blob: 6957af27fe0e54756d50cadb04aef21eaeb56a48 [file] [log] [blame]
IPV6-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
mib-2, Counter32, Unsigned32, Integer32,
Gauge32 FROM SNMPv2-SMI
DisplayString, PhysAddress, TruthValue, TimeStamp,
VariablePointer, RowPointer FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP,
NOTIFICATION-GROUP FROM SNMPv2-CONF
Ipv6IfIndex, Ipv6Address, Ipv6AddressPrefix,
Ipv6AddressIfIdentifier,
Ipv6IfIndexOrZero FROM IPV6-TC;
ipv6MIB MODULE-IDENTITY
LAST-UPDATED "9802052155Z"
ORGANIZATION "IETF IPv6 Working Group"
CONTACT-INFO
" Dimitry Haskin
Postal: Bay Networks, Inc.
660 Techology Park Drive.
Billerica, MA 01821
US
Tel: +1-978-916-8124
E-mail: dhaskin@baynetworks.com
Steve Onishi
Postal: Bay Networks, Inc.
3 Federal Street
Billerica, MA 01821
US
Tel: +1-978-916-3816
E-mail: sonishi@baynetworks.com"
DESCRIPTION
"The MIB module for entities implementing the IPv6
protocol."
::= { mib-2 55 }
-- the IPv6 general group
ipv6MIBObjects OBJECT IDENTIFIER ::= { ipv6MIB 1 }
ipv6Forwarding OBJECT-TYPE
SYNTAX INTEGER {
forwarding(1), -- acting as a router
-- NOT acting as
notForwarding(2) -- a router
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The indication of whether this entity is acting
as an IPv6 router in respect to the forwarding of
datagrams received by, but not addressed to, this
entity. IPv6 routers forward datagrams. IPv6
hosts do not (except those source-routed via the
host).
Note that for some managed nodes, this object may
take on only a subset of the values possible.
Accordingly, it is appropriate for an agent to
return a `wrongValue' response if a management
station attempts to change this object to an
inappropriate value."
::= { ipv6MIBObjects 1 }
ipv6DefaultHopLimit OBJECT-TYPE
SYNTAX INTEGER(0..255)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The default value inserted into the Hop Limit
field of the IPv6 header of datagrams originated
at this entity, whenever a Hop Limit value is not
supplied by the transport layer protocol."
DEFVAL { 64 }
::= { ipv6MIBObjects 2 }
ipv6Interfaces OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 interfaces (regardless of
their current state) present on this system."
::= { ipv6MIBObjects 3 }
ipv6IfTableLastChange OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time of the last
insertion or removal of an entry in the
ipv6IfTable. If the number of entries has been
unchanged since the last re-initialization of
the local network management subsystem, then this
object contains a zero value."
::= { ipv6MIBObjects 4 }
-- the IPv6 Interfaces table
ipv6IfTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ipv6IfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The IPv6 Interfaces table contains information
on the entity's internetwork-layer interfaces.
An IPv6 interface constitutes a logical network
layer attachment to the layer immediately below
IPv6 including internet layer 'tunnels', such as
tunnels over IPv4 or IPv6 itself."
::= { ipv6MIBObjects 5 }
ipv6IfEntry OBJECT-TYPE
SYNTAX Ipv6IfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An interface entry containing objects
about a particular IPv6 interface."
INDEX { ipv6IfIndex }
::= { ipv6IfTable 1 }
Ipv6IfEntry ::= SEQUENCE {
ipv6IfIndex Ipv6IfIndex,
ipv6IfDescr DisplayString,
ipv6IfLowerLayer VariablePointer,
ipv6IfEffectiveMtu Unsigned32,
ipv6IfReasmMaxSize Unsigned32,
ipv6IfIdentifier Ipv6AddressIfIdentifier,
ipv6IfIdentifierLength INTEGER,
ipv6IfPhysicalAddress PhysAddress,
ipv6IfAdminStatus INTEGER,
ipv6IfOperStatus INTEGER,
ipv6IfLastChange TimeStamp
}
ipv6IfIndex OBJECT-TYPE
SYNTAX Ipv6IfIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique non-zero value identifying
the particular IPv6 interface."
::= { ipv6IfEntry 1 }
ipv6IfDescr OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A textual string containing information about the
interface. This string may be set by the network
management system."
::= { ipv6IfEntry 2 }
ipv6IfLowerLayer OBJECT-TYPE
SYNTAX VariablePointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object identifies the protocol layer over
which this network interface operates. If this
network interface operates over the data-link
layer, then the value of this object refers to an
instance of ifIndex [6]. If this network interface
operates over an IPv4 interface, the value of this
object refers to an instance of ipAdEntAddr [3].
