_bit(__IGB_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&(adapter->q_vector[i]->napi));
igb_configure_lli(adapter);
/* Clear any pending interrupts. */
E1000_READ_REG(hw, E1000_ICR);
igb_irq_enable(adapter);
/* notify VFs that reset has been completed */
if (adapter->vfs_allocated_count) {
u32 reg_data = E1000_READ_REG(hw, E1000_CTRL_EXT);
reg_data |= E1000_CTRL_EXT_PFRSTD;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg_data);
}
netif_tx_start_all_queues(netdev);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
schedule_work(&adapter->dma_err_task);
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
return E1000_SUCCESS;
err_req_irq:
igb_release_hw_control(adapter);
igb_power_down_link(adapter);
igb_free_all_rx_resources(adapter);
err_setup_rx:
igb_free_all_tx_resources(adapter);
err_setup_tx:
igb_reset(adapter);
#ifdef CONFIG_PM_RUNTIME
if (!resuming)
pm_runtime_put(&pdev->dev);
#endif /* CONFIG_PM_RUNTIME */
return err;
}
static int igb_open(struct net_device *netdev)
{
return __igb_open(netdev, false);
}
/**
* igb_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the driver's control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int __igb_close(struct net_device *netdev, bool suspending)
{
struct igb_adapter *adapter = netdev_priv(netdev);
#ifdef CONFIG_PM_RUNTIME
struct pci_dev *pdev = adapter->pdev;
#endif /* CONFIG_PM_RUNTIME */
WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
#ifdef CONFIG_PM_RUNTIME
if (!suspending)
pm_runtime_get_sync(&pdev->dev);
#endif /* CONFIG_PM_RUNTIME */
igb_down(adapter);
igb_release_hw_control(adapter);
igb_free_irq(adapter);
igb_free_all_tx_resources(adapter);
igb_free_all_rx_resources(adapter);
#ifdef CONFIG_PM_RUNTIME
if (!suspending)
pm_runtime_put_sync(&pdev->dev);
#endif /* CONFIG_PM_RUNTIME */
return 0;
}
static int igb_close(struct net_device *netdev)
{
return __igb_close(netdev, false);
}
/**
* igb_setup_tx_resources - allocate Tx resources (Descriptors)
* @tx_ring: tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
**/
int igb_setup_tx_resources(struct igb_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
int size;
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
tx_ring->tx_buffer_info = vzalloc(size);
if (!tx_ring->tx_buffer_info)
goto err;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc)
goto err;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
vfree(tx_ring->tx_buffer_info);
dev_err(dev,
"Unable to allocate memory for the transmit descriptor ring\n");
return -ENOMEM;
}
/**
* igb_setup_all_tx_resources - wrapper to allocate Tx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int i, err = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
err = igb_setup_tx_resources(adapter->tx_ring[i]);
if (err) {
dev_err(pci_dev_to_dev(pdev),
"Allocation for Tx Queue %u failed\n", i);
for (i--; i >= 0; i--)
igb_free_tx_resources(adapter->tx_ring[i]);
break;
}
}
return err;
}
/**
* igb_setup_tctl - configure the transmit control registers
* @adapter: Board private structure
**/
void igb_setup_tctl(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 tctl;
/* disable queue 0 which is enabled by default on 82575 and 82576 */
E1000_WRITE_REG(hw, E1000_TXDCTL(0), 0);
/* Program the Transmit Control Register */
tctl = E1000_READ_REG(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
e1000_config_collision_dist(hw);
/* Enable transmits */
tctl |= E1000_TCTL_EN;
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
}
/**
* igb_configure_tx_ring - Configure transmit ring after Reset
* @adapter: board private structure
* @ring: tx ring to configure
*
* Configure a transmit ring after a reset.
**/
void igb_configure_tx_ring(struct igb_adapter *adapter,
struct igb_ring *ring)
{
struct e1000_hw *hw = &adapter->hw;
u32 txdctl = 0;
u64 tdba = ring->dma;
int reg_idx = ring->reg_idx;
/* disable the queue */
E1000_WRITE_REG(hw, E1000_TXDCTL(reg_idx), 0);
E1000_WRITE_FLUSH(hw);
mdelay(10);
E1000_WRITE_REG(hw, E1000_TDLEN(reg_idx),
ring->count * sizeof(union e1000_adv_tx_desc));
E1000_WRITE_REG(hw, E1000_TDBAL(reg_idx),
tdba & 0x00000000ffffffffULL);
E1000_WRITE_REG(hw, E1000_TDBAH(reg_idx), tdba >> 32);
ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
E1000_WRITE_REG(hw, E1000_TDH(reg_idx), 0);
writel(0, ring->tail);
txdctl |= IGB_TX_PTHRESH;
txdctl |= IGB_TX_HTHRESH << 8;
txdctl |= IGB_TX_WTHRESH << 16;
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_TXDCTL(reg_idx), txdctl);
}
/**
* igb_configure_tx - Configure transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void igb_configure_tx(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
}
/**
* igb_setup_rx_resources - allocate Rx resources (Descriptors)
* @rx_ring: rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
int igb_setup_rx_resources(struct igb_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
int size, desc_len;
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
rx_ring->rx_buffer_info = vzalloc(size);
if (!rx_ring->rx_buffer_info)
goto err;
desc_len = sizeof(union e1000_adv_rx_desc);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * desc_len;
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc)
goto err;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
return 0;
err:
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
dev_err(dev, "Unable to allocate memory for the receive descriptor"
" ring\n");
return -ENOMEM;
}
/**
* igb_setup_all_rx_resources - wrapper to allocate Rx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int i, err = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
err = igb_setup_rx_resources(adapter->rx_ring[i]);
if (err) {
dev_err(pci_dev_to_dev(pdev),
"Allocation for Rx Queue %u failed\n", i);
for (i--; i >= 0; i--)
igb_free_rx_resources(adapter->rx_ring[i]);
break;
}
}
return err;
}
/**
* igb_setup_mrqc - configure the multiple receive queue control registers
* @adapter: Board private structure
**/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 mrqc, rxcsum;
u32 j, num_rx_queues, shift = 0, shift2 = 0;
union e1000_reta {
u32 dword;
u8 bytes[4];
} reta;
static const u8 rsshash[40] = {
0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
/* Fill out hash function seeds */
for (j = 0; j < 10; j++) {
u32 rsskey = rsshash[(j * 4)];
rsskey |= rsshash[(j * 4) + 1] << 8;
rsskey |= rsshash[(j * 4) + 2] << 16;
rsskey |= rsshash[(j * 4) + 3] << 24;
E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), j, rsskey);
}
num_rx_queues = adapter->rss_queues;
if (adapter->vfs_allocated_count || adapter->vmdq_pools) {
/* 82575 and 82576 supports 2 RSS queues for VMDq */
switch (hw->mac.type) {
case e1000_i350:
case e1000_82580:
num_rx_queues = 1;
shift = 0;
break;
case e1000_82576:
shift = 3;
num_rx_queues = 2;
break;
case e1000_82575:
shift = 2;
shift2 = 6;
default:
break;
}
} else {
if (hw->mac.type == e1000_82575)
shift = 6;
}
for (j = 0; j < (32 * 4); j++) {
reta.bytes[j & 3] = (j % num_rx_queues) << shift;
if (shift2)
reta.bytes[j & 3] |= num_rx_queues << shift2;
if ((j & 3) == 3)
E1000_WRITE_REG(hw, E1000_RETA(j >> 2), reta.dword);
}
/*
* Disable raw packet checksumming so that RSS hash is placed in
* descriptor on writeback. No need to enable TCP/UDP/IP checksum
* offloads as they are enabled by default
*/
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
if (adapter->hw.mac.type >= e1000_82576)
/* Enable Receive Checksum Offload for SCTP */
rxcsum |= E1000_RXCSUM_CRCOFL;
/* Don't need to set TUOFL or IPOFL, they default to 1 */
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
/* If VMDq is enabled then we set the appropriate mode for that, else
* we default to RSS so that an RSS hash is calculated per packet even
* if we are only using one queue */
if (adapter->vfs_allocated_count || adapter->vmdq_pools) {
if (hw->mac.type > e1000_82575) {
/* Set the default pool for the PF's first queue */
u32 vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
E1000_VT_CTL_DISABLE_DEF_POOL);
vtctl |= adapter->vfs_allocated_count <<
E1000_VT_CTL_DEFAULT_POOL_SHIFT;
E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
} else if (adapter->rss_queues > 1) {
/* set default queue for pool 1 to queue 2 */
E1000_WRITE_REG(hw, E1000_VT_CTL,
adapter->rss_queues << 7);
}
if (adapter->rss_queues > 1)
mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
else
mrqc = E1000_MRQC_ENABLE_VMDQ;
} else {
mrqc = E1000_MRQC_ENABLE_RSS_4Q;
}
igb_vmm_control(adapter);
/*
* Generate RSS hash based on packet types, TCP/UDP
* port numbers and/or IPv4/v6 src and dst addresses
*/
mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
E1000_MRQC_RSS_FIELD_IPV4_TCP |
E1000_MRQC_RSS_FIELD_IPV6 |
E1000_MRQC_RSS_FIELD_IPV6_TCP |
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}
/**
* igb_setup_rctl - configure the receive control registers
* @adapter: Board private structure
**/
void igb_setup_rctl(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/*
* enable stripping of CRC. It's unlikely this will break BMC
* redirection as it did with e1000. Newer features require
* that the HW strips the CRC.
*/
rctl |= E1000_RCTL_SECRC;
/* disable store bad packets and clear size bits. */
rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
/* enable LPE to prevent packets larger than max_frame_size */
rctl |= E1000_RCTL_LPE;
/* disable queue 0 to prevent tail write w/o re-config */
E1000_WRITE_REG(hw, E1000_RXDCTL(0), 0);
/* Attention!!! For SR-IOV PF driver operations you must enable
* queue drop for all VF and PF queues to prevent head of line blocking
* if an un-trusted VF does not provide descriptors to hardware.
*/
if (adapter->vfs_allocated_count) {
/* set all queue drop enable bits */
E1000_WRITE_REG(hw, E1000_QDE, ALL_QUEUES);
}
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
int vfn)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr;
/* if it isn't the PF check to see if VFs are enabled and
* increase the size to support vlan tags */
if (vfn < adapter->vfs_allocated_count &&
adapter->vf_data[vfn].vlans_enabled)
size += VLAN_HLEN;
#ifdef CONFIG_IGB_VMDQ_NETDEV
if (vfn >= adapter->vfs_allocated_count) {
int queue = vfn - adapter->vfs_allocated_count;
struct igb_vmdq_adapter *vadapter;
vadapter = netdev_priv(adapter->vmdq_netdev[queue-1]);
if (vadapter->vlgrp)
size += VLAN_HLEN;
}
#endif
vmolr = E1000_READ_REG(hw, E1000_VMOLR(vfn));
vmolr &= ~E1000_VMOLR_RLPML_MASK;
vmolr |= size | E1000_VMOLR_LPE;
E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
return 0;
}
/**
* igb_rlpml_set - set maximum receive packet size
* @adapter: board private structure
*
* Configure maximum receivable packet size.
**/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
u32 max_frame_size = adapter->max_frame_size;
struct e1000_hw *hw = &adapter->hw;
u16 pf_id = adapter->vfs_allocated_count;
if (adapter->vmdq_pools && hw->mac.type != e1000_82575) {
int i;
for (i = 0; i < adapter->vmdq_pools; i++)
igb_set_vf_rlpml(adapter, max_frame_size, pf_id + i);
/*
* If we're in VMDQ or SR-IOV mode, then set global RLPML
* to our max jumbo frame size, in case we need to enable
* jumbo frames on one of the rings later.
* This will not pass over-length frames into the default
* queue because it's gated by the VMOLR.RLPML.
*/
max_frame_size = MAX_JUMBO_FRAME_SIZE;
}
/* Set VF RLPML for the PF device. */
if (adapter->vfs_allocated_count)
igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
E1000_WRITE_REG(hw, E1000_RLPML, max_frame_size);
}
static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
int vfn, bool enable)
{
struct e1000_hw *hw = &adapter->hw;
u32 val;
void __iomem *reg;
if (hw->mac.type < e1000_82576)
return;
if (hw->mac.type == e1000_i350)
reg = hw->hw_addr + E1000_DVMOLR(vfn);
else
reg = hw->hw_addr + E1000_VMOLR(vfn);
val = readl(reg);
if (enable)
val |= E1000_VMOLR_STRVLAN;
else
val &= ~(E1000_VMOLR_STRVLAN);
writel(val, reg);
}
static inline void igb_set_vmolr(struct igb_adapter *adapter,
int vfn, bool aupe)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr;
/*
* This register exists only on 82576 and newer so if we are older then
* we should exit and do nothing
*/
if (hw->mac.type < e1000_82576)
return;
vmolr = E1000_READ_REG(hw, E1000_VMOLR(vfn));
if (aupe)
vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
else
vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
/* clear all bits that might not be set */
vmolr &= ~E1000_VMOLR_RSSE;
if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
vmolr |= E1000_VMOLR_LPE; /* Accept long packets */
E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
}
/**
* igb_configure_rx_ring - Configure a receive ring after Reset
* @adapter: board private structure
* @ring: receive ring to be configured
*
* Configure the Rx unit of the MAC after a reset.
**/
void igb_configure_rx_ring(struct igb_adapter *adapter,
struct igb_ring *ring)
{
struct e1000_hw *hw = &adapter->hw;
u64 rdba = ring->dma;
int reg_idx = ring->reg_idx;
u32 srrctl = 0, rxdctl = 0;
/* disable the queue */
E1000_WRITE_REG(hw, E1000_RXDCTL(reg_idx), 0);
/* Set DMA base address registers */
E1000_WRITE_REG(hw, E1000_RDBAL(reg_idx),
rdba & 0x00000000ffffffffULL);
E1000_WRITE_REG(hw, E1000_RDBAH(reg_idx), rdba >> 32);
E1000_WRITE_REG(hw, E1000_RDLEN(reg_idx),
ring->count * sizeof(union e1000_adv_rx_desc));
/* initialize head and tail */
ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
E1000_WRITE_REG(hw, E1000_RDH(reg_idx), 0);
writel(0, ring->tail);
/* set descriptor configuration */
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
#else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
E1000_SRRCTL_BSIZEPKT_SHIFT;
srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
#ifdef CONFIG_IGB_PTP
if (hw->mac.type >= e1000_82580)
srrctl |= E1000_SRRCTL_TIMESTAMP;
#endif /* CONFIG_IGB_PTP */
/*
* We should set the drop enable bit if:
* SR-IOV is enabled
* or
* Flow Control is disabled and number of RX queues > 1
*
* This allows us to avoid head of line blocking for security
* and performance reasons.
*/
if (adapter->vfs_allocated_count ||
(adapter->num_rx_queues > 1 &&
(hw->fc.requested_mode == e1000_fc_none ||
hw->fc.requested_mode == e1000_fc_rx_pause)))
srrctl |= E1000_SRRCTL_DROP_EN;
E1000_WRITE_REG(hw, E1000_SRRCTL(reg_idx), srrctl);
/* set filtering for VMDQ pools */
igb_set_vmolr(adapter, reg_idx & 0x7, true);
rxdctl |= IGB_RX_PTHRESH;
rxdctl |= IGB_RX_HTHRESH << 8;
rxdctl |= IGB_RX_WTHRESH << 16;
/* enable receive descriptor fetching */
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_RXDCTL(reg_idx), rxdctl);
}
/**
* igb_configure_rx - Configure receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void igb_configure_rx(struct igb_adapter *adapter)
{
int i;
/* set UTA to appropriate mode */
igb_set_uta(adapter);
igb_full_sync_mac_table(adapter);
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring */
for (i = 0; i < adapter->num_rx_queues; i++)
igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
}
/**
* igb_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
void igb_free_tx_resources(struct igb_ring *tx_ring)
{
igb_clean_tx_ring(tx_ring);
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
/* if not set, then don't free */
if (!tx_ring->desc)
return;
dma_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* igb_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
**/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igb_free_tx_resources(adapter->tx_ring[i]);
}
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
struct igb_tx_buffer *tx_buffer)
{
if (tx_buffer->skb) {
dev_kfree_skb_any(tx_buffer->skb);
if (dma_unmap_len(tx_buffer, len))
dma_unmap_single(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
} else if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
}
tx_buffer->next_to_watch = NULL;
tx_buffer->skb = NULL;
dma_unmap_len_set(tx_buffer, len, 0);
/* buffer_info must be completely set up in the transmit path */
}
/**
* igb_clean_tx_ring - Free Tx Buffers
* @tx_ring: ring to be cleaned
**/
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
{
struct igb_tx_buffer *buffer_info;
unsigned long size;
u16 i;
if (!tx_ring->tx_buffer_info)
return;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->tx_buffer_info[i];
igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
}
#ifdef CONFIG_BQL
netdev_tx_reset_queue(txring_txq(tx_ring));
#endif /* CONFIG_BQL */
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
memset(tx_ring->tx_buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
}
/**
* igb_clean_all_tx_rings - Free Tx Buffers for all queues
* @adapter: board private structure
**/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igb_clean_tx_ring(adapter->tx_ring[i]);
}
/**
* igb_free_rx_resources - Free Rx Resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
void igb_free_rx_resources(struct igb_ring *rx_ring)
{
igb_clean_rx_ring(rx_ring);
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
/* if not set, then don't free */
if (!rx_ring->desc)
return;
dma_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* igb_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
**/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
igb_free_rx_resources(adapter->rx_ring[i]);
}
/**
* igb_clean_rx_ring - Free Rx Buffers per Queue
* @rx_ring: ring to free buffers from
**/
void igb_clean_rx_ring(struct igb_ring *rx_ring)
{
unsigned long size;
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
const int bufsz = rx_ring->rx_buffer_len;
#else
const int bufsz = IGB_RX_HDR_LEN;
#endif
u16 i;
if (!rx_ring->rx_buffer_info)
return;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
if (buffer_info->dma) {
dma_unmap_single(rx_ring->dev,
buffer_info->dma,
bufsz,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
}
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
if (buffer_info->page_dma) {
dma_unmap_page(rx_ring->dev,
buffer_info->page_dma,
PAGE_SIZE / 2,
DMA_FROM_DEVICE);
buffer_info->page_dma = 0;
}
if (buffer_info->page) {
put_page(buffer_info->page);
buffer_info->page = NULL;
buffer_info->page_offset = 0;
}
#endif
}
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
memset(rx_ring->rx_buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* igb_clean_all_rx_rings - Free Rx Buffers for all queues
* @adapter: board private structure
**/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
igb_clean_rx_ring(adapter->rx_ring[i]);
}
/**
* igb_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int igb_set_mac(struct net_device *netdev, void *p)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
igb_del_mac_filter(adapter, hw->mac.addr,
adapter->vfs_allocated_count);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
/* set the correct pool for the new PF MAC address in entry 0 */
return igb_add_mac_filter(adapter, hw->mac.addr,
adapter->vfs_allocated_count);
}
/**
* igb_write_mc_addr_list - write multicast addresses to MTA
* @netdev: network interface device structure
*
* Writes multicast address list to the MTA hash table.