If this network interface operates over another
IPv6 interface, the value of this object refers to
an instance of ipv6IfIndex. If this network
interface is not currently operating over an active
protocol layer, then the value of this object
should be set to the OBJECT ID { 0 0 }."
::= { ipv6IfEntry 3 }
ipv6IfEffectiveMtu OBJECT-TYPE
SYNTAX Unsigned32
UNITS "octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The size of the largest IPv6 packet which can be
sent/received on the interface, specified in
octets."
::= { ipv6IfEntry 4 }
ipv6IfReasmMaxSize OBJECT-TYPE
SYNTAX Unsigned32 (0..65535)
UNITS "octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The size of the largest IPv6 datagram which this
entity can re-assemble from incoming IPv6 fragmented
datagrams received on this interface."
::= { ipv6IfEntry 5 }
ipv6IfIdentifier OBJECT-TYPE
SYNTAX Ipv6AddressIfIdentifier
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The Interface Identifier for this interface that
is (at least) unique on the link this interface is
attached to. The Interface Identifier is combined
with an address prefix to form an interface address.
By default, the Interface Identifier is autoconfigured
according to the rules of the link type this
interface is attached to."
::= { ipv6IfEntry 6 }
ipv6IfIdentifierLength OBJECT-TYPE
SYNTAX INTEGER (0..64)
UNITS "bits"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The length of the Interface Identifier in bits."
::= { ipv6IfEntry 7 }
ipv6IfPhysicalAddress OBJECT-TYPE
SYNTAX PhysAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The interface's physical address. For example, for
an IPv6 interface attached to an 802.x link, this
object normally contains a MAC address. Note that
in some cases this address may differ from the
address of the interface's protocol sub-layer. The
interface's media-specific MIB must define the bit
and byte ordering and the format of the value of
this object. For interfaces which do not have such
an address (e.g., a serial line), this object should
contain an octet string of zero length."
::= { ipv6IfEntry 8 }
ipv6IfAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
up(1), -- ready to pass packets
down(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The desired state of the interface. When a managed
system initializes, all IPv6 interfaces start with
ipv6IfAdminStatus in the down(2) state. As a result
of either explicit management action or per
configuration information retained by the managed
system, ipv6IfAdminStatus is then changed to
the up(1) state (or remains in the down(2) state)."
::= { ipv6IfEntry 9 }
ipv6IfOperStatus OBJECT-TYPE
SYNTAX INTEGER {
up(1), -- ready to pass packets
down(2),
noIfIdentifier(3), -- no interface identifier
-- status can not be
-- determined for some
unknown(4), -- reason
-- some component is
notPresent(5) -- missing
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current operational state of the interface.
The noIfIdentifier(3) state indicates that no valid
Interface Identifier is assigned to the interface.
This state usually indicates that the link-local
interface address failed Duplicate Address Detection.
If ipv6IfAdminStatus is down(2) then ipv6IfOperStatus
should be down(2). If ipv6IfAdminStatus is changed
to up(1) then ipv6IfOperStatus should change to up(1)
if the interface is ready to transmit and receive
network traffic; it should remain in the down(2) or
noIfIdentifier(3) state if and only if there is a
fault that prevents it from going to the up(1) state;
it should remain in the notPresent(5) state if
the interface has missing (typically, lower layer)
components."
::= { ipv6IfEntry 10 }
ipv6IfLastChange OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time the interface
entered its current operational state. If the
current state was entered prior to the last
re-initialization of the local network management
subsystem, then this object contains a zero
value."
::= { ipv6IfEntry 11 }
-- IPv6 Interface Statistics table
ipv6IfStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ipv6IfStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"IPv6 interface traffic statistics."
::= { ipv6MIBObjects 6 }
ipv6IfStatsEntry OBJECT-TYPE
SYNTAX Ipv6IfStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An interface statistics entry containing objects
at a particular IPv6 interface."
AUGMENTS { ipv6IfEntry }
::= { ipv6IfStatsTable 1 }
Ipv6IfStatsEntry ::= SEQUENCE {
ipv6IfStatsInReceives
Counter32,
ipv6IfStatsInHdrErrors
Counter32,
ipv6IfStatsInTooBigErrors
Counter32,
ipv6IfStatsInNoRoutes
Counter32,
ipv6IfStatsInAddrErrors
Counter32,
ipv6IfStatsInUnknownProtos
Counter32,
ipv6IfStatsInTruncatedPkts
Counter32,
ipv6IfStatsInDiscards
Counter32,
ipv6IfStatsInDelivers
Counter32,
ipv6IfStatsOutForwDatagrams
Counter32,
ipv6IfStatsOutRequests
Counter32,
ipv6IfStatsOutDiscards
Counter32,
ipv6IfStatsOutFragOKs
Counter32,
ipv6IfStatsOutFragFails
Counter32,
ipv6IfStatsOutFragCreates
Counter32,
ipv6IfStatsReasmReqds
Counter32,
ipv6IfStatsReasmOKs
Counter32,
ipv6IfStatsReasmFails
Counter32,
ipv6IfStatsInMcastPkts
Counter32,
ipv6IfStatsOutMcastPkts
Counter32
}
ipv6IfStatsInReceives OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of input datagrams received by
the interface, including those received in error."
::= { ipv6IfStatsEntry 1 }
ipv6IfStatsInHdrErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of input datagrams discarded due to
errors in their IPv6 headers, including version
number mismatch, other format errors, hop count
exceeded, errors discovered in processing their
IPv6 options, etc."
::= { ipv6IfStatsEntry 2 }
ipv6IfStatsInTooBigErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of input datagrams that could not be
forwarded because their size exceeded the link MTU
of outgoing interface."
::= { ipv6IfStatsEntry 3 }
ipv6IfStatsInNoRoutes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of input datagrams discarded because no
route could be found to transmit them to their
destination."
::= { ipv6IfStatsEntry 4 }
ipv6IfStatsInAddrErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of input datagrams discarded because
the IPv6 address in their IPv6 header's destination
field was not a valid address to be received at
this entity. This count includes invalid
addresses (e.g., ::0) and unsupported addresses
(e.g., addresses with unallocated prefixes). For
entities which are not IPv6 routers and therefore
do not forward datagrams, this counter includes
datagrams discarded because the destination address
was not a local address."
::= { ipv6IfStatsEntry 5 }
ipv6IfStatsInUnknownProtos OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of locally-addressed datagrams
received successfully but discarded because of an
unknown or unsupported protocol. This counter is
incremented at the interface to which these
datagrams were addressed which might not be
necessarily the input interface for some of
the datagrams."
::= { ipv6IfStatsEntry 6 }
ipv6IfStatsInTruncatedPkts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of input datagrams discarded because
datagram frame didn't carry enough data."
::= { ipv6IfStatsEntry 7 }
ipv6IfStatsInDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of input IPv6 datagrams for which no
problems were encountered to prevent their
continued processing, but which were discarded
(e.g., for lack of buffer space). Note that this
counter does not include any datagrams discarded
while awaiting re-assembly."
::= { ipv6IfStatsEntry 8 }
ipv6IfStatsInDelivers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of datagrams successfully
delivered to IPv6 user-protocols (including ICMP).
This counter is incremented at the interface to
which these datagrams were addressed which might
not be necessarily the input interface for some of
the datagrams."
::= { ipv6IfStatsEntry 9 }
ipv6IfStatsOutForwDatagrams OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of output datagrams which this
entity received and forwarded to their final
destinations. In entities which do not act
as IPv6 routers, this counter will include
only those packets which were Source-Routed
via this entity, and the Source-Route
processing was successful. Note that for
a successfully forwarded datagram the counter
of the outgoing interface is incremented."
::= { ipv6IfStatsEntry 10 }
ipv6IfStatsOutRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of IPv6 datagrams which local IPv6
user-protocols (including ICMP) supplied to IPv6 in
requests for transmission. Note that this counter
does not include any datagrams counted in
ipv6IfStatsOutForwDatagrams."
::= { ipv6IfStatsEntry 11 }
ipv6IfStatsOutDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of output IPv6 datagrams for which no
problem was encountered to prevent their
transmission to their destination, but which were
discarded (e.g., for lack of buffer space). Note
that this counter would include datagrams counted
in ipv6IfStatsOutForwDatagrams if any such packets
met this (discretionary) discard criterion."
::= { ipv6IfStatsEntry 12 }
ipv6IfStatsOutFragOKs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 datagrams that have been
successfully fragmented at this output interface."
::= { ipv6IfStatsEntry 13 }
ipv6IfStatsOutFragFails OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 datagrams that have been
discarded because they needed to be fragmented
at this output interface but could not be."
::= { ipv6IfStatsEntry 14 }
ipv6IfStatsOutFragCreates OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of output datagram fragments that have
been generated as a result of fragmentation at
this output interface."