* Returns: -ENOMEM on failure
* 0 on no addresses written
* X on writing X addresses to MTA
**/
int igb_write_mc_addr_list(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
#ifdef NETDEV_HW_ADDR_T_MULTICAST
struct netdev_hw_addr *ha;
#else
struct dev_mc_list *ha;
#endif
u8 *mta_list;
int i, count;
#ifdef CONFIG_IGB_VMDQ_NETDEV
int vm;
#endif
count = netdev_mc_count(netdev);
#ifdef CONFIG_IGB_VMDQ_NETDEV
for (vm = 1; vm < adapter->vmdq_pools; vm++) {
if (!adapter->vmdq_netdev[vm])
break;
if (!netif_running(adapter->vmdq_netdev[vm]))
continue;
count += netdev_mc_count(adapter->vmdq_netdev[vm]);
}
#endif
if (!count) {
e1000_update_mc_addr_list(hw, NULL, 0);
return 0;
}
mta_list = kzalloc(count * 6, GFP_ATOMIC);
if (!mta_list)
return -ENOMEM;
/* The shared function expects a packed array of only addresses. */
i = 0;
netdev_for_each_mc_addr(ha, netdev)
#ifdef NETDEV_HW_ADDR_T_MULTICAST
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
#else
memcpy(mta_list + (i++ * ETH_ALEN), ha->dmi_addr, ETH_ALEN);
#endif
#ifdef CONFIG_IGB_VMDQ_NETDEV
for (vm = 1; vm < adapter->vmdq_pools; vm++) {
if (!adapter->vmdq_netdev[vm])
break;
if (!netif_running(adapter->vmdq_netdev[vm]) ||
!netdev_mc_count(adapter->vmdq_netdev[vm]))
continue;
netdev_for_each_mc_addr(ha, adapter->vmdq_netdev[vm])
#ifdef NETDEV_HW_ADDR_T_MULTICAST
memcpy(mta_list + (i++ * ETH_ALEN),
ha->addr, ETH_ALEN);
#else
memcpy(mta_list + (i++ * ETH_ALEN),
ha->dmi_addr, ETH_ALEN);
#endif
}
#endif
e1000_update_mc_addr_list(hw, mta_list, i);
kfree(mta_list);
return count;
}
void igb_rar_set(struct igb_adapter *adapter, u32 index)
{
u32 rar_low, rar_high;
struct e1000_hw *hw = &adapter->hw;
u8 *addr = adapter->mac_table[index].addr;
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
((u32) addr[2] << 16) | ((u32) addr[3] << 24));
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
/* Indicate to hardware the Address is Valid. */
if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE)
rar_high |= E1000_RAH_AV;
if (hw->mac.type == e1000_82575)
rar_high |= E1000_RAH_POOL_1 * adapter->mac_table[index].queue;
else
rar_high |= E1000_RAH_POOL_1 << adapter->mac_table[index].queue;
E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
E1000_WRITE_FLUSH(hw);
}
void igb_full_sync_mac_table(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
igb_rar_set(adapter, i);
}
}
void igb_sync_mac_table(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
if (adapter->mac_table[i].state & IGB_MAC_STATE_MODIFIED)
igb_rar_set(adapter, i);
adapter->mac_table[i].state &= ~(IGB_MAC_STATE_MODIFIED);
}
}
int igb_available_rars(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i, count = 0;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
if (adapter->mac_table[i].state == 0)
count++;
}
return count;
}
#ifdef HAVE_SET_RX_MODE
/**
* igb_write_uc_addr_list - write unicast addresses to RAR table
* @netdev: network interface device structure
*
* Writes unicast address list to the RAR table.
* Returns: -ENOMEM on failure/insufficient address space
* 0 on no addresses written
* X on writing X addresses to the RAR table
**/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
unsigned int vfn = adapter->vfs_allocated_count;
int count = 0;
/* return ENOMEM indicating insufficient memory for addresses */
if (netdev_uc_count(netdev) > igb_available_rars(adapter))
return -ENOMEM;
if (!netdev_uc_empty(netdev)) {
#ifdef NETDEV_HW_ADDR_T_UNICAST
struct netdev_hw_addr *ha;
#else
struct dev_mc_list *ha;
#endif
netdev_for_each_uc_addr(ha, netdev) {
#ifdef NETDEV_HW_ADDR_T_UNICAST
igb_del_mac_filter(adapter, ha->addr, vfn);
igb_add_mac_filter(adapter, ha->addr, vfn);
#else
igb_del_mac_filter(adapter, ha->da_addr, vfn);
igb_add_mac_filter(adapter, ha->da_addr, vfn);
#endif
count++;
}
}
return count;
}
#endif /* HAVE_SET_RX_MODE */
/**
* igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_rx_mode entry point is called whenever the unicast or multicast
* address lists or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper unicast, multicast,
* promiscuous mode, and all-multi behavior.
**/
static void igb_set_rx_mode(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
unsigned int vfn = adapter->vfs_allocated_count;
u32 rctl, vmolr = 0;
int count;
/* Check for Promiscuous and All Multicast modes */
rctl = E1000_READ_REG(hw, E1000_RCTL);
/* clear the effected bits */
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
if (netdev->flags & IFF_PROMISC) {
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
} else {
if (netdev->flags & IFF_ALLMULTI) {
rctl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else {
/*
* Write addresses to the MTA, if the attempt fails
* then we should just turn on promiscuous mode so
* that we can at least receive multicast traffic
*/
count = igb_write_mc_addr_list(netdev);
if (count < 0) {
rctl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else if (count) {
vmolr |= E1000_VMOLR_ROMPE;
}
}
#ifdef HAVE_SET_RX_MODE
/*
* Write addresses to available RAR registers, if there is not
* sufficient space to store all the addresses then enable
* unicast promiscuous mode
*/
count = igb_write_uc_addr_list(netdev);
if (count < 0) {
rctl |= E1000_RCTL_UPE;
vmolr |= E1000_VMOLR_ROPE;
}
#endif /* HAVE_SET_RX_MODE */
rctl |= E1000_RCTL_VFE;
}
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/*
* In order to support SR-IOV and eventually VMDq it is necessary to set
* the VMOLR to enable the appropriate modes. Without this workaround
* we will have issues with VLAN tag stripping not being done for frames
* that are only arriving because we are the default pool
*/
if (hw->mac.type < e1000_82576)
return;
vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
igb_restore_vf_multicasts(adapter);
}
static void igb_check_wvbr(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 wvbr = 0;
switch (hw->mac.type) {
case e1000_82576:
case e1000_i350:
if (!(wvbr = E1000_READ_REG(hw, E1000_WVBR)))
return;
break;
default:
break;
}
adapter->wvbr |= wvbr;
}
#define IGB_STAGGERED_QUEUE_OFFSET 8
static void igb_spoof_check(struct igb_adapter *adapter)
{
int j;
if (!adapter->wvbr)
return;
for(j = 0; j < adapter->vfs_allocated_count; j++) {
if (adapter->wvbr & (1 << j) ||
adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
DPRINTK(DRV, WARNING,
"Spoof event(s) detected on VF %d\n", j);
adapter->wvbr &=
~((1 << j) |
(1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
}
}
}
/* Need to wait a few seconds after link up to get diagnostic information from
* the phy */
static void igb_update_phy_info(unsigned long data)
{
struct igb_adapter *adapter = (struct igb_adapter *) data;
e1000_get_phy_info(&adapter->hw);
}
/**
* igb_has_link - check shared code for link and determine up/down
* @adapter: pointer to driver private info
**/
bool igb_has_link(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
bool link_active = FALSE;
/* get_link_status is set on LSC (link status) interrupt or
* rx sequence error interrupt. get_link_status will stay
* false until the e1000_check_for_link establishes link
* for copper adapters ONLY
*/
switch (hw->phy.media_type) {
case e1000_media_type_copper:
if (!hw->mac.get_link_status)
return true;
case e1000_media_type_internal_serdes:
e1000_check_for_link(hw);
link_active = !hw->mac.get_link_status;
break;
case e1000_media_type_unknown:
default:
break;
}
return link_active;
}
/**
* igb_watchdog - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
static void igb_watchdog(unsigned long data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
}
static void igb_watchdog_task(struct work_struct *work)
{
struct igb_adapter *adapter = container_of(work,
struct igb_adapter,
watchdog_task);
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 link;
int i;
u32 thstat, ctrl_ext;
link = igb_has_link(adapter);
if (link) {
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
if (!netif_carrier_ok(netdev)) {
u32 ctrl;
e1000_get_speed_and_duplex(hw,
&adapter->link_speed,
&adapter->link_duplex);
ctrl = E1000_READ_REG(hw, E1000_CTRL);
/* Links status message must follow this format */
printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
"Flow Control: %s\n",
netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full Duplex" : "Half Duplex",
((ctrl & E1000_CTRL_TFCE) &&
(ctrl & E1000_CTRL_RFCE)) ? "RX/TX":
((ctrl & E1000_CTRL_RFCE) ? "RX" :
((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
adapter->tx_timeout_factor = 14;
break;
case SPEED_100:
/* maybe add some timeout factor ? */
break;
default:
break;
}
netif_carrier_on(netdev);
netif_tx_wake_all_queues(netdev);
igb_ping_all_vfs(adapter);
#ifdef IFLA_VF_MAX
igb_check_vf_rate_limit(adapter);
#endif /* IFLA_VF_MAX */
/* link state has changed, schedule phy info update */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
/* check for thermal sensor event on i350 */
if (hw->mac.type == e1000_i350) {
thstat = E1000_READ_REG(hw, E1000_THSTAT);
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
if ((hw->phy.media_type ==
e1000_media_type_copper) &&
!(ctrl_ext &
E1000_CTRL_EXT_LINK_MODE_SGMII)) {
if (thstat & E1000_THSTAT_PWR_DOWN) {
printk(KERN_ERR "igb: %s The "
"network adapter was stopped "
"because it overheated.\n",
netdev->name);
}
if (thstat & E1000_THSTAT_LINK_THROTTLE) {
printk(KERN_INFO
"igb: %s The network "
"adapter supported "
"link speed "
"was downshifted "
"because it "
"overheated.\n",
netdev->name);
}
}
}
/* Links status message must follow this format */
printk(KERN_INFO "igb: %s NIC Link is Down\n",
netdev->name);
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
igb_ping_all_vfs(adapter);
/* link state has changed, schedule phy info update */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
pm_schedule_suspend(netdev->dev.parent,
MSEC_PER_SEC * 5);
}
}
igb_update_stats(adapter);
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igb_ring *tx_ring = adapter->tx_ring[i];
if (!netif_carrier_ok(netdev)) {
/* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context). */
if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return;
}
}
/* Force detection of hung controller every watchdog period */
set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
}
/* Cause software interrupt to ensure rx ring is cleaned */
if (adapter->msix_entries) {
u32 eics = 0;
for (i = 0; i < adapter->num_q_vectors; i++)
eics |= adapter->q_vector[i]->eims_value;
E1000_WRITE_REG(hw, E1000_EICS, eics);
} else {
E1000_WRITE_REG(hw, E1000_ICS, E1000_ICS_RXDMT0);
}
igb_spoof_check(adapter);
/* Reset the timer */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 2 * HZ));
}
static void igb_dma_err_task(struct work_struct *work)
{
struct igb_adapter *adapter = container_of(work,
struct igb_adapter,
dma_err_task);
int vf;
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 hgptc;
u32 ciaa, ciad;
hgptc = E1000_READ_REG(hw, E1000_HGPTC);
if (hgptc) /* If incrementing then no need for the check below */
goto dma_timer_reset;
/*
* Check to see if a bad DMA write target from an errant or
* malicious VF has caused a PCIe error. If so then we can
* issue a VFLR to the offending VF(s) and then resume without
* requesting a full slot reset.
*/
for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
ciaa = (vf << 16) | 0x80000000;
/* 32 bit read so align, we really want status at offset 6 */
ciaa |= PCI_COMMAND;
E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
ciad = E1000_READ_REG(hw, E1000_CIAD);
ciaa &= 0x7FFFFFFF;
/* disable debug mode asap after reading data */
E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
/* Get the upper 16 bits which will be the PCI status reg */
ciad >>= 16;
if (ciad & (PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_REC_TARGET_ABORT |
PCI_STATUS_SIG_SYSTEM_ERROR)) {
netdev_err(netdev, "VF %d suffered error\n", vf);
/* Issue VFLR */
ciaa = (vf << 16) | 0x80000000;
ciaa |= 0xA8;
E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
ciad = 0x00008000; /* VFLR */
E1000_WRITE_REG(hw, E1000_CIAD, ciad);
ciaa &= 0x7FFFFFFF;
E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
}
}
dma_timer_reset:
/* Reset the timer */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->dma_err_timer,
round_jiffies(jiffies + HZ / 10));
}
/**
* igb_dma_err_timer - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
static void igb_dma_err_timer(unsigned long data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
/* Do the rest outside of interrupt context */
schedule_work(&adapter->dma_err_task);
}
enum latency_range {
lowest_latency = 0,
low_latency = 1,
bulk_latency = 2,
latency_invalid = 255
};
/**
* igb_update_ring_itr - update the dynamic ITR value based on packet size
*
* Stores a new ITR value based on strictly on packet size. This
* algorithm is less sophisticated than that used in igb_update_itr,
* due to the difficulty of synchronizing statistics across multiple
* receive rings. The divisors and thresholds used by this function
* were determined based on theoretical maximum wire speed and testing
* data, in order to minimize response time while increasing bulk
* throughput.
* This functionality is controlled by the InterruptThrottleRate module
* parameter (see igb_param.c)
* NOTE: This function is called only when operating in a multiqueue
* receive environment.
* @q_vector: pointer to q_vector
**/
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
{
int new_val = q_vector->itr_val;
int avg_wire_size = 0;
struct igb_adapter *adapter = q_vector->adapter;
unsigned int packets;
/* For non-gigabit speeds, just fix the interrupt rate at 4000
* ints/sec - ITR timer value of 120 ticks.
*/
if (adapter->link_speed != SPEED_1000) {
new_val = IGB_4K_ITR;
goto set_itr_val;
}
packets = q_vector->rx.total_packets;
if (packets)
avg_wire_size = q_vector->rx.total_bytes / packets;
packets = q_vector->tx.total_packets;
if (packets)
avg_wire_size = max_t(u32, avg_wire_size,
q_vector->tx.total_bytes / packets);
/* if avg_wire_size isn't set no work was done */
if (!avg_wire_size)
goto clear_counts;
/* Add 24 bytes to size to account for CRC, preamble, and gap */
avg_wire_size += 24;
/* Don't starve jumbo frames */
avg_wire_size = min(avg_wire_size, 3000);
/* Give a little boost to mid-size frames */
if ((avg_wire_size > 300) && (avg_wire_size < 1200))
new_val = avg_wire_size / 3;
else
new_val = avg_wire_size / 2;
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (new_val < IGB_20K_ITR &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
new_val = IGB_20K_ITR;
set_itr_val:
if (new_val != q_vector->itr_val) {
q_vector->itr_val = new_val;
q_vector->set_itr = 1;
}
clear_counts:
q_vector->rx.total_bytes = 0;
q_vector->rx.total_packets = 0;
q_vector->tx.total_bytes = 0;
q_vector->tx.total_packets = 0;
}
/**
* igb_update_itr - update the dynamic ITR value based on statistics
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
* this functionality is controlled by the InterruptThrottleRate module
* parameter (see igb_param.c)
* NOTE: These calculations are only valid when operating in a single-
* queue environment.