::= { ipv6IfStatsEntry 15 }
ipv6IfStatsReasmReqds OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 fragments received which needed
to be reassembled at this interface. Note that this
counter is incremented at the interface to which
these fragments were addressed which might not
be necessarily the input interface for some of
the fragments."
::= { ipv6IfStatsEntry 16 }
ipv6IfStatsReasmOKs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of IPv6 datagrams successfully
reassembled. Note that this counter is incremented
at the interface to which these datagrams were
addressed which might not be necessarily the input
interface for some of the fragments."
::= { ipv6IfStatsEntry 17 }
ipv6IfStatsReasmFails OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of failures detected by the IPv6 re-
assembly algorithm (for whatever reason: timed
out, errors, etc.). Note that this is not
necessarily a count of discarded IPv6 fragments
since some algorithms (notably the algorithm in
RFC 815) can lose track of the number of fragments
by combining them as they are received.
This counter is incremented at the interface to which
these fragments were addressed which might not be
necessarily the input interface for some of the
fragments."
::= { ipv6IfStatsEntry 18 }
ipv6IfStatsInMcastPkts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of multicast packets received
by the interface"
::= { ipv6IfStatsEntry 19 }
ipv6IfStatsOutMcastPkts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of multicast packets transmitted
by the interface"
::= { ipv6IfStatsEntry 20 }
-- Address Prefix table
-- The IPv6 Address Prefix table contains information on
-- the entity's IPv6 Address Prefixes that are associated
-- with IPv6 interfaces.
ipv6AddrPrefixTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ipv6AddrPrefixEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The list of IPv6 address prefixes of
IPv6 interfaces."
::= { ipv6MIBObjects 7 }
ipv6AddrPrefixEntry OBJECT-TYPE
SYNTAX Ipv6AddrPrefixEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An interface entry containing objects of
a particular IPv6 address prefix."
INDEX { ipv6IfIndex,
ipv6AddrPrefix,
ipv6AddrPrefixLength }
::= { ipv6AddrPrefixTable 1 }
Ipv6AddrPrefixEntry ::= SEQUENCE {
ipv6AddrPrefix Ipv6AddressPrefix,
ipv6AddrPrefixLength INTEGER (0..128),
ipv6AddrPrefixOnLinkFlag TruthValue,
ipv6AddrPrefixAutonomousFlag TruthValue,
ipv6AddrPrefixAdvPreferredLifetime Unsigned32,
ipv6AddrPrefixAdvValidLifetime Unsigned32
}
ipv6AddrPrefix OBJECT-TYPE
SYNTAX Ipv6AddressPrefix
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The prefix associated with the this interface."
::= { ipv6AddrPrefixEntry 1 }
ipv6AddrPrefixLength OBJECT-TYPE
SYNTAX INTEGER (0..128)
UNITS "bits"
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The length of the prefix (in bits)."
::= { ipv6AddrPrefixEntry 2 }
ipv6AddrPrefixOnLinkFlag OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object has the value 'true(1)', if this
prefix can be used for on-link determination
and the value 'false(2)' otherwise."
::= { ipv6AddrPrefixEntry 3 }
ipv6AddrPrefixAutonomousFlag OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Autonomous address configuration flag. When
true(1), indicates that this prefix can be used
for autonomous address configuration (i.e. can
be used to form a local interface address).
If false(2), it is not used to autoconfigure
a local interface address."
::= { ipv6AddrPrefixEntry 4 }
ipv6AddrPrefixAdvPreferredLifetime OBJECT-TYPE
SYNTAX Unsigned32
UNITS "seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"It is the length of time in seconds that this
prefix will remain preferred, i.e. time until
deprecation. A value of 4,294,967,295 represents
infinity.
The address generated from a deprecated prefix
should no longer be used as a source address in
new communications, but packets received on such
an interface are processed as expected."
::= { ipv6AddrPrefixEntry 5 }
ipv6AddrPrefixAdvValidLifetime OBJECT-TYPE
SYNTAX Unsigned32
UNITS "seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"It is the length of time in seconds that this
prefix will remain valid, i.e. time until
invalidation. A value of 4,294,967,295 represents
infinity.
The address generated from an invalidated prefix
should not appear as the destination or source
address of a packet."
::= { ipv6AddrPrefixEntry 6 }
-- the IPv6 Address table
-- The IPv6 address table contains this node's IPv6
-- addressing information.
ipv6AddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ipv6AddrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The table of addressing information relevant to
this node's interface addresses."
::= { ipv6MIBObjects 8 }
ipv6AddrEntry OBJECT-TYPE
SYNTAX Ipv6AddrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The addressing information for one of this
node's interface addresses."
INDEX { ipv6IfIndex, ipv6AddrAddress }
::= { ipv6AddrTable 1 }
Ipv6AddrEntry ::=
SEQUENCE {
ipv6AddrAddress Ipv6Address,
ipv6AddrPfxLength INTEGER,
ipv6AddrType INTEGER,
ipv6AddrAnycastFlag TruthValue,
ipv6AddrStatus INTEGER
}
ipv6AddrAddress OBJECT-TYPE
SYNTAX Ipv6Address
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The IPv6 address to which this entry's addressing
information pertains."
::= { ipv6AddrEntry 1 }
ipv6AddrPfxLength OBJECT-TYPE
SYNTAX INTEGER(0..128)
UNITS "bits"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The length of the prefix (in bits) associated with
the IPv6 address of this entry."
::= { ipv6AddrEntry 2 }
ipv6AddrType OBJECT-TYPE
SYNTAX INTEGER {
-- address has been formed
-- using stateless
stateless(1), -- autoconfiguration
-- address has been acquired
-- by stateful means
-- (e.g. DHCPv6, manual
stateful(2), -- configuration)
-- type can not be determined
unknown(3) -- for some reason.
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of address. Note that 'stateless(1)'
refers to an address that was statelessly
autoconfigured; 'stateful(2)' refers to a address
which was acquired by via a stateful protocol
(e.g. DHCPv6, manual configuration)."
::= { ipv6AddrEntry 3 }
ipv6AddrAnycastFlag OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object has the value 'true(1)', if this
address is an anycast address and the value
'false(2)' otherwise."
::= { ipv6AddrEntry 4 }
ipv6AddrStatus OBJECT-TYPE
SYNTAX INTEGER {
preferred(1),
deprecated(2),
invalid(3),
inaccessible(4),
unknown(5) -- status can not be determined
-- for some reason.
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Address status. The preferred(1) state indicates
that this is a valid address that can appear as
the destination or source address of a packet.
The deprecated(2) state indicates that this is
a valid but deprecated address that should no longer
be used as a source address in new communications,
but packets addressed to such an address are
processed as expected. The invalid(3) state indicates
that this is not valid address which should not
appear as the destination or source address of
a packet. The inaccessible(4) state indicates that
the address is not accessible because the interface
to which this address is assigned is not operational."
::= { ipv6AddrEntry 5 }
-- IPv6 Routing objects
ipv6RouteNumber OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of current ipv6RouteTable entries.
This is primarily to avoid having to read
the table in order to determine this number."
::= { ipv6MIBObjects 9 }
ipv6DiscardedRoutes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of routing entries which were chosen
to be discarded even though they are valid. One
possible reason for discarding such an entry could
be to free-up buffer space for other routing
entries."
::= { ipv6MIBObjects 10 }
-- IPv6 Routing table
ipv6RouteTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ipv6RouteEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"IPv6 Routing table. This table contains
an entry for each valid IPv6 unicast route
that can be used for packet forwarding
determination."
::= { ipv6MIBObjects 11 }
ipv6RouteEntry OBJECT-TYPE
SYNTAX Ipv6RouteEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A routing entry."
INDEX { ipv6RouteDest,
ipv6RoutePfxLength,
ipv6RouteIndex }
::= { ipv6RouteTable 1 }
Ipv6RouteEntry ::= SEQUENCE {
ipv6RouteDest Ipv6Address,
ipv6RoutePfxLength INTEGER,
ipv6RouteIndex Unsigned32,
ipv6RouteIfIndex Ipv6IfIndexOrZero,
ipv6RouteNextHop Ipv6Address,
ipv6RouteType INTEGER,
ipv6RouteProtocol INTEGER,
ipv6RoutePolicy Integer32,
ipv6RouteAge Unsigned32,
ipv6RouteNextHopRDI Unsigned32,
ipv6RouteMetric Unsigned32,
ipv6RouteWeight Unsigned32,
ipv6RouteInfo RowPointer,
ipv6RouteValid TruthValue
}
ipv6RouteDest OBJECT-TYPE
SYNTAX Ipv6Address
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The destination IPv6 address of this route.
This object may not take a Multicast address
value."
::= { ipv6RouteEntry 1 }
ipv6RoutePfxLength OBJECT-TYPE
SYNTAX INTEGER(0..128)
UNITS "bits"
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Indicates the prefix length of the destination
address."