* @q_vector: pointer to q_vector
* @ring_container: ring info to update the itr for
**/
static void igb_update_itr(struct igb_q_vector *q_vector,
struct igb_ring_container *ring_container)
{
unsigned int packets = ring_container->total_packets;
unsigned int bytes = ring_container->total_bytes;
u8 itrval = ring_container->itr;
/* no packets, exit with status unchanged */
if (packets == 0)
return;
switch (itrval) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes/packets > 8000)
itrval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
itrval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes/packets > 8000) {
itrval = bulk_latency;
} else if ((packets < 10) || ((bytes/packets) > 1200)) {
itrval = bulk_latency;
} else if ((packets > 35)) {
itrval = lowest_latency;
}
} else if (bytes/packets > 2000) {
itrval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
itrval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
itrval = low_latency;
} else if (bytes < 1500) {
itrval = low_latency;
}
break;
}
/* clear work counters since we have the values we need */
ring_container->total_bytes = 0;
ring_container->total_packets = 0;
/* write updated itr to ring container */
ring_container->itr = itrval;
}
static void igb_set_itr(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
u32 new_itr = q_vector->itr_val;
u8 current_itr = 0;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
if (adapter->link_speed != SPEED_1000) {
current_itr = 0;
new_itr = IGB_4K_ITR;
goto set_itr_now;
}
igb_update_itr(q_vector, &q_vector->tx);
igb_update_itr(q_vector, &q_vector->rx);
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (current_itr == lowest_latency &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
current_itr = low_latency;
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
break;
case low_latency:
new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
break;
case bulk_latency:
new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
break;
default:
break;
}
set_itr_now:
if (new_itr != q_vector->itr_val) {
/* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing */
new_itr = new_itr > q_vector->itr_val ?
max((new_itr * q_vector->itr_val) /
(new_itr + (q_vector->itr_val >> 2)),
new_itr) :
new_itr;
/* Don't write the value here; it resets the adapter's
* internal timer, and causes us to delay far longer than
* we should between interrupts. Instead, we write the ITR
* value at the beginning of the next interrupt so the timing
* ends up being correct.
*/
q_vector->itr_val = new_itr;
q_vector->set_itr = 1;
}
}
void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
u32 type_tucmd, u32 mss_l4len_idx)
{
struct e1000_adv_tx_context_desc *context_desc;
u16 i = tx_ring->next_to_use;
context_desc = IGB_TX_CTXTDESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* set bits to identify this as an advanced context descriptor */
type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
/* For 82575, context index must be unique per ring. */
if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
mss_l4len_idx |= tx_ring->reg_idx << 4;
context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
context_desc->seqnum_seed = 0;
context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
}
static int igb_tso(struct igb_ring *tx_ring,
struct igb_tx_buffer *first,
u8 *hdr_len)
{
#ifdef NETIF_F_TSO
struct sk_buff *skb = first->skb;
u32 vlan_macip_lens, type_tucmd;
u32 mss_l4len_idx, l4len;
if (!skb_is_gso(skb))
#endif /* NETIF_F_TSO */
return 0;
#ifdef NETIF_F_TSO
if (skb_header_cloned(skb)) {
int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (err)
return err;
}
/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
if (first->protocol == __constant_htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->tot_len = 0;
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
first->tx_flags |= IGB_TX_FLAGS_TSO |
IGB_TX_FLAGS_CSUM |
IGB_TX_FLAGS_IPV4;
#ifdef NETIF_F_TSO6
} else if (skb_is_gso_v6(skb)) {
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
first->tx_flags |= IGB_TX_FLAGS_TSO |
IGB_TX_FLAGS_CSUM;
#endif
}
/* compute header lengths */
l4len = tcp_hdrlen(skb);
*hdr_len = skb_transport_offset(skb) + l4len;
/* update gso size and bytecount with header size */
first->gso_segs = skb_shinfo(skb)->gso_segs;
first->bytecount += (first->gso_segs - 1) * *hdr_len;
/* MSS L4LEN IDX */
mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
/* VLAN MACLEN IPLEN */
vlan_macip_lens = skb_network_header_len(skb);
vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
return 1;
#endif /* NETIF_F_TSO */
}
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
{
struct sk_buff *skb = first->skb;
u32 vlan_macip_lens = 0;
u32 mss_l4len_idx = 0;
u32 type_tucmd = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL) {
if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
return;
} else {
u8 l4_hdr = 0;
switch (first->protocol) {
case __constant_htons(ETH_P_IP):
vlan_macip_lens |= skb_network_header_len(skb);
type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
l4_hdr = ip_hdr(skb)->protocol;
break;
#ifdef NETIF_F_IPV6_CSUM
case __constant_htons(ETH_P_IPV6):
vlan_macip_lens |= skb_network_header_len(skb);
l4_hdr = ipv6_hdr(skb)->nexthdr;
break;
#endif
default:
if (unlikely(net_ratelimit())) {
dev_warn(tx_ring->dev,
"partial checksum but proto=%x!\n",
first->protocol);
}
break;
}
switch (l4_hdr) {
case IPPROTO_TCP:
type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
mss_l4len_idx = tcp_hdrlen(skb) <<
E1000_ADVTXD_L4LEN_SHIFT;
break;
#ifdef HAVE_SCTP
case IPPROTO_SCTP:
type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
mss_l4len_idx = sizeof(struct sctphdr) <<
E1000_ADVTXD_L4LEN_SHIFT;
break;
#endif
case IPPROTO_UDP:
mss_l4len_idx = sizeof(struct udphdr) <<
E1000_ADVTXD_L4LEN_SHIFT;
break;
default:
if (unlikely(net_ratelimit())) {
dev_warn(tx_ring->dev,
"partial checksum but l4 proto=%x!\n",
l4_hdr);
}
break;
}
/* update TX checksum flag */
first->tx_flags |= IGB_TX_FLAGS_CSUM;
}
vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
}
static __le32 igb_tx_cmd_type(u32 tx_flags)
{
/* set type for advanced descriptor with frame checksum insertion */
__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
E1000_ADVTXD_DCMD_IFCS |
E1000_ADVTXD_DCMD_DEXT);
/* set HW vlan bit if vlan is present */
if (tx_flags & IGB_TX_FLAGS_VLAN)
cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
#ifdef CONFIG_IGB_PTP
/* set timestamp bit if present */
if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP))
cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
#endif /* CONFIG_IGB_PTP */
/* set segmentation bits for TSO */
if (tx_flags & IGB_TX_FLAGS_TSO)
cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
return cmd_type;
}
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
union e1000_adv_tx_desc *tx_desc,
u32 tx_flags, unsigned int paylen)
{
u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
/* 82575 requires a unique index per ring if any offload is enabled */
if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
olinfo_status |= tx_ring->reg_idx << 4;
/* insert L4 checksum */
if (tx_flags & IGB_TX_FLAGS_CSUM) {
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
/* insert IPv4 checksum */
if (tx_flags & IGB_TX_FLAGS_IPV4)
olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
}
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
}
/*
* The largest size we can write to the descriptor is 65535. In order to
* maintain a power of two alignment we have to limit ourselves to 32K.
*/
#define IGB_MAX_TXD_PWR 15
#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
static void igb_tx_map(struct igb_ring *tx_ring,
struct igb_tx_buffer *first,
const u8 hdr_len)
{
struct sk_buff *skb = first->skb;
struct igb_tx_buffer *tx_buffer;
union e1000_adv_tx_desc *tx_desc;
dma_addr_t dma;
#ifdef MAX_SKB_FRAGS
struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
unsigned int data_len = skb->data_len;
#endif
unsigned int size = skb_headlen(skb);
unsigned int paylen = skb->len - hdr_len;
__le32 cmd_type;
u32 tx_flags = first->tx_flags;
u16 i = tx_ring->next_to_use;
tx_desc = IGB_TX_DESC(tx_ring, i);
igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
cmd_type = igb_tx_cmd_type(tx_flags);
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(first, len, size);
dma_unmap_addr_set(first, dma, dma);
tx_desc->read.buffer_addr = cpu_to_le64(dma);
#ifdef MAX_SKB_FRAGS
for (;;) {
#endif
while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
tx_desc->read.cmd_type_len =
cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IGB_TX_DESC(tx_ring, 0);
i = 0;
}
dma += IGB_MAX_DATA_PER_TXD;
size -= IGB_MAX_DATA_PER_TXD;
tx_desc->read.olinfo_status = 0;
tx_desc->read.buffer_addr = cpu_to_le64(dma);
}
#ifdef MAX_SKB_FRAGS
if (likely(!data_len))
break;
tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IGB_TX_DESC(tx_ring, 0);
i = 0;
}
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
DMA_TO_DEVICE);
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
tx_buffer = &tx_ring->tx_buffer_info[i];
dma_unmap_len_set(tx_buffer, len, size);
dma_unmap_addr_set(tx_buffer, dma, dma);
tx_desc->read.olinfo_status = 0;
tx_desc->read.buffer_addr = cpu_to_le64(dma);
frag++;
}
#endif /* MAX_SKB_FRAGS */
#ifdef CONFIG_BQL
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
#endif /* CONFIG_BQL */
/* write last descriptor with RS and EOP bits */
cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
tx_desc->read.cmd_type_len = cmd_type;
/* set the timestamp */
first->time_stamp = jiffies;
/*
* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch. (Only applicable for weak-ordered
* memory model archs, such as IA-64).
*
* We also need this memory barrier to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
writel(i, tx_ring->tail);
/* we need this if more than one processor can write to our tail
* at a time, it syncronizes IO on IA64/Altix systems */
mmiowb();
return;
dma_error:
dev_err(tx_ring->dev, "TX DMA map failed\n");
/* clear dma mappings for failed tx_buffer_info map */
for (;;) {
tx_buffer= &tx_ring->tx_buffer_info[i];
igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
if (tx_buffer == first)
break;
if (i == 0)
i = tx_ring->count;
i--;
}
tx_ring->next_to_use = i;
}
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
struct net_device *netdev = netdev_ring(tx_ring);
if (netif_is_multiqueue(netdev))
netif_stop_subqueue(netdev, ring_queue_index(tx_ring));
else
netif_stop_queue(netdev);
/* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it. */
smp_mb();
/* We need to check again in a case another CPU has just
* made room available. */
if (igb_desc_unused(tx_ring) < size)
return -EBUSY;
/* A reprieve! */
if (netif_is_multiqueue(netdev))
netif_wake_subqueue(netdev, ring_queue_index(tx_ring));
else
netif_wake_queue(netdev);
tx_ring->tx_stats.restart_queue++;
return 0;
}
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
if (igb_desc_unused(tx_ring) >= size)
return 0;
return __igb_maybe_stop_tx(tx_ring, size);
}
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
struct igb_ring *tx_ring)
{
#ifdef CONFIG_IGB_PTP
struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
#endif /* CONFIG_IGB_PTP */
struct igb_tx_buffer *first;
int tso;
u32 tx_flags = 0;
__be16 protocol = vlan_get_protocol(skb);
u8 hdr_len = 0;
/* need: 1 descriptor per page,
* + 2 desc gap to keep tail from touching head,
* + 1 desc for skb->data,
* + 1 desc for context descriptor,
* otherwise try next time */
if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
/* this is a hard error */
return NETDEV_TX_BUSY;
}
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
first->skb = skb;
first->bytecount = skb->len;
first->gso_segs = 1;
#ifdef CONFIG_IGB_PTP
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
!(adapter->ptp_tx_skb))) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
tx_flags |= IGB_TX_FLAGS_TSTAMP;
adapter->ptp_tx_skb = skb_get(skb);
if (adapter->hw.mac.type == e1000_82576)
schedule_work(&adapter->ptp_tx_work);
}
#endif /* CONFIG_IGB_PTP */
if (vlan_tx_tag_present(skb)) {
tx_flags |= IGB_TX_FLAGS_VLAN;
tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
}
/* record initial flags and protocol */
first->tx_flags = tx_flags;
first->protocol = protocol;
tso = igb_tso(tx_ring, first, &hdr_len);
if (tso < 0)
goto out_drop;
else if (!tso)
igb_tx_csum(tx_ring, first);
igb_tx_map(tx_ring, first, hdr_len);
#ifndef HAVE_TRANS_START_IN_QUEUE
netdev_ring(tx_ring)->trans_start = jiffies;
#endif
/* Make sure there is space in the ring for the next send. */
igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
return NETDEV_TX_OK;
out_drop:
igb_unmap_and_free_tx_resource(tx_ring, first);
return NETDEV_TX_OK;
}
#ifdef HAVE_TX_MQ
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
struct sk_buff *skb)
{
unsigned int r_idx = skb->queue_mapping;
if (r_idx >= adapter->num_tx_queues)
r_idx = r_idx % adapter->num_tx_queues;
return adapter->tx_ring[r_idx];
}
#else
#define igb_tx_queue_mapping(_adapter, _skb) (_adapter)->tx_ring[0]
#endif
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (test_bit(__IGB_DOWN, &adapter->state)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb->len <= 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/*
* The minimum packet size with TCTL.PSP set is 17 so pad the skb
* in order to meet this minimum size requirement.
*/
if (skb->len < 17) {
if (skb_padto(skb, 17))
return NETDEV_TX_OK;
skb->len = 17;
}
return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
}
/**
* igb_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
**/
static void igb_tx_timeout(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
if (hw->mac.type >= e1000_82580)
hw->dev_spec._82575.global_device_reset = true;
schedule_work(&adapter->reset_task);
E1000_WRITE_REG(hw, E1000_EICS,
(adapter->eims_enable_mask & ~adapter->eims_other));
}
static void igb_reset_task(struct work_struct *work)
{
struct igb_adapter *adapter;
adapter = container_of(work, struct igb_adapter, reset_task);
igb_reinit_locked(adapter);
}
/**
* igb_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are updated here and also from the timer callback.
**/
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (!test_bit(__IGB_RESETTING, &adapter->state))
igb_update_stats(adapter);
#ifdef HAVE_NETDEV_STATS_IN_NETDEV
/* only return the current stats */
return &netdev->stats;
#else
/* only return the current stats */
return &adapter->net_stats;
#endif /* HAVE_NETDEV_STATS_IN_NETDEV */
}
/**
* igb_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
u32 rx_buffer_len, i;
#endif
if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
dev_err(pci_dev_to_dev(pdev), "Invalid MTU setting\n");
return -EINVAL;
}
#define MAX_STD_JUMBO_FRAME_SIZE 9238
if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
dev_err(pci_dev_to_dev(pdev), "MTU > 9216 not supported.\n");
return -EINVAL;
}
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
/* igb_down has a dependency on max_frame_size */
adapter->max_frame_size = max_frame;
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
/*
* RLPML prevents us from receiving a frame larger than max_frame so
* it is safe to just set the rx_buffer_len to max_frame without the
* risk of an skb over panic.