::= { ipv6RouteEntry 2 }
ipv6RouteIndex OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value which uniquely identifies the route
among the routes to the same network layer
destination. The way this value is chosen is
implementation specific but it must be unique for
ipv6RouteDest/ipv6RoutePfxLength pair and remain
constant for the life of the route."
::= { ipv6RouteEntry 3 }
ipv6RouteIfIndex OBJECT-TYPE
SYNTAX Ipv6IfIndexOrZero
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The index value which uniquely identifies the local
interface through which the next hop of this
route should be reached. The interface identified
by a particular value of this index is the same
interface as identified by the same value of
ipv6IfIndex. For routes of the discard type this
value can be zero."
::= { ipv6RouteEntry 4 }
ipv6RouteNextHop OBJECT-TYPE
SYNTAX Ipv6Address
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"On remote routes, the address of the next
system en route; otherwise, ::0
('00000000000000000000000000000000'H in ASN.1
string representation)."
::= { ipv6RouteEntry 5 }
ipv6RouteType OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
-- an route indicating that
-- packets to destinations
-- matching this route are
discard(2), -- to be discarded
-- route to directly
local(3), -- connected (sub-)network
-- route to a remote
remote(4) -- destination
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of route. Note that 'local(3)' refers
to a route for which the next hop is the final
destination; 'remote(4)' refers to a route for
which the next hop is not the final
destination; 'discard(2)' refers to a route
indicating that packets to destinations matching
this route are to be discarded (sometimes called
black-hole route)."
::= { ipv6RouteEntry 6 }
ipv6RouteProtocol OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
-- non-protocol information,
-- e.g., manually configured
local(2), -- entries
netmgmt(3), -- static route
-- obtained via Neighbor
-- Discovery protocol,
ndisc(4), -- e.g., result of Redirect
-- the following are all
-- dynamic routing protocols
rip(5), -- RIPng
ospf(6), -- Open Shortest Path First
bgp(7), -- Border Gateway Protocol
idrp(8), -- InterDomain Routing Protocol
igrp(9) -- InterGateway Routing Protocol
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The routing mechanism via which this route was
learned."
::= { ipv6RouteEntry 7 }
ipv6RoutePolicy OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The general set of conditions that would cause the
selection of one multipath route (set of next hops
for a given destination) is referred to as 'policy'.
Unless the mechanism indicated by ipv6RouteProtocol
specified otherwise, the policy specifier is the
8-bit Traffic Class field of the IPv6 packet header
that is zero extended at the left to a 32-bit value.
Protocols defining 'policy' otherwise must either
define a set of values which are valid for
this object or must implement an integer-
instanced policy table for which this object's
value acts as an index."
::= { ipv6RouteEntry 8 }
ipv6RouteAge OBJECT-TYPE
SYNTAX Unsigned32
UNITS "seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of seconds since this route was last
updated or otherwise determined to be correct.
Note that no semantics of `too old' can be implied
except through knowledge of the routing protocol
by which the route was learned."
::= { ipv6RouteEntry 9 }
ipv6RouteNextHopRDI OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Routing Domain ID of the Next Hop.
The semantics of this object are determined by
the routing-protocol specified in the route's
ipv6RouteProtocol value. When this object is
unknown or not relevant its value should be set
to zero."
::= { ipv6RouteEntry 10 }
ipv6RouteMetric OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The routing metric for this route. The
semantics of this metric are determined by the
routing protocol specified in the route's
ipv6RouteProtocol value. When this is unknown
or not relevant to the protocol indicated by
ipv6RouteProtocol, the object value should be
set to its maximum value (4,294,967,295)."
::= { ipv6RouteEntry 11 }
ipv6RouteWeight OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The system internal weight value for this route.
The semantics of this value are determined by
the implementation specific rules. Generally,
within routes with the same ipv6RoutePolicy value,
the lower the weight value the more preferred is
the route."
::= { ipv6RouteEntry 12 }
ipv6RouteInfo OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A reference to MIB definitions specific to the
particular routing protocol which is responsible
for this route, as determined by the value
specified in the route's ipv6RouteProto value.
If this information is not present, its value
should be set to the OBJECT ID { 0 0 },
which is a syntactically valid object identifier,
and any implementation conforming to ASN.1
and the Basic Encoding Rules must be able to
generate and recognize this value."
::= { ipv6RouteEntry 13 }
ipv6RouteValid OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Setting this object to the value 'false(2)' has
the effect of invalidating the corresponding entry
in the ipv6RouteTable object. That is, it
effectively disassociates the destination
identified with said entry from the route
identified with said entry. It is an
implementation-specific matter as to whether the
agent removes an invalidated entry from the table.