*/
if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
else
rx_buffer_len = max_frame;
#endif
if (netif_running(netdev))
igb_down(adapter);
dev_info(pci_dev_to_dev(pdev), "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
hw->dev_spec._82575.mtu = new_mtu;
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
for (i = 0; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
#endif
if (netif_running(netdev))
igb_up(adapter);
else
igb_reset(adapter);
clear_bit(__IGB_RESETTING, &adapter->state);
return 0;
}
/**
* igb_update_stats - Update the board statistics counters
* @adapter: board private structure
**/
void igb_update_stats(struct igb_adapter *adapter)
{
#ifdef HAVE_NETDEV_STATS_IN_NETDEV
struct net_device_stats *net_stats = &adapter->netdev->stats;
#else
struct net_device_stats *net_stats = &adapter->net_stats;
#endif /* HAVE_NETDEV_STATS_IN_NETDEV */
struct e1000_hw *hw = &adapter->hw;
#ifdef HAVE_PCI_ERS
struct pci_dev *pdev = adapter->pdev;
#endif
u32 reg, mpc;
u16 phy_tmp;
int i;
u64 bytes, packets;
#ifndef IGB_NO_LRO
u32 flushed = 0, coal = 0, recycled = 0;
struct igb_q_vector *q_vector;
#endif
#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
/*
* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
*/
if (adapter->link_speed == 0)
return;
#ifdef HAVE_PCI_ERS
if (pci_channel_offline(pdev))
return;
#endif
#ifndef IGB_NO_LRO
for (i = 0; i < adapter->num_q_vectors; i++) {
q_vector = adapter->q_vector[i];
if (!q_vector || !q_vector->lrolist)
continue;
flushed += q_vector->lrolist->stats.flushed;
coal += q_vector->lrolist->stats.coal;
recycled += q_vector->lrolist->stats.recycled;
}
adapter->lro_stats.flushed = flushed;
adapter->lro_stats.coal = coal;
adapter->lro_stats.recycled = recycled;
#endif
bytes = 0;
packets = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
u32 rqdpc_tmp = E1000_READ_REG(hw, E1000_RQDPC(i)) & 0x0FFF;
struct igb_ring *ring = adapter->rx_ring[i];
ring->rx_stats.drops += rqdpc_tmp;
net_stats->rx_fifo_errors += rqdpc_tmp;
#ifdef CONFIG_IGB_VMDQ_NETDEV
if (!ring->vmdq_netdev) {
bytes += ring->rx_stats.bytes;
packets += ring->rx_stats.packets;
}
#else
bytes += ring->rx_stats.bytes;
packets += ring->rx_stats.packets;
#endif
}
net_stats->rx_bytes = bytes;
net_stats->rx_packets = packets;
bytes = 0;
packets = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igb_ring *ring = adapter->tx_ring[i];
#ifdef CONFIG_IGB_VMDQ_NETDEV
if (!ring->vmdq_netdev) {
bytes += ring->tx_stats.bytes;
packets += ring->tx_stats.packets;
}
#else
bytes += ring->tx_stats.bytes;
packets += ring->tx_stats.packets;
#endif
}
net_stats->tx_bytes = bytes;
net_stats->tx_packets = packets;
/* read stats registers */
adapter->stats.crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
adapter->stats.gprc += E1000_READ_REG(hw, E1000_GPRC);
adapter->stats.gorc += E1000_READ_REG(hw, E1000_GORCL);
E1000_READ_REG(hw, E1000_GORCH); /* clear GORCL */
adapter->stats.bprc += E1000_READ_REG(hw, E1000_BPRC);
adapter->stats.mprc += E1000_READ_REG(hw, E1000_MPRC);
adapter->stats.roc += E1000_READ_REG(hw, E1000_ROC);
adapter->stats.prc64 += E1000_READ_REG(hw, E1000_PRC64);
adapter->stats.prc127 += E1000_READ_REG(hw, E1000_PRC127);
adapter->stats.prc255 += E1000_READ_REG(hw, E1000_PRC255);
adapter->stats.prc511 += E1000_READ_REG(hw, E1000_PRC511);
adapter->stats.prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
adapter->stats.prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
adapter->stats.symerrs += E1000_READ_REG(hw, E1000_SYMERRS);
adapter->stats.sec += E1000_READ_REG(hw, E1000_SEC);
mpc = E1000_READ_REG(hw, E1000_MPC);
adapter->stats.mpc += mpc;
net_stats->rx_fifo_errors += mpc;
adapter->stats.scc += E1000_READ_REG(hw, E1000_SCC);
adapter->stats.ecol += E1000_READ_REG(hw, E1000_ECOL);
adapter->stats.mcc += E1000_READ_REG(hw, E1000_MCC);
adapter->stats.latecol += E1000_READ_REG(hw, E1000_LATECOL);
adapter->stats.dc += E1000_READ_REG(hw, E1000_DC);
adapter->stats.rlec += E1000_READ_REG(hw, E1000_RLEC);
adapter->stats.xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
adapter->stats.xontxc += E1000_READ_REG(hw, E1000_XONTXC);
adapter->stats.xoffrxc += E1000_READ_REG(hw, E1000_XOFFRXC);
adapter->stats.xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
adapter->stats.fcruc += E1000_READ_REG(hw, E1000_FCRUC);
adapter->stats.gptc += E1000_READ_REG(hw, E1000_GPTC);
adapter->stats.gotc += E1000_READ_REG(hw, E1000_GOTCL);
E1000_READ_REG(hw, E1000_GOTCH); /* clear GOTCL */
adapter->stats.rnbc += E1000_READ_REG(hw, E1000_RNBC);
adapter->stats.ruc += E1000_READ_REG(hw, E1000_RUC);
adapter->stats.rfc += E1000_READ_REG(hw, E1000_RFC);
adapter->stats.rjc += E1000_READ_REG(hw, E1000_RJC);
adapter->stats.tor += E1000_READ_REG(hw, E1000_TORH);
adapter->stats.tot += E1000_READ_REG(hw, E1000_TOTH);
adapter->stats.tpr += E1000_READ_REG(hw, E1000_TPR);
adapter->stats.ptc64 += E1000_READ_REG(hw, E1000_PTC64);
adapter->stats.ptc127 += E1000_READ_REG(hw, E1000_PTC127);
adapter->stats.ptc255 += E1000_READ_REG(hw, E1000_PTC255);
adapter->stats.ptc511 += E1000_READ_REG(hw, E1000_PTC511);
adapter->stats.ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
adapter->stats.ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
adapter->stats.mptc += E1000_READ_REG(hw, E1000_MPTC);
adapter->stats.bptc += E1000_READ_REG(hw, E1000_BPTC);
adapter->stats.tpt += E1000_READ_REG(hw, E1000_TPT);
adapter->stats.colc += E1000_READ_REG(hw, E1000_COLC);
adapter->stats.algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
/* read internal phy sepecific stats */
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
adapter->stats.rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
/* this stat has invalid values on i210/i211 */
if ((hw->mac.type != e1000_i210) &&
(hw->mac.type != e1000_i211))
adapter->stats.tncrs += E1000_READ_REG(hw, E1000_TNCRS);
}
adapter->stats.tsctc += E1000_READ_REG(hw, E1000_TSCTC);
adapter->stats.tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
adapter->stats.iac += E1000_READ_REG(hw, E1000_IAC);
adapter->stats.icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
adapter->stats.icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
adapter->stats.icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
adapter->stats.ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
adapter->stats.ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
adapter->stats.ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
adapter->stats.ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
adapter->stats.icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
/* Fill out the OS statistics structure */
net_stats->multicast = adapter->stats.mprc;
net_stats->collisions = adapter->stats.colc;
/* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC */
net_stats->rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
net_stats->rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
net_stats->rx_crc_errors = adapter->stats.crcerrs;
net_stats->rx_frame_errors = adapter->stats.algnerrc;
net_stats->rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
net_stats->tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
net_stats->tx_aborted_errors = adapter->stats.ecol;
net_stats->tx_window_errors = adapter->stats.latecol;
net_stats->tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
/* Phy Stats */
if (hw->phy.media_type == e1000_media_type_copper) {
if ((adapter->link_speed == SPEED_1000) &&
(!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
adapter->phy_stats.idle_errors += phy_tmp;
}
}
/* Management Stats */
adapter->stats.mgptc += E1000_READ_REG(hw, E1000_MGTPTC);
adapter->stats.mgprc += E1000_READ_REG(hw, E1000_MGTPRC);
if (hw->mac.type > e1000_82580) {
adapter->stats.o2bgptc += E1000_READ_REG(hw, E1000_O2BGPTC);
adapter->stats.o2bspc += E1000_READ_REG(hw, E1000_O2BSPC);
adapter->stats.b2ospc += E1000_READ_REG(hw, E1000_B2OSPC);
adapter->stats.b2ogprc += E1000_READ_REG(hw, E1000_B2OGPRC);
}
}
static irqreturn_t igb_msix_other(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct e1000_hw *hw = &adapter->hw;
u32 icr = E1000_READ_REG(hw, E1000_ICR);
/* reading ICR causes bit 31 of EICR to be cleared */
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
/* The DMA Out of Sync is also indication of a spoof event
* in IOV mode. Check the Wrong VM Behavior register to
* see if it is really a spoof event. */
igb_check_wvbr(adapter);
}
/* Check for a mailbox event */
if (icr & E1000_ICR_VMMB)
igb_msg_task(adapter);
if (icr & E1000_ICR_LSC) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
#ifdef CONFIG_IGB_PTP
if (icr & E1000_ICR_TS) {
u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
if (tsicr & E1000_TSICR_TXTS) {
/* acknowledge the interrupt */
E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
/* retrieve hardware timestamp */
schedule_work(&adapter->ptp_tx_work);
}
}
#endif /* CONFIG_IGB_PTP */
/* Check for MDD event */
if (icr & E1000_ICR_MDDET)
igb_process_mdd_event(adapter);
E1000_WRITE_REG(hw, E1000_EIMS, adapter->eims_other);
return IRQ_HANDLED;
}
static void igb_write_itr(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
u32 itr_val = q_vector->itr_val & 0x7FFC;
if (!q_vector->set_itr)
return;
if (!itr_val)
itr_val = 0x4;
if (adapter->hw.mac.type == e1000_82575)
itr_val |= itr_val << 16;
else
itr_val |= E1000_EITR_CNT_IGNR;
writel(itr_val, q_vector->itr_register);
q_vector->set_itr = 0;
}
static irqreturn_t igb_msix_ring(int irq, void *data)
{
struct igb_q_vector *q_vector = data;
/* Write the ITR value calculated from the previous interrupt. */
igb_write_itr(q_vector);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
#ifdef IGB_DCA
static void igb_update_dca(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
int cpu = get_cpu();
if (q_vector->cpu == cpu)
goto out_no_update;
if (q_vector->tx.ring) {
int q = q_vector->tx.ring->reg_idx;
u32 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(q));
if (hw->mac.type == e1000_82575) {
dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
} else {
dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
E1000_DCA_TXCTRL_CPUID_SHIFT_82576;
}
dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(q), dca_txctrl);
}
if (q_vector->rx.ring) {
int q = q_vector->rx.ring->reg_idx;
u32 dca_rxctrl = E1000_READ_REG(hw, E1000_DCA_RXCTRL(q));
if (hw->mac.type == e1000_82575) {
dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
} else {
dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
E1000_DCA_RXCTRL_CPUID_SHIFT_82576;
}
dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
E1000_WRITE_REG(hw, E1000_DCA_RXCTRL(q), dca_rxctrl);
}
q_vector->cpu = cpu;
out_no_update:
put_cpu();
}
static void igb_setup_dca(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
return;
/* Always use CB2 mode, difference is masked in the CB driver. */
E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
for (i = 0; i < adapter->num_q_vectors; i++) {
adapter->q_vector[i]->cpu = -1;
igb_update_dca(adapter->q_vector[i]);
}
}
static int __igb_notify_dca(struct device *dev, void *data)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
unsigned long event = *(unsigned long *)data;
switch (event) {
case DCA_PROVIDER_ADD:
/* if already enabled, don't do it again */
if (adapter->flags & IGB_FLAG_DCA_ENABLED)
break;
if (dca_add_requester(dev) == E1000_SUCCESS) {
adapter->flags |= IGB_FLAG_DCA_ENABLED;
dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
igb_setup_dca(adapter);
break;
}
/* Fall Through since DCA is disabled. */
case DCA_PROVIDER_REMOVE:
if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
/* without this a class_device is left
* hanging around in the sysfs model */
dca_remove_requester(dev);
dev_info(pci_dev_to_dev(pdev), "DCA disabled\n");
adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_DISABLE);
}
break;
}
return E1000_SUCCESS;
}
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
void *p)
{
int ret_val;
ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
__igb_notify_dca);
return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
#endif /* IGB_DCA */
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
unsigned char mac_addr[ETH_ALEN];
#ifdef HAVE_PCI_DEV_FLAGS_ASSIGNED
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pvfdev;
unsigned int device_id;
u16 thisvf_devfn;
#endif
random_ether_addr(mac_addr);
igb_set_vf_mac(adapter, vf, mac_addr);
#ifdef HAVE_PCI_DEV_FLAGS_ASSIGNED
switch (adapter->hw.mac.type) {
case e1000_82576:
device_id = IGB_82576_VF_DEV_ID;
/* VF Stride for 82576 is 2 */
thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) |
(pdev->devfn & 1);
break;
case e1000_i350:
device_id = IGB_I350_VF_DEV_ID;
/* VF Stride for I350 is 4 */
thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) |
(pdev->devfn & 3);
break;
default:
device_id = 0;
thisvf_devfn = 0;
break;
}
pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
while (pvfdev) {
if (pvfdev->devfn == thisvf_devfn)
break;
pvfdev = pci_get_device(hw->vendor_id,
device_id, pvfdev);
}
if (pvfdev)
adapter->vf_data[vf].vfdev = pvfdev;
else
dev_err(&pdev->dev,
"Couldn't find pci dev ptr for VF %4.4x\n",
thisvf_devfn);
return pvfdev != NULL;
#else
return true;
#endif
}
#ifdef HAVE_PCI_DEV_FLAGS_ASSIGNED
static int igb_find_enabled_vfs(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
struct pci_dev *pvfdev;
u16 vf_devfn = 0;
u16 vf_stride;
unsigned int device_id;
int vfs_found = 0;
switch (adapter->hw.mac.type) {
case e1000_82576:
device_id = IGB_82576_VF_DEV_ID;
/* VF Stride for 82576 is 2 */
vf_stride = 2;
break;
case e1000_i350:
device_id = IGB_I350_VF_DEV_ID;
/* VF Stride for I350 is 4 */
vf_stride = 4;
break;
default:
device_id = 0;
vf_stride = 0;
break;
}
vf_devfn = pdev->devfn + 0x80;
pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
while (pvfdev) {
if (pvfdev->devfn == vf_devfn)
vfs_found++;
vf_devfn += vf_stride;
pvfdev = pci_get_device(hw->vendor_id,
device_id, pvfdev);
}
return vfs_found;
}
#endif
static int igb_check_vf_assignment(struct igb_adapter *adapter)
{
#ifdef HAVE_PCI_DEV_FLAGS_ASSIGNED
int i;
for (i = 0; i < adapter->vfs_allocated_count; i++) {
if (adapter->vf_data[i].vfdev) {
if (adapter->vf_data[i].vfdev->dev_flags &
PCI_DEV_FLAGS_ASSIGNED)
return true;
}
}
#endif
return false;
}
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ping;
int i;
for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
ping = E1000_PF_CONTROL_MSG;
if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
ping |= E1000_VT_MSGTYPE_CTS;
e1000_write_mbx(hw, &ping, 1, i);
}
}
/**
* igb_mta_set_ - Set multicast filter table address
* @adapter: pointer to the adapter structure
* @hash_value: determines the MTA register and bit to set
*
* The multicast table address is a register array of 32-bit registers.
* The hash_value is used to determine what register the bit is in, the
* current value is read, the new bit is OR'd in and the new value is
* written back into the register.
**/
void igb_mta_set(struct igb_adapter *adapter, u32 hash_value)
{
struct e1000_hw *hw = &adapter->hw;
u32 hash_bit, hash_reg, mta;
/*
* The MTA is a register array of 32-bit registers. It is
* treated like an array of (32*mta_reg_count) bits. We want to
* set bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The (hw->mac.mta_reg_count - 1) serves as a
* mask to bits 31:5 of the hash value which gives us the
* register we're modifying. The hash bit within that register
* is determined by the lower 5 bits of the hash value.
*/
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
mta |= (1 << hash_bit);
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
E1000_WRITE_FLUSH(hw);
}
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
IGB_VF_FLAG_MULTI_PROMISC);
vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
#ifdef IGB_ENABLE_VF_PROMISC
if (*msgbuf & E1000_VF_SET_PROMISC_UNICAST) {
vmolr |= E1000_VMOLR_ROPE;
vf_data->flags |= IGB_VF_FLAG_UNI_PROMISC;
*msgbuf &= ~E1000_VF_SET_PROMISC_UNICAST;
}
#endif
if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
vmolr |= E1000_VMOLR_MPME;
vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
} else {
/*
* if we have hashes and we are clearing a multicast promisc
* flag we need to write the hashes to the MTA as this step
* was previously skipped
*/
if (vf_data->num_vf_mc_hashes > 30) {
vmolr |= E1000_VMOLR_MPME;
} else if (vf_data->num_vf_mc_hashes) {
int j;
vmolr |= E1000_VMOLR_ROMPE;
for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
igb_mta_set(adapter, vf_data->vf_mc_hashes[j]);
}
}
E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
/* there are flags left unprocessed, likely not supported */
if (*msgbuf & E1000_VT_MSGINFO_MASK)
return -EINVAL;
return 0;
}
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
u32 *msgbuf, u32 vf)
{
int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
u16 *hash_list = (u16 *)&msgbuf[1];
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
int i;
/* salt away the number of multicast addresses assigned
* to this VF for later use to restore when the PF multi cast
* list changes
*/
vf_data->num_vf_mc_hashes = n;
/* only up to 30 hash values supported */
if (n > 30)
n = 30;
/* store the hashes for later use */
for (i = 0; i < n; i++)
vf_data->vf_mc_hashes[i] = hash_list[i];
/* Flush and reset the mta with the new values */
igb_set_rx_mode(adapter->netdev);
return 0;
}
static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data;
int i, j;
for (i = 0; i < adapter->vfs_allocated_count; i++) {
u32 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
vf_data = &adapter->vf_data[i];
if ((vf_data->num_vf_mc_hashes > 30) ||
(vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
vmolr |= E1000_VMOLR_MPME;
} else if (vf_data->num_vf_mc_hashes) {
vmolr |= E1000_VMOLR_ROMPE;
for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
igb_mta_set(adapter, vf_data->vf_mc_hashes[j]);
}
E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
}
}
static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
u32 pool_mask, reg, vid;
u16 vlan_default;
int i;
pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
/* Find the vlan filter for this id */
for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
reg = E1000_READ_REG(hw, E1000_VLVF(i));
/* remove the vf from the pool */
reg &= ~pool_mask;
/* if pool is empty then remove entry from vfta */
if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
(reg & E1000_VLVF_VLANID_ENABLE)) {
reg = 0;
vid = reg & E1000_VLVF_VLANID_MASK;
igb_vfta_set(adapter, vid, FALSE);
}
E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
}
adapter->vf_data[vf].vlans_enabled = 0;
vlan_default = adapter->vf_data[vf].default_vf_vlan_id;
if (vlan_default)
igb_vlvf_set(adapter, vlan_default, true, vf);
}
s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg, i;
/* The vlvf table only exists on 82576 hardware and newer */
if (hw->mac.type < e1000_82576)
return -1;
/* we only need to do this if VMDq is enabled */
if (!adapter->vmdq_pools)
return -1;
/* Find the vlan filter for this id */
for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
reg = E1000_READ_REG(hw, E1000_VLVF(i));
if ((reg & E1000_VLVF_VLANID_ENABLE) &&
vid == (reg & E1000_VLVF_VLANID_MASK))
break;
}
if (add) {
if (i == E1000_VLVF_ARRAY_SIZE) {
/* Did not find a matching VLAN ID entry that was
* enabled. Search for a free filter entry, i.e.
* one without the enable bit set
*/
for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
reg = E1000_READ_REG(hw, E1000_VLVF(i));
if (!(reg & E1000_VLVF_VLANID_ENABLE))
break;
}
}
if (i < E1000_VLVF_ARRAY_SIZE) {
/* Found an enabled/available entry */
reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
/* if !enabled we need to set this up in vfta */
if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
/* add VID to filter table */
igb_vfta_set(adapter, vid, TRUE);
reg |= E1000_VLVF_VLANID_ENABLE;
}
reg &= ~E1000_VLVF_VLANID_MASK;
reg |= vid;
E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
/* do not modify RLPML for PF devices */
if (vf >= adapter->vfs_allocated_count)
return E1000_SUCCESS;
if (!adapter->vf_data[vf].vlans_enabled) {
u32 size;
reg = E1000_READ_REG(hw, E1000_VMOLR(vf));
size = reg & E1000_VMOLR_RLPML_MASK;
size += 4;
reg &= ~E1000_VMOLR_RLPML_MASK;
reg |= size;
E1000_WRITE_REG(hw, E1000_VMOLR(vf), reg);
}
adapter->vf_data[vf].vlans_enabled++;
}
} else {
if (i < E1000_VLVF_ARRAY_SIZE) {
/* remove vf from the pool */
reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
/* if pool is empty then remove entry from vfta */
if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
reg = 0;
igb_vfta_set(adapter, vid, FALSE);
}
E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
/* do not modify RLPML for PF devices */
if (vf >= adapter->vfs_allocated_count)
return E1000_SUCCESS;
adapter->vf_data[vf].vlans_enabled--;
if (!adapter->vf_data[vf].vlans_enabled) {
u32 size;
reg = E1000_READ_REG(hw, E1000_VMOLR(vf));
size = reg & E1000_VMOLR_RLPML_MASK;
size -= 4;
reg &= ~E1000_VMOLR_RLPML_MASK;
reg |= size;
E1000_WRITE_REG(hw, E1000_VMOLR(vf), reg);
}
}
}
return E1000_SUCCESS;
}
#ifdef IFLA_VF_MAX
static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
if (vid)
E1000_WRITE_REG(hw, E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
else
E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
}
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
int vf, u16 vlan, u8 qos)
{
int err = 0;
struct igb_adapter *adapter = netdev_priv(netdev);
/* VLAN IDs accepted range 0-4094 */
if ((vf >= adapter->vfs_allocated_count) || (vlan > VLAN_VID_MASK-1) || (qos > 7))
return -EINVAL;
if (vlan || qos) {
err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
if (err)
goto out;
igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
igb_set_vmolr(adapter, vf, !vlan);
adapter->vf_data[vf].pf_vlan = vlan;
adapter->vf_data[vf].pf_qos = qos;
igb_set_vf_vlan_strip(adapter, vf, true);
dev_info(&adapter->pdev->dev,
"Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
if (test_bit(__IGB_DOWN, &adapter->state)) {
dev_warn(&adapter->pdev->dev,
"The VF VLAN has been set,"
" but the PF device is not up.\n");
dev_warn(&adapter->pdev->dev,
"Bring the PF device up before"
" attempting to use the VF device.\n");
}
} else {
if (adapter->vf_data[vf].pf_vlan)
dev_info(&adapter->pdev->dev,
"Clearing VLAN on VF %d\n", vf);
igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
false, vf);
igb_set_vmvir(adapter, vlan, vf);
igb_set_vmolr(adapter, vf, true);
igb_set_vf_vlan_strip(adapter, vf, false);
adapter->vf_data[vf].pf_vlan = 0;
adapter->vf_data[vf].pf_qos = 0;
}
out:
return err;
}
#endif
static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
if (vid)
igb_set_vf_vlan_strip(adapter, vf, true);
else
igb_set_vf_vlan_strip(adapter, vf, false);
return igb_vlvf_set(adapter, vid, add, vf);
}
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
/* clear flags except flag that the PF has set the MAC */
adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
adapter->vf_data[vf].last_nack = jiffies;
/* reset offloads to defaults */
igb_set_vmolr(adapter, vf, true);
/* reset vlans for device */
igb_clear_vf_vfta(adapter, vf);
#ifdef IFLA_VF_MAX
if (adapter->vf_data[vf].pf_vlan)
igb_ndo_set_vf_vlan(adapter->netdev, vf,
adapter->vf_data[vf].pf_vlan,
adapter->vf_data[vf].pf_qos);
else
igb_clear_vf_vfta(adapter, vf);
#endif
/* reset multicast table array for vf */
adapter->vf_data[vf].num_vf_mc_hashes = 0;
/* Flush and reset the mta with the new values */
igb_set_rx_mode(adapter->netdev);
/*
* Reset the VFs TDWBAL and TDWBAH registers which are not
* cleared by a VFLR
*/
E1000_WRITE_REG(hw, E1000_TDWBAH(vf), 0);
E1000_WRITE_REG(hw, E1000_TDWBAL(vf), 0);
if (hw->mac.type == e1000_82576) {
E1000_WRITE_REG(hw, E1000_TDWBAH(IGB_MAX_VF_FUNCTIONS + vf), 0);
E1000_WRITE_REG(hw, E1000_TDWBAL(IGB_MAX_VF_FUNCTIONS + vf), 0);
}
}
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
/* generate a new mac address as we were hotplug removed/added */
if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
random_ether_addr(vf_mac);
/* process remaining reset events */
igb_vf_reset(adapter, vf);
}
static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
u32 reg, msgbuf[3];
u8 *addr = (u8 *)(&msgbuf[1]);
/* process all the same items cleared in a function level reset */
igb_vf_reset(adapter, vf);
/* set vf mac address */
igb_del_mac_filter(adapter, vf_mac, vf);
igb_add_mac_filter(adapter, vf_mac, vf);
/* enable transmit and receive for vf */
reg = E1000_READ_REG(hw, E1000_VFTE);
E1000_WRITE_REG(hw, E1000_VFTE, reg | (1 << vf));
reg = E1000_READ_REG(hw, E1000_VFRE);
E1000_WRITE_REG(hw, E1000_VFRE, reg | (1 << vf));
adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
/* reply to reset with ack and vf mac address */
msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
memcpy(addr, vf_mac, 6);
e1000_write_mbx(hw, msgbuf, 3, vf);
}
static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
/*
* The VF MAC Address is stored in a packed array of bytes
* starting at the second 32 bit word of the msg array
*/
unsigned char *addr = (unsigned char *)&msg[1];
int err = -1;
if (is_valid_ether_addr(addr))
err = igb_set_vf_mac(adapter, vf, addr);
return err;
}
static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
u32 msg = E1000_VT_MSGTYPE_NACK;
/* if device isn't clear to send it shouldn't be reading either */
if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
e1000_write_mbx(hw, &msg, 1, vf);
vf_data->last_nack = jiffies;
}
}
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
struct pci_dev *pdev = adapter->pdev;
u32 msgbuf[E1000_VFMAILBOX_SIZE];
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
s32 retval;
retval = e1000_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
if (retval) {
dev_err(pci_dev_to_dev(pdev), "Error receiving message from VF\n");
return;
}
/* this is a message we already processed, do nothing */
if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
return;
/*
* until the vf completes a reset it should not be
* allowed to start any configuration.
*/
if (msgbuf[0] == E1000_VF_RESET) {
igb_vf_reset_msg(adapter, vf);
return;
}
if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
msgbuf[0] = E1000_VT_MSGTYPE_NACK;
if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
e1000_write_mbx(hw, msgbuf, 1, vf);
vf_data->last_nack = jiffies;
}
return;
}
switch ((msgbuf[0] & 0xFFFF)) {
case E1000_VF_SET_MAC_ADDR:
retval = -EINVAL;
#ifndef IGB_DISABLE_VF_MAC_SET
if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
else
DPRINTK(DRV, INFO,
"VF %d attempted to override administratively "
"set MAC address\nReload the VF driver to "
"resume operations\n", vf);
#endif
break;
case E1000_VF_SET_PROMISC:
retval = igb_set_vf_promisc(adapter, msgbuf, vf);
break;
case E1000_VF_SET_MULTICAST:
retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
break;
case E1000_VF_SET_LPE:
retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
break;
case E1000_VF_SET_VLAN:
retval = -1;
#ifdef IFLA_VF_MAX
if (vf_data->pf_vlan)
DPRINTK(DRV, INFO,
"VF %d attempted to override administratively "
"set VLAN tag\nReload the VF driver to "
"resume operations\n", vf);
else
#endif
retval = igb_set_vf_vlan(adapter, msgbuf, vf);
break;
default:
dev_err(pci_dev_to_dev(pdev), "Unhandled Msg %08x\n", msgbuf[0]);
retval = -E1000_ERR_MBX;
break;
}
/* notify the VF of the results of what it sent us */
if (retval)
msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
else
msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
e1000_write_mbx(hw, msgbuf, 1, vf);
}
static void igb_msg_task(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 vf;
for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
/* process any reset requests */
if (!e1000_check_for_rst(hw, vf))
igb_vf_reset_event(adapter, vf);
/* process any messages pending */
if (!e1000_check_for_msg(hw, vf))
igb_rcv_msg_from_vf(adapter, vf);
/* process any acks */
if (!e1000_check_for_ack(hw, vf))
igb_rcv_ack_from_vf(adapter, vf);
}
}
/**
* igb_set_uta - Set unicast filter table address
* @adapter: board private structure
*
* The unicast table address is a register array of 32-bit registers.
* The table is meant to be used in a way similar to how the MTA is used
* however due to certain limitations in the hardware it is necessary to
* set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
* enable bit to allow vlan tag stripping when promiscuous mode is enabled
**/
static void igb_set_uta(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
/* The UTA table only exists on 82576 hardware and newer */
if (hw->mac.type < e1000_82576)
return;
/* we only need to do this if VMDq is enabled */
if (!adapter->vmdq_pools)
return;
for (i = 0; i < hw->mac.uta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, ~0);
}
/**
* igb_intr_msi - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct igb_q_vector *q_vector = adapter->q_vector[0];
struct e1000_hw *hw = &adapter->hw;
/* read ICR disables interrupts using IAM */
u32 icr = E1000_READ_REG(hw, E1000_ICR);
igb_write_itr(q_vector);
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1;
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
#ifdef CONFIG_IGB_PTP
if (icr & E1000_ICR_TS) {
u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
if (tsicr & E1000_TSICR_TXTS) {
/* acknowledge the interrupt */
E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
/* retrieve hardware timestamp */
schedule_work(&adapter->ptp_tx_work);
}
}
#endif /* CONFIG_IGB_PTP */
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* igb_intr - Legacy Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t igb_intr(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct igb_q_vector *q_vector = adapter->q_vector[0];
struct e1000_hw *hw = &adapter->hw;
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
* need for the IMC write */
u32 icr = E1000_READ_REG(hw, E1000_ICR);
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt */
if (!(icr & E1000_ICR_INT_ASSERTED))
return IRQ_NONE;
igb_write_itr(q_vector);
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
#ifdef CONFIG_IGB_PTP
if (icr & E1000_ICR_TS) {
u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
if (tsicr & E1000_TSICR_TXTS) {
/* acknowledge the interrupt */
E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
/* retrieve hardware timestamp */
schedule_work(&adapter->ptp_tx_work);
}
}
#endif /* CONFIG_IGB_PTP */
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
void igb_ring_irq_enable(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
(!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
igb_set_itr(q_vector);
else
igb_update_ring_itr(q_vector);
}
if (!test_bit(__IGB_DOWN, &adapter->state)) {
if (adapter->msix_entries)
E1000_WRITE_REG(hw, E1000_EIMS, q_vector->eims_value);
else
igb_irq_enable(adapter);
}
}
/**
* igb_poll - NAPI Rx polling callback
* @napi: napi polling structure
* @budget: count of how many packets we should handle
**/
static int igb_poll(struct napi_struct *napi, int budget)
{
struct igb_q_vector *q_vector = container_of(napi, struct igb_q_vector, napi);
bool clean_complete = true;
#ifdef IGB_DCA
if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
igb_update_dca(q_vector);
#endif
if (q_vector->tx.ring)
clean_complete = igb_clean_tx_irq(q_vector);
if (q_vector->rx.ring)
clean_complete &= igb_clean_rx_irq(q_vector, budget);
#ifndef HAVE_NETDEV_NAPI_LIST
/* if netdev is disabled we need to stop polling */
if (!netif_running(q_vector->adapter->netdev))
clean_complete = true;
#endif
/* If all work not completed, return budget and keep polling */
if (!clean_complete)
return budget;
/* If not enough Rx work done, exit the polling mode */
napi_complete(napi);
igb_ring_irq_enable(q_vector);
return 0;
}
/**
* igb_clean_tx_irq - Reclaim resources after transmit completes
* @q_vector: pointer to q_vector containing needed info
* returns TRUE if ring is completely cleaned
**/
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct igb_ring *tx_ring = q_vector->tx.ring;
struct igb_tx_buffer *tx_buffer;
union e1000_adv_tx_desc *tx_desc, *eop_desc;
unsigned int total_bytes = 0, total_packets = 0;
unsigned int budget = q_vector->tx.work_limit;
unsigned int i = tx_ring->next_to_clean;
if (test_bit(__IGB_DOWN, &adapter->state))
return true;
tx_buffer = &tx_ring->tx_buffer_info[i];
tx_desc = IGB_TX_DESC(tx_ring, i);
i -= tx_ring->count;
for (; budget; budget--) {
eop_desc = tx_buffer->next_to_watch;
/* prevent any other reads prior to eop_desc */
rmb();
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* if DD is not set pending work has not been completed */
if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buffer->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buffer->bytecount;
total_packets += tx_buffer->gso_segs;
/* free the skb */
dev_kfree_skb_any(tx_buffer->skb);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
/* clear tx_buffer data */
tx_buffer->skb = NULL;
dma_unmap_len_set(tx_buffer, len, 0);
/* clear last DMA location and unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
}
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, 0);
}
}
#ifdef CONFIG_BQL
netdev_tx_completed_queue(txring_txq(tx_ring),
total_packets, total_bytes);
#endif /* CONFIG_BQL */
i += tx_ring->count;
tx_ring->next_to_clean = i;
tx_ring->tx_stats.bytes += total_bytes;
tx_ring->tx_stats.packets += total_packets;
q_vector->tx.total_bytes += total_bytes;
q_vector->tx.total_packets += total_packets;
#ifdef DEBUG
if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags) &&
!(adapter->disable_hw_reset && adapter->tx_hang_detected)) {
#else
if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
#endif
struct e1000_hw *hw = &adapter->hw;
eop_desc = tx_buffer->next_to_watch;
/* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i */
clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
if (eop_desc &&
time_after(jiffies, tx_buffer->time_stamp +
(adapter->tx_timeout_factor * HZ))
&& !(E1000_READ_REG(hw, E1000_STATUS) &
E1000_STATUS_TXOFF)) {
/* detected Tx unit hang */
#ifdef DEBUG
adapter->tx_hang_detected = TRUE;
if (adapter->disable_hw_reset) {
DPRINTK(DRV, WARNING,
"Deactivating netdev watchdog timer\n");
if (del_timer(&netdev_ring(tx_ring)->watchdog_timer))
dev_put(netdev_ring(tx_ring));
#ifndef HAVE_NET_DEVICE_OPS
netdev_ring(tx_ring)->tx_timeout = NULL;
#endif
}
#endif /* DEBUG */
dev_err(tx_ring->dev,
"Detected Tx Unit Hang\n"
" Tx Queue <%d>\n"
" TDH <%x>\n"
" TDT <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"buffer_info[next_to_clean]\n"
" time_stamp <%lx>\n"
" next_to_watch <%p>\n"
" jiffies <%lx>\n"
" desc.status <%x>\n",
tx_ring->queue_index,
E1000_READ_REG(hw, E1000_TDH(tx_ring->reg_idx)),
readl(tx_ring->tail),
tx_ring->next_to_use,
tx_ring->next_to_clean,
tx_buffer->time_stamp,
eop_desc,
jiffies,
eop_desc->wb.status);
if (netif_is_multiqueue(netdev_ring(tx_ring)))
netif_stop_subqueue(netdev_ring(tx_ring),
ring_queue_index(tx_ring));
else
netif_stop_queue(netdev_ring(tx_ring));
/* we are about to reset, no point in enabling stuff */
return true;
}
}
if (unlikely(total_packets &&
netif_carrier_ok(netdev_ring(tx_ring)) &&
igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_is_multiqueue(netdev_ring(tx_ring))) {
if (__netif_subqueue_stopped(netdev_ring(tx_ring),
ring_queue_index(tx_ring)) &&
!(test_bit(__IGB_DOWN, &adapter->state))) {
netif_wake_subqueue(netdev_ring(tx_ring),
ring_queue_index(tx_ring));
tx_ring->tx_stats.restart_queue++;
}
} else {
if (netif_queue_stopped(netdev_ring(tx_ring)) &&
!(test_bit(__IGB_DOWN, &adapter->state))) {
netif_wake_queue(netdev_ring(tx_ring));
tx_ring->tx_stats.restart_queue++;
}
}
}
return !!budget;
}
#ifdef HAVE_VLAN_RX_REGISTER
/**
* igb_receive_skb - helper function to handle rx indications
* @q_vector: structure containing interrupt and ring information
* @skb: packet to send up
**/
static void igb_receive_skb(struct igb_q_vector *q_vector,
struct sk_buff *skb)
{
struct vlan_group **vlgrp = netdev_priv(skb->dev);
if (IGB_CB(skb)->vid) {
if (*vlgrp) {
vlan_gro_receive(&q_vector->napi, *vlgrp,
IGB_CB(skb)->vid, skb);
} else {
dev_kfree_skb_any(skb);
}
} else {
napi_gro_receive(&q_vector->napi, skb);
}
}
#endif /* HAVE_VLAN_RX_REGISTER */
static inline void igb_rx_checksum(struct igb_ring *ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
skb_checksum_none_assert(skb);
/* Ignore Checksum bit is set */
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
return;
/* Rx checksum disabled via ethtool */
#ifdef HAVE_NDO_SET_FEATURES
if (!(netdev_ring(ring)->features & NETIF_F_RXCSUM))
#else
if (!test_bit(IGB_RING_FLAG_RX_CSUM, &ring->flags))
#endif
return;
/* TCP/UDP checksum error bit is set */
if (igb_test_staterr(rx_desc,
E1000_RXDEXT_STATERR_TCPE |
E1000_RXDEXT_STATERR_IPE)) {
/*
* work around errata with sctp packets where the TCPE aka
* L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
* packets, (aka let the stack check the crc32c)
*/
if (!((skb->len == 60) &&
test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags)))
ring->rx_stats.csum_err++;
/* let the stack verify checksum errors */
return;
}
/* It must be a TCP or UDP packet with a valid checksum */
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
E1000_RXD_STAT_UDPCS))
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
#ifdef NETIF_F_RXHASH
static inline void igb_rx_hash(struct igb_ring *ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
if (netdev_ring(ring)->features & NETIF_F_RXHASH)
skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}
#endif
static void igb_rx_vlan(struct igb_ring *ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
u16 vid = 0;
if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
vid = be16_to_cpu(rx_desc->wb.upper.vlan);
else
vid = le16_to_cpu(rx_desc->wb.upper.vlan);
#ifdef HAVE_VLAN_RX_REGISTER
IGB_CB(skb)->vid = vid;
} else {
IGB_CB(skb)->vid = 0;
#else
__vlan_hwaccel_put_tag(skb, vid);
#endif
}
}
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
{
/* HW will not DMA in data larger than the given buffer, even if it
* parses the (NFS, of course) header to be larger. In that case, it
* fills the header buffer and spills the rest into the page.