Accordingly, management stations must be prepared
to receive tabular information from agents that
corresponds to entries not currently in use.
Proper interpretation of such entries requires
examination of the relevant ipv6RouteValid
object."
DEFVAL { true }
::= { ipv6RouteEntry 14 }
-- IPv6 Address Translation table
ipv6NetToMediaTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ipv6NetToMediaEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The IPv6 Address Translation table used for
mapping from IPv6 addresses to physical addresses.
The IPv6 address translation table contain the
Ipv6Address to `physical' address equivalencies.
Some interfaces do not use translation tables
for determining address equivalencies; if all
interfaces are of this type, then the Address
Translation table is empty, i.e., has zero
entries."
::= { ipv6MIBObjects 12 }
ipv6NetToMediaEntry OBJECT-TYPE
SYNTAX Ipv6NetToMediaEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Each entry contains one IPv6 address to `physical'
address equivalence."
INDEX { ipv6IfIndex,
ipv6NetToMediaNetAddress }
::= { ipv6NetToMediaTable 1 }
Ipv6NetToMediaEntry ::= SEQUENCE {
ipv6NetToMediaNetAddress
Ipv6Address,
ipv6NetToMediaPhysAddress
PhysAddress,
ipv6NetToMediaType
INTEGER,
ipv6IfNetToMediaState
INTEGER,
ipv6IfNetToMediaLastUpdated
TimeStamp,
ipv6NetToMediaValid
TruthValue
}
ipv6NetToMediaNetAddress OBJECT-TYPE
SYNTAX Ipv6Address
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The IPv6 Address corresponding to
the media-dependent `physical' address."
::= { ipv6NetToMediaEntry 1 }
ipv6NetToMediaPhysAddress OBJECT-TYPE
SYNTAX PhysAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The media-dependent `physical' address."
::= { ipv6NetToMediaEntry 2 }
ipv6NetToMediaType OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
dynamic(2), -- dynamically resolved
static(3), -- statically configured
local(4) -- local interface
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of the mapping. The 'dynamic(2)' type
indicates that the IPv6 address to physical
addresses mapping has been dynamically
resolved using the IPv6 Neighbor Discovery
protocol. The static(3)' types indicates that
the mapping has been statically configured.
The local(4) indicates that the mapping is
provided for an entity's own interface address."
::= { ipv6NetToMediaEntry 3 }
ipv6IfNetToMediaState OBJECT-TYPE
SYNTAX INTEGER {
reachable(1), -- confirmed reachability
stale(2), -- unconfirmed reachability
delay(3), -- waiting for reachability
-- confirmation before entering
-- the probe state
probe(4), -- actively probing
invalid(5), -- an invalidated mapping
unknown(6) -- state can not be determined
-- for some reason.
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Neighbor Unreachability Detection [8] state
for the interface when the address mapping in
this entry is used."
::= { ipv6NetToMediaEntry 4 }
ipv6IfNetToMediaLastUpdated OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time this entry
was last updated. If this entry was updated prior
to the last re-initialization of the local network
management subsystem, then this object contains
a zero value."
::= { ipv6NetToMediaEntry 5 }
ipv6NetToMediaValid OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Setting this object to the value 'false(2)' has
the effect of invalidating the corresponding entry
in the ipv6NetToMediaTable. That is, it effectively
disassociates the interface identified with said
entry from the mapping identified with said entry.
It is an implementation-specific matter as to
whether the agent removes an invalidated entry
from the table. Accordingly, management stations
must be prepared to receive tabular information
from agents that corresponds to entries not
currently in use. Proper interpretation of such
entries requires examination of the relevant
ipv6NetToMediaValid object."
DEFVAL { true }
::= { ipv6NetToMediaEntry 6 }
-- definition of IPv6-related notifications.
-- Note that we need ipv6NotificationPrefix with the 0
-- sub-identifier to make this MIB to translate to
-- an SNMPv1 format in a reversible way. For example
-- it is needed for proxies that convert SNMPv1 traps
-- to SNMPv2 notifications without MIB knowledge.
ipv6Notifications OBJECT IDENTIFIER
::= { ipv6MIB 2 }
ipv6NotificationPrefix OBJECT IDENTIFIER
::= { ipv6Notifications 0 }
ipv6IfStateChange NOTIFICATION-TYPE
OBJECTS {
ipv6IfDescr,
ipv6IfOperStatus -- the new state of the If.
}
STATUS current
DESCRIPTION
"An ipv6IfStateChange notification signifies
that there has been a change in the state of
an ipv6 interface. This notification should
be generated when the interface's operational
status transitions to or from the up(1) state."