*/
u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
if (hlen > IGB_RX_HDR_LEN)
hlen = IGB_RX_HDR_LEN;
return hlen;
}
#endif
#ifndef IGB_NO_LRO
/**
* igb_merge_active_tail - merge active tail into lro skb
* @tail: pointer to active tail in frag_list
*
* This function merges the length and data of an active tail into the
* skb containing the frag_list. It resets the tail's pointer to the head,
* but it leaves the heads pointer to tail intact.
**/
static inline struct sk_buff *igb_merge_active_tail(struct sk_buff *tail)
{
struct sk_buff *head = IGB_CB(tail)->head;
if (!head)
return tail;
head->len += tail->len;
head->data_len += tail->len;
head->truesize += tail->len;
IGB_CB(tail)->head = NULL;
return head;
}
/**
* igb_add_active_tail - adds an active tail into the skb frag_list
* @head: pointer to the start of the skb
* @tail: pointer to active tail to add to frag_list
*
* This function adds an active tail to the end of the frag list. This tail
* will still be receiving data so we cannot yet ad it's stats to the main
* skb. That is done via igb_merge_active_tail.
**/
static inline void igb_add_active_tail(struct sk_buff *head, struct sk_buff *tail)
{
struct sk_buff *old_tail = IGB_CB(head)->tail;
if (old_tail) {
igb_merge_active_tail(old_tail);
old_tail->next = tail;
} else {
skb_shinfo(head)->frag_list = tail;
}
IGB_CB(tail)->head = head;
IGB_CB(head)->tail = tail;
IGB_CB(head)->append_cnt++;
}
/**
* igb_close_active_frag_list - cleanup pointers on a frag_list skb
* @head: pointer to head of an active frag list
*
* This function will clear the frag_tail_tracker pointer on an active
* frag_list and returns true if the pointer was actually set
**/
static inline bool igb_close_active_frag_list(struct sk_buff *head)
{
struct sk_buff *tail = IGB_CB(head)->tail;
if (!tail)
return false;
igb_merge_active_tail(tail);
IGB_CB(head)->tail = NULL;
return true;
}
/**
* igb_can_lro - returns true if packet is TCP/IPV4 and LRO is enabled
* @adapter: board private structure
* @rx_desc: pointer to the rx descriptor
* @skb: pointer to the skb to be merged
*
**/
static inline bool igb_can_lro(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct iphdr *iph = (struct iphdr *)skb->data;
__le16 pkt_info = rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
/* verify LRO is enabled */
if (!(netdev_ring(rx_ring)->features & NETIF_F_LRO))
return false;
/* verify hardware indicates this is IPv4/TCP */
if((!(pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_TCP)) ||
!(pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4))))
return false;
/* verify the header is large enough for us to read IP/TCP fields */
if (!pskb_may_pull(skb, sizeof(struct igb_lrohdr)))
return false;
/* verify there are no VLANs on packet */
if (skb->protocol != __constant_htons(ETH_P_IP))
return false;
/* ensure we are version 4 with no options */
if (*(u8 *)iph != 0x45)
return false;
/* .. and the packet is not fragmented */
if (iph->frag_off & htons(IP_MF | IP_OFFSET))
return false;
/* .. and that next header is TCP */
if (iph->protocol != IPPROTO_TCP)
return false;
return true;
}
static inline struct igb_lrohdr *igb_lro_hdr(struct sk_buff *skb)
{
return (struct igb_lrohdr *)skb->data;
}
/**
* igb_lro_flush - Indicate packets to upper layer.
*
* Update IP and TCP header part of head skb if more than one
* skb's chained and indicate packets to upper layer.
**/
static void igb_lro_flush(struct igb_q_vector *q_vector,
struct sk_buff *skb)
{
struct igb_lro_list *lrolist = q_vector->lrolist;
__skb_unlink(skb, &lrolist->active);
if (IGB_CB(skb)->append_cnt) {
struct igb_lrohdr *lroh = igb_lro_hdr(skb);
/* close any active lro contexts */
igb_close_active_frag_list(skb);
/* incorporate ip header and re-calculate checksum */
lroh->iph.tot_len = ntohs(skb->len);
lroh->iph.check = 0;
/* header length is 5 since we know no options exist */
lroh->iph.check = ip_fast_csum((u8 *)lroh, 5);
/* clear TCP checksum to indicate we are an LRO frame */
lroh->th.check = 0;
/* incorporate latest timestamp into the tcp header */
if (IGB_CB(skb)->tsecr) {
lroh->ts[2] = IGB_CB(skb)->tsecr;
lroh->ts[1] = htonl(IGB_CB(skb)->tsval);
}
#ifdef NETIF_F_TSO
skb_shinfo(skb)->gso_size = IGB_CB(skb)->mss;
#endif
}
#ifdef HAVE_VLAN_RX_REGISTER
igb_receive_skb(q_vector, skb);
#else
napi_gro_receive(&q_vector->napi, skb);
#endif
lrolist->stats.flushed++;
}
static void igb_lro_flush_all(struct igb_q_vector *q_vector)
{
struct igb_lro_list *lrolist = q_vector->lrolist;
struct sk_buff *skb, *tmp;
skb_queue_reverse_walk_safe(&lrolist->active, skb, tmp)
igb_lro_flush(q_vector, skb);
}
/*
* igb_lro_header_ok - Main LRO function.
**/
static void igb_lro_header_ok(struct sk_buff *skb)
{
struct igb_lrohdr *lroh = igb_lro_hdr(skb);
u16 opt_bytes, data_len;
IGB_CB(skb)->tail = NULL;
IGB_CB(skb)->tsecr = 0;
IGB_CB(skb)->append_cnt = 0;
IGB_CB(skb)->mss = 0;
/* ensure that the checksum is valid */
if (skb->ip_summed != CHECKSUM_UNNECESSARY)
return;
/* If we see CE codepoint in IP header, packet is not mergeable */
if (INET_ECN_is_ce(ipv4_get_dsfield(&lroh->iph)))
return;
/* ensure no bits set besides ack or psh */
if (lroh->th.fin || lroh->th.syn || lroh->th.rst ||
lroh->th.urg || lroh->th.ece || lroh->th.cwr ||
!lroh->th.ack)
return;
/* store the total packet length */
data_len = ntohs(lroh->iph.tot_len);
/* remove any padding from the end of the skb */
__pskb_trim(skb, data_len);
/* remove header length from data length */
data_len -= sizeof(struct igb_lrohdr);
/*
* check for timestamps. Since the only option we handle are timestamps,
* we only have to handle the simple case of aligned timestamps
*/
opt_bytes = (lroh->th.doff << 2) - sizeof(struct tcphdr);
if (opt_bytes != 0) {
if ((opt_bytes != TCPOLEN_TSTAMP_ALIGNED) ||
!pskb_may_pull(skb, sizeof(struct igb_lrohdr) +
TCPOLEN_TSTAMP_ALIGNED) ||
(lroh->ts[0] != htonl((TCPOPT_NOP << 24) |
(TCPOPT_NOP << 16) |
(TCPOPT_TIMESTAMP << 8) |
TCPOLEN_TIMESTAMP)) ||
(lroh->ts[2] == 0)) {
return;
}
IGB_CB(skb)->tsval = ntohl(lroh->ts[1]);
IGB_CB(skb)->tsecr = lroh->ts[2];
data_len -= TCPOLEN_TSTAMP_ALIGNED;
}
/* record data_len as mss for the packet */
IGB_CB(skb)->mss = data_len;
IGB_CB(skb)->next_seq = ntohl(lroh->th.seq);
}
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
static bool igb_merge_frags(struct sk_buff *lro_skb, struct sk_buff *new_skb)
{
struct sk_buff *tail;
struct skb_shared_info *tail_info;
struct skb_shared_info *new_skb_info;
u16 data_len;
/* header must be empty to pull frags into current skb */
if (skb_headlen(new_skb))
return false;
if (IGB_CB(lro_skb)->tail)
tail = IGB_CB(lro_skb)->tail;
else
tail = lro_skb;
tail_info = skb_shinfo(tail);
new_skb_info = skb_shinfo(new_skb);
/* make sure we have room in frags list */
if (new_skb_info->nr_frags >= (MAX_SKB_FRAGS - tail_info->nr_frags))
return false;
/* bump append count */
IGB_CB(lro_skb)->append_cnt++;
/* copy frags into the last skb */
memcpy(tail_info->frags + tail_info->nr_frags,
new_skb_info->frags,
new_skb_info->nr_frags * sizeof(skb_frag_t));
/* copy size data over */
tail_info->nr_frags += new_skb_info->nr_frags;
data_len = IGB_CB(new_skb)->mss;
tail->len += data_len;
tail->data_len += data_len;
tail->truesize += data_len;
/* wipe record of data from new_skb */
new_skb_info->nr_frags = 0;
new_skb->len = new_skb->data_len = 0;
new_skb->truesize -= data_len;
new_skb->data = new_skb->head + NET_SKB_PAD + NET_IP_ALIGN;
skb_reset_tail_pointer(new_skb);
new_skb->protocol = 0;
new_skb->ip_summed = CHECKSUM_NONE;
#ifdef HAVE_VLAN_RX_REGISTER
IGB_CB(new_skb)->vid = 0;
#else
new_skb->vlan_tci = 0;
#endif
return true;
}
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
/**
* igb_lro_queue - if able, queue skb into lro chain
* @q_vector: structure containing interrupt and ring information
* @new_skb: pointer to current skb being checked
*
* Checks whether the skb given is eligible for LRO and if that's
* fine chains it to the existing lro_skb based on flowid. If an LRO for
* the flow doesn't exist create one.
**/
static struct sk_buff *igb_lro_queue(struct igb_q_vector *q_vector,
struct sk_buff *new_skb)
{
struct sk_buff *lro_skb;
struct igb_lro_list *lrolist = q_vector->lrolist;
struct igb_lrohdr *lroh = igb_lro_hdr(new_skb);
__be32 saddr = lroh->iph.saddr;
__be32 daddr = lroh->iph.daddr;
__be32 tcp_ports = *(__be32 *)&lroh->th;
u16 data_len;
#ifdef HAVE_VLAN_RX_REGISTER
u16 vid = IGB_CB(new_skb)->vid;
#else
u16 vid = new_skb->vlan_tci;
#endif
igb_lro_header_ok(new_skb);
/*
* we have a packet that might be eligible for LRO,
* so see if it matches anything we might expect
*/
skb_queue_walk(&lrolist->active, lro_skb) {
if (*(__be32 *)&igb_lro_hdr(lro_skb)->th != tcp_ports ||
igb_lro_hdr(lro_skb)->iph.saddr != saddr ||
igb_lro_hdr(lro_skb)->iph.daddr != daddr)
continue;
#ifdef HAVE_VLAN_RX_REGISTER
if (IGB_CB(lro_skb)->vid != vid)
#else
if (lro_skb->vlan_tci != vid)
#endif
continue;
/* out of order packet */
if (IGB_CB(lro_skb)->next_seq != IGB_CB(new_skb)->next_seq) {
igb_lro_flush(q_vector, lro_skb);
IGB_CB(new_skb)->mss = 0;
break;
}
/* TCP timestamp options have changed */
if (!IGB_CB(lro_skb)->tsecr != !IGB_CB(new_skb)->tsecr) {
igb_lro_flush(q_vector, lro_skb);
break;
}
/* make sure timestamp values are increasing */
if (IGB_CB(lro_skb)->tsecr &&
IGB_CB(lro_skb)->tsval > IGB_CB(new_skb)->tsval) {
igb_lro_flush(q_vector, lro_skb);
IGB_CB(new_skb)->mss = 0;
break;
}
data_len = IGB_CB(new_skb)->mss;
/*
* malformed header, no tcp data, resultant packet would
* be too large, or new skb is larger than our current mss.
*/
if (data_len == 0 ||
data_len > IGB_CB(lro_skb)->mss ||
data_len > IGB_CB(lro_skb)->free) {
igb_lro_flush(q_vector, lro_skb);
break;
}
/* ack sequence numbers or window size has changed */
if (igb_lro_hdr(lro_skb)->th.ack_seq != lroh->th.ack_seq ||
igb_lro_hdr(lro_skb)->th.window != lroh->th.window) {
igb_lro_flush(q_vector, lro_skb);
break;
}
/* Remove IP and TCP header*/
skb_pull(new_skb, new_skb->len - data_len);
/* update timestamp and timestamp echo response */
IGB_CB(lro_skb)->tsval = IGB_CB(new_skb)->tsval;
IGB_CB(lro_skb)->tsecr = IGB_CB(new_skb)->tsecr;
/* update sequence and free space */
IGB_CB(lro_skb)->next_seq += data_len;
IGB_CB(lro_skb)->free -= data_len;
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
/* if header is empty pull pages into current skb */
if (igb_merge_frags(lro_skb, new_skb)) {
lrolist->stats.recycled++;
} else {
#endif
/* chain this new skb in frag_list */
igb_add_active_tail(lro_skb, new_skb);
new_skb = NULL;
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
}
#endif
if ((data_len < IGB_CB(lro_skb)->mss) || lroh->th.psh) {
igb_lro_hdr(lro_skb)->th.psh |= lroh->th.psh;
igb_lro_flush(q_vector, lro_skb);
}
lrolist->stats.coal++;
return new_skb;
}
if (IGB_CB(new_skb)->mss && !lroh->th.psh) {
/* if we are at capacity flush the tail */
if (skb_queue_len(&lrolist->active) >= IGB_LRO_MAX) {
lro_skb = skb_peek_tail(&lrolist->active);
if (lro_skb)
igb_lro_flush(q_vector, lro_skb);
}
/* update sequence and free space */
IGB_CB(new_skb)->next_seq += IGB_CB(new_skb)->mss;
IGB_CB(new_skb)->free = 65521 - new_skb->len;
/* .. and insert at the front of the active list */
__skb_queue_head(&lrolist->active, new_skb);
lrolist->stats.coal++;
return NULL;
}
/* packet not handled by any of the above, pass it to the stack */
#ifdef HAVE_VLAN_RX_REGISTER
igb_receive_skb(q_vector, new_skb);
#else
napi_gro_receive(&q_vector->napi, new_skb);
#endif
return NULL;
}
#endif /* IGB_NO_LRO */
#ifdef HAVE_PF_RING
static int pf_ring_handle_skb(struct igb_q_vector *q_vector, struct sk_buff *skb) {
int debug = 0;
struct pfring_hooks *hook = (struct pfring_hooks*)skb->dev->pfring_ptr;
if(hook && (hook->magic == PF_RING)) {
/* Wow: PF_RING is alive & kickin' ! */
if(debug)
printk(KERN_INFO "[PF_RING] alive [%s][len=%d]\n", skb->dev->name, skb->len);
if(*hook->transparent_mode != standard_linux_path) {
u_int8_t skb_reference_in_use;
int rc = hook->ring_handler(skb, 1, 1, &skb_reference_in_use,
q_vector->rx.ring->queue_index, q_vector->adapter->num_rx_queues);
if(rc > 0 /* Packet handled by PF_RING */) {
if(*hook->transparent_mode == driver2pf_ring_non_transparent) {
/* PF_RING has already freed the memory */
return(rc);
}
}
return(0);
} else {
if(debug) printk(KERN_INFO "[PF_RING] not present on %s\n",
skb->dev->name);
}
}
return(-1);
}
#endif
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
{
struct igb_ring *rx_ring = q_vector->rx.ring;
union e1000_adv_rx_desc *rx_desc;
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
const int current_node = numa_node_id();
#endif
unsigned int total_bytes = 0, total_packets = 0;
u16 cleaned_count = igb_desc_unused(rx_ring);
u16 i = rx_ring->next_to_clean;
rx_desc = IGB_RX_DESC(rx_ring, i);
while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
struct sk_buff *skb = buffer_info->skb;
union e1000_adv_rx_desc *next_rxd;
buffer_info->skb = NULL;
prefetch(skb->data);
i++;
if (i == rx_ring->count)
i = 0;
next_rxd = IGB_RX_DESC(rx_ring, i);
prefetch(next_rxd);
/*
* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* RXD_STAT_DD bit is set
*/
rmb();
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
__skb_put(skb, le16_to_cpu(rx_desc->wb.upper.length));
dma_unmap_single(rx_ring->dev, buffer_info->dma,
rx_ring->rx_buffer_len,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
#else
if (!skb_is_nonlinear(skb)) {
__skb_put(skb, igb_get_hlen(rx_desc));
dma_unmap_single(rx_ring->dev, buffer_info->dma,
IGB_RX_HDR_LEN,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
}
if (rx_desc->wb.upper.length) {
u16 length = le16_to_cpu(rx_desc->wb.upper.length);
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
buffer_info->page,
buffer_info->page_offset,
length);
skb->len += length;
skb->data_len += length;
skb->truesize += PAGE_SIZE / 2;
if ((page_count(buffer_info->page) != 1) ||
(page_to_nid(buffer_info->page) != current_node))
buffer_info->page = NULL;
else
get_page(buffer_info->page);
dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
PAGE_SIZE / 2, DMA_FROM_DEVICE);
buffer_info->page_dma = 0;
}
if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
struct igb_rx_buffer *next_buffer;
next_buffer = &rx_ring->rx_buffer_info[i];
buffer_info->skb = next_buffer->skb;
buffer_info->dma = next_buffer->dma;
next_buffer->skb = skb;
next_buffer->dma = 0;
goto next_desc;
}
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
if (igb_test_staterr(rx_desc,
E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
dev_kfree_skb_any(skb);
goto next_desc;
}
#ifdef CONFIG_IGB_PTP
igb_ptp_rx_hwtstamp(q_vector, rx_desc, skb);
#endif /* CONFIG_IGB_PTP */
#ifdef NETIF_F_RXHASH
igb_rx_hash(rx_ring, rx_desc, skb);
#endif
igb_rx_checksum(rx_ring, rx_desc, skb);
igb_rx_vlan(rx_ring, rx_desc, skb);
total_bytes += skb->len;
total_packets++;
skb->protocol = eth_type_trans(skb, netdev_ring(rx_ring));
#ifndef IGB_NO_LRO
if (igb_can_lro(rx_ring, rx_desc, skb))
buffer_info->skb = igb_lro_queue(q_vector, skb);
else
#endif
#ifdef HAVE_PF_RING
{
if(pf_ring_handle_skb(q_vector, skb) <= 0) {
#endif
#ifdef HAVE_VLAN_RX_REGISTER
igb_receive_skb(q_vector, skb);
#else
napi_gro_receive(&q_vector->napi, skb);
#endif
#ifdef HAVE_PF_RING
}
}
#endif
#ifndef NETIF_F_GRO
netdev_ring(rx_ring)->last_rx = jiffies;
#endif
budget--;
next_desc:
cleaned_count++;
if (!budget)
break;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
igb_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
}
rx_ring->next_to_clean = i;
rx_ring->rx_stats.packets += total_packets;
rx_ring->rx_stats.bytes += total_bytes;
q_vector->rx.total_packets += total_packets;
q_vector->rx.total_bytes += total_bytes;
if (cleaned_count)
igb_alloc_rx_buffers(rx_ring, cleaned_count);
#ifndef IGB_NO_LRO
if (netdev_ring(rx_ring)->features & NETIF_F_LRO)
igb_lro_flush_all(q_vector);
#endif /* IGB_NO_LRO */
return !!budget;
}
static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
struct igb_rx_buffer *bi)
{
struct sk_buff *skb = bi->skb;
dma_addr_t dma = bi->dma;
if (dma)
return true;
if (likely(!skb)) {
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
skb = netdev_alloc_skb_ip_align(netdev_ring(rx_ring),
rx_ring->rx_buffer_len);
#else
skb = netdev_alloc_skb_ip_align(netdev_ring(rx_ring),
IGB_RX_HDR_LEN);
#endif
bi->skb = skb;
if (!skb) {
rx_ring->rx_stats.alloc_failed++;
return false;
}
/* initialize skb for ring */
skb_record_rx_queue(skb, ring_queue_index(rx_ring));
}
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
dma = dma_map_single(rx_ring->dev, skb->data,
rx_ring->rx_buffer_len, DMA_FROM_DEVICE);
#else
dma = dma_map_single(rx_ring->dev, skb->data,
IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
#endif
if (dma_mapping_error(rx_ring->dev, dma)) {
rx_ring->rx_stats.alloc_failed++;
return false;
}
bi->dma = dma;
return true;
}
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
struct igb_rx_buffer *bi)
{
struct page *page = bi->page;
dma_addr_t page_dma = bi->page_dma;
unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
if (page_dma)
return true;
if (!page) {
page = alloc_page(GFP_ATOMIC | __GFP_COLD);
bi->page = page;
if (unlikely(!page)) {
rx_ring->rx_stats.alloc_failed++;
return false;
}
}
page_dma = dma_map_page(rx_ring->dev, page,
page_offset, PAGE_SIZE / 2,
DMA_FROM_DEVICE);
if (dma_mapping_error(rx_ring->dev, page_dma)) {
rx_ring->rx_stats.alloc_failed++;
return false;
}
bi->page_dma = page_dma;
bi->page_offset = page_offset;
return true;
}
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
/**
* igb_alloc_rx_buffers - Replace used receive buffers; packet split
* @adapter: address of board private structure
**/
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
{
union e1000_adv_rx_desc *rx_desc;
struct igb_rx_buffer *bi;
u16 i = rx_ring->next_to_use;
rx_desc = IGB_RX_DESC(rx_ring, i);
bi = &rx_ring->rx_buffer_info[i];
i -= rx_ring->count;
while (cleaned_count--) {
if (!igb_alloc_mapped_skb(rx_ring, bi))
break;
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info. */
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
#else
rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
if (!igb_alloc_mapped_page(rx_ring, bi))
break;
rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
rx_desc++;
bi++;
i++;
if (unlikely(!i)) {
rx_desc = IGB_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buffer_info;
i -= rx_ring->count;
}
/* clear the hdr_addr for the next_to_use descriptor */
rx_desc->read.hdr_addr = 0;
}
i += rx_ring->count;
if (rx_ring->next_to_use != i) {
rx_ring->next_to_use = i;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64). */
wmb();
writel(i, rx_ring->tail);
}
}
#ifdef SIOCGMIIPHY
/**
* igb_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
**/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
if (adapter->hw.phy.media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = adapter->hw.phy.addr;
break;
case SIOCGMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
&data->val_out))
return -EIO;
break;
case SIOCSMIIREG:
default:
return -EOPNOTSUPP;
}
return E1000_SUCCESS;
}
#endif
/**
* igb_ioctl -
* @netdev:
* @ifreq:
* @cmd:
**/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
#ifdef SIOCGMIIPHY
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return igb_mii_ioctl(netdev, ifr, cmd);
#endif
#ifdef CONFIG_IGB_PTP
case SIOCSHWTSTAMP:
return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
#endif /* CONFIG_IGB_PTP */
#ifdef ETHTOOL_OPS_COMPAT
case SIOCETHTOOL:
return ethtool_ioctl(ifr);
#endif
default:
return -EOPNOTSUPP;
}
}
s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
u16 cap_offset;
cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
if (!cap_offset)
return -E1000_ERR_CONFIG;
pci_read_config_word(adapter->pdev, cap_offset + reg, value);
return E1000_SUCCESS;
}
s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
u16 cap_offset;
cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
if (!cap_offset)
return -E1000_ERR_CONFIG;
pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
return E1000_SUCCESS;
}
#ifdef HAVE_VLAN_RX_REGISTER
static void igb_vlan_mode(struct net_device *netdev, struct vlan_group *vlgrp)
#else
void igb_vlan_mode(struct net_device *netdev, u32 features)
#endif
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, rctl;
int i;
#ifdef HAVE_VLAN_RX_REGISTER
bool enable = !!vlgrp;
igb_irq_disable(adapter);
adapter->vlgrp = vlgrp;
if (!test_bit(__IGB_DOWN, &adapter->state))
igb_irq_enable(adapter);
#else
bool enable = !!(features & NETIF_F_HW_VLAN_RX);
#endif
if (enable) {
/* enable VLAN tag insert/strip */
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl |= E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
/* Disable CFI check */
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= ~E1000_RCTL_CFIEN;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
} else {
/* disable VLAN tag insert/strip */
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl &= ~E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
}
#ifndef CONFIG_IGB_VMDQ_NETDEV
for (i = 0; i < adapter->vmdq_pools; i++) {
igb_set_vf_vlan_strip(adapter,
adapter->vfs_allocated_count + i,
enable);
}
#else
igb_set_vf_vlan_strip(adapter,
adapter->vfs_allocated_count,
enable);
for (i = 1; i < adapter->vmdq_pools; i++) {
#ifdef HAVE_VLAN_RX_REGISTER
struct igb_vmdq_adapter *vadapter;
vadapter = netdev_priv(adapter->vmdq_netdev[i-1]);
enable = !!vadapter->vlgrp;
#else
struct net_device *vnetdev;
vnetdev = adapter->vmdq_netdev[i-1];
enable = !!(vnetdev->features & NETIF_F_HW_VLAN_RX);
#endif
igb_set_vf_vlan_strip(adapter,
adapter->vfs_allocated_count + i,
enable);
}
#endif
igb_rlpml_set(adapter);
}
#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
#else
static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
#endif
{
struct igb_adapter *adapter = netdev_priv(netdev);
int pf_id = adapter->vfs_allocated_count;
/* attempt to add filter to vlvf array */
igb_vlvf_set(adapter, vid, TRUE, pf_id);
/* add the filter since PF can receive vlans w/o entry in vlvf */
igb_vfta_set(adapter, vid, TRUE);
#ifndef HAVE_NETDEV_VLAN_FEATURES
/* Copy feature flags from netdev to the vlan netdev for this vid.
* This allows things like TSO to bubble down to our vlan device.
* There is no need to update netdev for vlan 0 (DCB), since it
* wouldn't has v_netdev.
*/
if (adapter->vlgrp) {
struct vlan_group *vlgrp = adapter->vlgrp;
struct net_device *v_netdev = vlan_group_get_device(vlgrp, vid);
if (v_netdev) {
v_netdev->features |= netdev->features;
vlan_group_set_device(vlgrp, vid, v_netdev);
}
}
#endif
#ifndef HAVE_VLAN_RX_REGISTER
set_bit(vid, adapter->active_vlans);
#endif
#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
return 0;
#endif
}
#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
#else
static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
#endif
{
struct igb_adapter *adapter = netdev_priv(netdev);
int pf_id = adapter->vfs_allocated_count;
s32 err;
#ifdef HAVE_VLAN_RX_REGISTER
igb_irq_disable(adapter);
vlan_group_set_device(adapter->vlgrp, vid, NULL);
if (!test_bit(__IGB_DOWN, &adapter->state))
igb_irq_enable(adapter);
#endif /* HAVE_VLAN_RX_REGISTER */
/* remove vlan from VLVF table array */
err = igb_vlvf_set(adapter, vid, FALSE, pf_id);
/* if vid was not present in VLVF just remove it from table */
if (err)
igb_vfta_set(adapter, vid, FALSE);
#ifndef HAVE_VLAN_RX_REGISTER
clear_bit(vid, adapter->active_vlans);
#endif
#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
return 0;
#endif
}
static void igb_restore_vlan(struct igb_adapter *adapter)
{
#ifdef HAVE_VLAN_RX_REGISTER
igb_vlan_mode(adapter->netdev, adapter->vlgrp);
if (adapter->vlgrp) {
u16 vid;
for (vid = 0; vid < VLAN_N_VID; vid++) {
if (!vlan_group_get_device(adapter->vlgrp, vid))
continue;
igb_vlan_rx_add_vid(adapter->netdev, vid);
}
}
#else
u16 vid;
igb_vlan_mode(adapter->netdev, adapter->netdev->features);
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
igb_vlan_rx_add_vid(adapter->netdev, vid);
#endif
}
int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_mac_info *mac = &adapter->hw.mac;
mac->autoneg = 0;
/*
* SerDes device's only allow 2.5/1000 gbps Full duplex
* and 100Mbps Full duplex for 100baseFx sfp
*/
if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
switch (spddplx) {
case SPEED_10 + DUPLEX_HALF:
case SPEED_10 + DUPLEX_FULL:
case SPEED_100 + DUPLEX_HALF:
dev_err(pci_dev_to_dev(pdev),
"Unsupported Speed/Duplex configuration\n");
return -EINVAL;
default:
break;
}
}
switch (spddplx) {
case SPEED_10 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_10_HALF;
break;
case SPEED_10 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_10_FULL;
break;
case SPEED_100 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_100_HALF;
break;
case SPEED_100 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_100_FULL;
break;
case SPEED_1000 + DUPLEX_FULL:
mac->autoneg = 1;
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
dev_err(pci_dev_to_dev(pdev), "Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
adapter->hw.phy.mdix = AUTO_ALL_MODES;
return 0;
}
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
bool runtime)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, rctl, status;
u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
#ifdef CONFIG_PM
int retval = 0;
#endif
netif_device_detach(netdev);
status = E1000_READ_REG(hw, E1000_STATUS);
if (status & E1000_STATUS_LU)
wufc &= ~E1000_WUFC_LNKC;
if (netif_running(netdev))
__igb_close(netdev, true);
igb_clear_interrupt_scheme(adapter);
#ifdef CONFIG_PM
retval = pci_save_state(pdev);
if (retval)
return retval;
#endif
if (wufc) {
igb_setup_rctl(adapter);
igb_set_rx_mode(netdev);
/* turn on all-multi mode if wake on multicast is enabled */
if (wufc & E1000_WUFC_MC) {
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_MPE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
ctrl = E1000_READ_REG(hw, E1000_CTRL);
/* phy power management enable */
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
ctrl |= E1000_CTRL_ADVD3WUC;
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
/* Allow time for pending master requests to run */
e1000_disable_pcie_master(hw);
E1000_WRITE_REG(hw, E1000_WUC, E1000_WUC_PME_EN);
E1000_WRITE_REG(hw, E1000_WUFC, wufc);
} else {
E1000_WRITE_REG(hw, E1000_WUC, 0);
E1000_WRITE_REG(hw, E1000_WUFC, 0);
}
*enable_wake = wufc || adapter->en_mng_pt;
if (!*enable_wake)
igb_power_down_link(adapter);
else
igb_power_up_link(adapter);
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant. */
igb_release_hw_control(adapter);
pci_disable_device(pdev);
return 0;
}
#ifdef CONFIG_PM
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
static int igb_suspend(struct device *dev)
#else
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
{
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
struct pci_dev *pdev = to_pci_dev(dev);
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
int retval;
bool wake;
retval = __igb_shutdown(pdev, &wake, 0);
if (retval)
return retval;
if (wake) {
pci_prepare_to_sleep(pdev);
} else {
pci_wake_from_d3(pdev, false);
pci_set_power_state(pdev, PCI_D3hot);
}
return 0;
}
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
static int igb_resume(struct device *dev)
#else
static int igb_resume(struct pci_dev *pdev)
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
{
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
struct pci_dev *pdev = to_pci_dev(dev);
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_save_state(pdev);
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(pci_dev_to_dev(pdev),
"igb: Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
#ifdef CONFIG_PM_RUNTIME
if (!rtnl_is_locked()) {
/*
* shut up ASSERT_RTNL() warning in
* netif_set_real_num_tx/rx_queues.