::= { ipv6NotificationPrefix 1 }
-- conformance information
ipv6Conformance OBJECT IDENTIFIER ::= { ipv6MIB 3 }
ipv6Compliances OBJECT IDENTIFIER ::= { ipv6Conformance 1 }
ipv6Groups OBJECT IDENTIFIER ::= { ipv6Conformance 2 }
-- compliance statements
ipv6Compliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMPv2 entities which
implement ipv6 MIB."
MODULE -- this module
MANDATORY-GROUPS { ipv6GeneralGroup,
ipv6NotificationGroup }
OBJECT ipv6Forwarding
MIN-ACCESS read-only
DESCRIPTION
"An agent is not required to provide write
access to this object"
OBJECT ipv6DefaultHopLimit
MIN-ACCESS read-only
DESCRIPTION
"An agent is not required to provide write
access to this object"
OBJECT ipv6IfDescr
MIN-ACCESS read-only
DESCRIPTION
"An agent is not required to provide write
access to this object"
OBJECT ipv6IfIdentifier
MIN-ACCESS read-only
DESCRIPTION
"An agent is not required to provide write
access to this object"
OBJECT ipv6IfIdentifierLength
MIN-ACCESS read-only
DESCRIPTION
"An agent is not required to provide write
access to this object"
OBJECT ipv6IfAdminStatus
MIN-ACCESS read-only
DESCRIPTION
"An agent is not required to provide write
access to this object"
OBJECT ipv6RouteValid
MIN-ACCESS read-only
DESCRIPTION
"An agent is not required to provide write
access to this object"
OBJECT ipv6NetToMediaValid
MIN-ACCESS read-only
DESCRIPTION
"An agent is not required to provide write
access to this object"
::= { ipv6Compliances 1 }
ipv6GeneralGroup OBJECT-GROUP
OBJECTS { ipv6Forwarding,
ipv6DefaultHopLimit,
ipv6Interfaces,
ipv6IfTableLastChange,
ipv6IfDescr,
ipv6IfLowerLayer,
ipv6IfEffectiveMtu,
ipv6IfReasmMaxSize,
ipv6IfIdentifier,
ipv6IfIdentifierLength,
ipv6IfPhysicalAddress,
ipv6IfAdminStatus,
ipv6IfOperStatus,
ipv6IfLastChange,
ipv6IfStatsInReceives,
ipv6IfStatsInHdrErrors,
ipv6IfStatsInTooBigErrors,
ipv6IfStatsInNoRoutes,
ipv6IfStatsInAddrErrors,
ipv6IfStatsInUnknownProtos,
ipv6IfStatsInTruncatedPkts,
ipv6IfStatsInDiscards,
ipv6IfStatsInDelivers,
ipv6IfStatsOutForwDatagrams,
ipv6IfStatsOutRequests,
ipv6IfStatsOutDiscards,
ipv6IfStatsOutFragOKs,
ipv6IfStatsOutFragFails,
ipv6IfStatsOutFragCreates,
ipv6IfStatsReasmReqds,
ipv6IfStatsReasmOKs,
ipv6IfStatsReasmFails,
ipv6IfStatsInMcastPkts,
ipv6IfStatsOutMcastPkts,
ipv6AddrPrefixOnLinkFlag,
ipv6AddrPrefixAutonomousFlag,
ipv6AddrPrefixAdvPreferredLifetime,
ipv6AddrPrefixAdvValidLifetime,
ipv6AddrPfxLength,
ipv6AddrType,
ipv6AddrAnycastFlag,
ipv6AddrStatus,
ipv6RouteNumber,
ipv6DiscardedRoutes,
ipv6RouteIfIndex,
ipv6RouteNextHop,
ipv6RouteType,
ipv6RouteProtocol,
ipv6RoutePolicy,
ipv6RouteAge,
ipv6RouteNextHopRDI,
ipv6RouteMetric,
ipv6RouteWeight,
ipv6RouteInfo,
ipv6RouteValid,
ipv6NetToMediaPhysAddress,
ipv6NetToMediaType,
ipv6IfNetToMediaState,
ipv6IfNetToMediaLastUpdated,
ipv6NetToMediaValid }
STATUS current
DESCRIPTION
"The IPv6 group of objects providing for basic
management of IPv6 entities."
::= { ipv6Groups 1 }
ipv6NotificationGroup NOTIFICATION-GROUP
NOTIFICATIONS { ipv6IfStateChange }
STATUS current
DESCRIPTION
"The notification that an IPv6 entity is required
to implement."
::= { ipv6Groups 2 }
END