*/
rtnl_lock();
err = igb_init_interrupt_scheme(adapter);
rtnl_unlock();
} else {
err = igb_init_interrupt_scheme(adapter);
}
if (err) {
#else
if (igb_init_interrupt_scheme(adapter)) {
#endif /* CONFIG_PM_RUNTIME */
dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n");
return -ENOMEM;
}
igb_reset(adapter);
/* let the f/w know that the h/w is now under the control of the
* driver. */
igb_get_hw_control(adapter);
E1000_WRITE_REG(hw, E1000_WUS, ~0);
if (netdev->flags & IFF_UP) {
err = __igb_open(netdev, true);
if (err)
return err;
}
netif_device_attach(netdev);
return 0;
}
#ifdef CONFIG_PM_RUNTIME
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
static int igb_runtime_idle(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
if (!igb_has_link(adapter))
pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
return -EBUSY;
}
static int igb_runtime_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int retval;
bool wake;
retval = __igb_shutdown(pdev, &wake, 1);
if (retval)
return retval;
if (wake) {
pci_prepare_to_sleep(pdev);
} else {
pci_wake_from_d3(pdev, false);
pci_set_power_state(pdev, PCI_D3hot);
}
return 0;
}
static int igb_runtime_resume(struct device *dev)
{
return igb_resume(dev);
}
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
#endif /* CONFIG_PM_RUNTIME */
#endif /* CONFIG_PM */
#ifdef USE_REBOOT_NOTIFIER
/* only want to do this for 2.4 kernels? */
static int igb_notify_reboot(struct notifier_block *nb, unsigned long event,
void *p)
{
struct pci_dev *pdev = NULL;
bool wake;
switch (event) {
case SYS_DOWN:
case SYS_HALT:
case SYS_POWER_OFF:
while ((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
if (pci_dev_driver(pdev) == &igb_driver) {
__igb_shutdown(pdev, &wake, 0);
if (event == SYS_POWER_OFF) {
pci_wake_from_d3(pdev, wake);
pci_set_power_state(pdev, PCI_D3hot);
}
}
}
}
return NOTIFY_DONE;
}
#else
static void igb_shutdown(struct pci_dev *pdev)
{
bool wake = false;
__igb_shutdown(pdev, &wake, 0);
if (system_state == SYSTEM_POWER_OFF) {
pci_wake_from_d3(pdev, wake);
pci_set_power_state(pdev, PCI_D3hot);
}
}
#endif /* USE_REBOOT_NOTIFIER */
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void igb_netpoll(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct igb_q_vector *q_vector;
int i;
for (i = 0; i < adapter->num_q_vectors; i++) {
q_vector = adapter->q_vector[i];
if (adapter->msix_entries)
E1000_WRITE_REG(hw, E1000_EIMC, q_vector->eims_value);
else
igb_irq_disable(adapter);
napi_schedule(&q_vector->napi);
}
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
#ifdef HAVE_PCI_ERS
#define E1000_DEV_ID_82576_VF 0x10CA
/**
* igb_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
#ifdef CONFIG_PCI_IOV
struct pci_dev *bdev, *vfdev;
u32 dw0, dw1, dw2, dw3;
int vf, pos;
u16 req_id, pf_func;
if (!(adapter->flags & IGB_FLAG_DETECT_BAD_DMA))
goto skip_bad_vf_detection;
bdev = pdev->bus->self;
while (bdev && (pci_pcie_type(bdev) != PCI_EXP_TYPE_ROOT_PORT))
bdev = bdev->bus->self;
if (!bdev)
goto skip_bad_vf_detection;
pos = pci_find_ext_capability(bdev, PCI_EXT_CAP_ID_ERR);
if (!pos)
goto skip_bad_vf_detection;
pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG, &dw0);
pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 4, &dw1);
pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 8, &dw2);
pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 12, &dw3);
req_id = dw1 >> 16;
/* On the 82576 if bit 7 of the requestor ID is set then it's a VF */
if (!(req_id & 0x0080))
goto skip_bad_vf_detection;
pf_func = req_id & 0x01;
if ((pf_func & 1) == (pdev->devfn & 1)) {
vf = (req_id & 0x7F) >> 1;
dev_err(pci_dev_to_dev(pdev),
"VF %d has caused a PCIe error\n", vf);
dev_err(pci_dev_to_dev(pdev),
"TLP: dw0: %8.8x\tdw1: %8.8x\tdw2: "
"%8.8x\tdw3: %8.8x\n",
dw0, dw1, dw2, dw3);
/* Find the pci device of the offending VF */
vfdev = pci_get_device(PCI_VENDOR_ID_INTEL,
E1000_DEV_ID_82576_VF, NULL);
while (vfdev) {
if (vfdev->devfn == (req_id & 0xFF))
break;
vfdev = pci_get_device(PCI_VENDOR_ID_INTEL,
E1000_DEV_ID_82576_VF, vfdev);
}
/*
* There's a slim chance the VF could have been hot plugged,
* so if it is no longer present we don't need to issue the
* VFLR. Just clean up the AER in that case.
*/
if (vfdev) {
dev_err(pci_dev_to_dev(pdev),
"Issuing VFLR to VF %d\n", vf);
pci_write_config_dword(vfdev, 0xA8, 0x00008000);
}
pci_cleanup_aer_uncorrect_error_status(pdev);
}
/*
* Even though the error may have occurred on the other port
* we still need to increment the vf error reference count for
* both ports because the I/O resume function will be called
* for both of them.
*/
adapter->vferr_refcount++;
return PCI_ERS_RESULT_RECOVERED;
skip_bad_vf_detection:
#endif /* CONFIG_PCI_IOV */
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
igb_down(adapter);
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* igb_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the igb_resume routine.
*/
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pci_ers_result_t result;
if (pci_enable_device_mem(pdev)) {
dev_err(pci_dev_to_dev(pdev),
"Cannot re-enable PCI device after reset.\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
schedule_work(&adapter->reset_task);
E1000_WRITE_REG(hw, E1000_WUS, ~0);
result = PCI_ERS_RESULT_RECOVERED;
}
pci_cleanup_aer_uncorrect_error_status(pdev);
return result;
}
/**
* igb_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the igb_resume routine.
*/
static void igb_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
if (adapter->vferr_refcount) {
dev_info(pci_dev_to_dev(pdev), "Resuming after VF err\n");
adapter->vferr_refcount--;
return;
}
if (netif_running(netdev)) {
if (igb_up(adapter)) {
dev_err(pci_dev_to_dev(pdev), "igb_up failed after reset\n");
return;
}
}
netif_device_attach(netdev);
/* let the f/w know that the h/w is now under the control of the
* driver. */
igb_get_hw_control(adapter);
}
#endif /* HAVE_PCI_ERS */
int igb_add_mac_filter(struct igb_adapter *adapter, u8 *addr, u16 queue)
{
struct e1000_hw *hw = &adapter->hw;
int i;
if (is_zero_ether_addr(addr))
return 0;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
continue;
adapter->mac_table[i].state = (IGB_MAC_STATE_MODIFIED |
IGB_MAC_STATE_IN_USE);
memcpy(adapter->mac_table[i].addr, addr, ETH_ALEN);
adapter->mac_table[i].queue = queue;
igb_sync_mac_table(adapter);
return 0;
}
return -ENOMEM;
}
int igb_del_mac_filter(struct igb_adapter *adapter, u8* addr, u16 queue)
{
/* search table for addr, if found, set to 0 and sync */
int i;
struct e1000_hw *hw = &adapter->hw;
if (is_zero_ether_addr(addr))
return 0;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
if (!compare_ether_addr(addr, adapter->mac_table[i].addr) &&
adapter->mac_table[i].queue == queue) {
adapter->mac_table[i].state = IGB_MAC_STATE_MODIFIED;
memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
adapter->mac_table[i].queue = 0;
igb_sync_mac_table(adapter);
return 0;
}
}
return -ENOMEM;
}
static int igb_set_vf_mac(struct igb_adapter *adapter,
int vf, unsigned char *mac_addr)
{
igb_del_mac_filter(adapter, adapter->vf_data[vf].vf_mac_addresses, vf);
memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
igb_add_mac_filter(adapter, mac_addr, vf);
return 0;
}
#ifdef IFLA_VF_MAX
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
return -EINVAL;
adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
" change effective.\n");
if (test_bit(__IGB_DOWN, &adapter->state)) {
dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
" but the PF device is not up.\n");
dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
" attempting to use the VF device.\n");
}
return igb_set_vf_mac(adapter, vf, mac);
}
static int igb_link_mbps(int internal_link_speed)
{
switch (internal_link_speed) {
case SPEED_100:
return 100;
case SPEED_1000:
return 1000;
default:
return 0;
}
}
static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
int link_speed)
{
int rf_dec, rf_int;
u32 bcnrc_val;
if (tx_rate != 0) {
/* Calculate the rate factor values to set */
rf_int = link_speed / tx_rate;
rf_dec = (link_speed - (rf_int * tx_rate));
rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
bcnrc_val = E1000_RTTBCNRC_RS_ENA;
bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
E1000_RTTBCNRC_RF_INT_MASK);
bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
} else {
bcnrc_val = 0;
}
E1000_WRITE_REG(hw, E1000_RTTDQSEL, vf); /* vf X uses queue X */
/*
* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
* register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
*/
E1000_WRITE_REG(hw, E1000_RTTBCNRM(0), 0x14);
E1000_WRITE_REG(hw, E1000_RTTBCNRC, bcnrc_val);
}
static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
int actual_link_speed, i;
bool reset_rate = false;
/* VF TX rate limit was not set */
if ((adapter->vf_rate_link_speed == 0) ||
(adapter->hw.mac.type != e1000_82576))
return;
actual_link_speed = igb_link_mbps(adapter->link_speed);
if (actual_link_speed != adapter->vf_rate_link_speed) {
reset_rate = true;
adapter->vf_rate_link_speed = 0;
dev_info(&adapter->pdev->dev,
"Link speed has been changed. VF Transmit rate is disabled\n");
}
for (i = 0; i < adapter->vfs_allocated_count; i++) {
if (reset_rate)
adapter->vf_data[i].tx_rate = 0;
igb_set_vf_rate_limit(&adapter->hw, i,
adapter->vf_data[i].tx_rate, actual_link_speed);
}
}
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int actual_link_speed;
if (hw->mac.type != e1000_82576)
return -EOPNOTSUPP;
actual_link_speed = igb_link_mbps(adapter->link_speed);
if ((vf >= adapter->vfs_allocated_count) ||
(!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) ||
(tx_rate < 0) || (tx_rate > actual_link_speed))
return -EINVAL;
adapter->vf_rate_link_speed = actual_link_speed;
adapter->vf_data[vf].tx_rate = (u16)tx_rate;
igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
return 0;
}
static int igb_ndo_get_vf_config(struct net_device *netdev,
int vf, struct ifla_vf_info *ivi)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (vf >= adapter->vfs_allocated_count)
return -EINVAL;
ivi->vf = vf;
memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
ivi->tx_rate = adapter->vf_data[vf].tx_rate;
ivi->vlan = adapter->vf_data[vf].pf_vlan;
ivi->qos = adapter->vf_data[vf].pf_qos;
return 0;
}
#endif
static void igb_vmm_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg;
switch (hw->mac.type) {
case e1000_82575:
default:
/* replication is not supported for 82575 */
return;
case e1000_82576:
/* notify HW that the MAC is adding vlan tags */
reg = E1000_READ_REG(hw, E1000_DTXCTL);
reg |= (E1000_DTXCTL_VLAN_ADDED |
E1000_DTXCTL_SPOOF_INT);
E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
case e1000_82580:
/* enable replication vlan tag stripping */
reg = E1000_READ_REG(hw, E1000_RPLOLR);
reg |= E1000_RPLOLR_STRVLAN;
E1000_WRITE_REG(hw, E1000_RPLOLR, reg);
case e1000_i350:
/* none of the above registers are supported by i350 */
break;
}
/* Enable Malicious Driver Detection */
if ((hw->mac.type == e1000_i350) && (adapter->vfs_allocated_count) &&
(adapter->mdd))
igb_enable_mdd(adapter);
/* enable replication and loopback support */
e1000_vmdq_set_loopback_pf(hw, adapter->vfs_allocated_count ||
adapter->vmdq_pools);
e1000_vmdq_set_anti_spoofing_pf(hw,
adapter->vfs_allocated_count || adapter->vmdq_pools,
adapter->vfs_allocated_count);
e1000_vmdq_set_replication_pf(hw, adapter->vfs_allocated_count ||
adapter->vmdq_pools);
}
static void igb_init_fw(struct igb_adapter *adapter)
{
struct e1000_fw_drv_info fw_cmd;
struct e1000_hw *hw = &adapter->hw;
int i;
u16 mask;
if (hw->mac.type == e1000_i210)
mask = E1000_SWFW_EEP_SM;
else
mask = E1000_SWFW_PHY0_SM;
/* i211 parts do not support this feature */
if (hw->mac.type == e1000_i211)
hw->mac.arc_subsystem_valid = false;
if (!hw->mac.ops.acquire_swfw_sync(hw, mask)) {
for (i = 0; i <= FW_MAX_RETRIES; i++) {
E1000_WRITE_REG(hw, E1000_FWSTS, E1000_FWSTS_FWRI);
fw_cmd.hdr.cmd = FW_CMD_DRV_INFO;
fw_cmd.hdr.buf_len = FW_CMD_DRV_INFO_LEN;
fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CMD_RESERVED;
fw_cmd.port_num = hw->bus.func;
fw_cmd.drv_version = FW_FAMILY_DRV_VER;
fw_cmd.hdr.checksum = 0;
fw_cmd.hdr.checksum = e1000_calculate_checksum((u8 *)&fw_cmd,
(FW_HDR_LEN +
fw_cmd.hdr.buf_len));
e1000_host_interface_command(hw, (u8*)&fw_cmd,
sizeof(fw_cmd));
if (fw_cmd.hdr.cmd_or_resp.ret_status == FW_STATUS_SUCCESS)
break;
}
} else
dev_warn(pci_dev_to_dev(adapter->pdev),
"Unable to get semaphore, firmware init failed.\n");
hw->mac.ops.release_swfw_sync(hw, mask);
}
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
struct e1000_hw *hw = &adapter->hw;
u32 dmac_thr;
u16 hwm;
if (hw->mac.type == e1000_i211)
return;
if (hw->mac.type > e1000_82580) {
if (adapter->dmac != IGB_DMAC_DISABLE) {
u32 reg;
/* force threshold to 0. */
E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
/*
* DMA Coalescing high water mark needs to be greater
* than the Rx threshold. Set hwm to PBA - max frame
* size in 16B units, capping it at PBA - 6KB.
*/
hwm = 64 * pba - adapter->max_frame_size / 16;
if (hwm < 64 * (pba - 6))
hwm = 64 * (pba - 6);
reg = E1000_READ_REG(hw, E1000_FCRTC);
reg &= ~E1000_FCRTC_RTH_COAL_MASK;
reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
& E1000_FCRTC_RTH_COAL_MASK);
E1000_WRITE_REG(hw, E1000_FCRTC, reg);
/*
* Set the DMA Coalescing Rx threshold to PBA - 2 * max
* frame size, capping it at PBA - 10KB.
*/
dmac_thr = pba - adapter->max_frame_size / 512;
if (dmac_thr < pba - 10)
dmac_thr = pba - 10;
reg = E1000_READ_REG(hw, E1000_DMACR);
reg &= ~E1000_DMACR_DMACTHR_MASK;
reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
& E1000_DMACR_DMACTHR_MASK);
/* transition to L0x or L1 if available..*/
reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
/* watchdog timer= msec values in 32usec intervals */
reg |= ((adapter->dmac) >> 5);
/*
* Disable BMC-to-OS Watchdog enable
* on devices that support OS-to-BMC
*/
reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
E1000_WRITE_REG(hw, E1000_DMACR, reg);
/* no lower threshold to disable coalescing(smart fifb)-UTRESH=0*/
E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
/*
* This sets the time to wait before requesting transition to
* low power state to number of usecs needed to receive 1 512
* byte frame at gigabit line rate
*/
reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
/* free space in tx packet buffer to wake from DMA coal */
E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
(IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
/* make low power state decision controlled by DMA coal */
reg = E1000_READ_REG(hw, E1000_PCIEMISC);
reg &= ~E1000_PCIEMISC_LX_DECISION;
E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
} /* endif adapter->dmac is not disabled */
} else if (hw->mac.type == e1000_82580) {
u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
E1000_WRITE_REG(hw, E1000_PCIEMISC,
reg & ~E1000_PCIEMISC_LX_DECISION);
E1000_WRITE_REG(hw, E1000_DMACR, 0);
}
}
/* igb_main.c */