| /* |
| * rational numbers |
| * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file libavutil/rational.c |
| * rational numbers |
| * @author Michael Niedermayer <michaelni@gmx.at> |
| */ |
| |
| #include <assert.h> |
| //#include <math.h> |
| #include <limits.h> |
| |
| #include "common.h" |
| #include "mathematics.h" |
| #include "rational.h" |
| |
| int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max){ |
| AVRational a0={0,1}, a1={1,0}; |
| int sign= (num<0) ^ (den<0); |
| int64_t gcd= av_gcd(FFABS(num), FFABS(den)); |
| |
| if(gcd){ |
| num = FFABS(num)/gcd; |
| den = FFABS(den)/gcd; |
| } |
| if(num<=max && den<=max){ |
| a1= (AVRational){num, den}; |
| den=0; |
| } |
| |
| while(den){ |
| uint64_t x = num / den; |
| int64_t next_den= num - den*x; |
| int64_t a2n= x*a1.num + a0.num; |
| int64_t a2d= x*a1.den + a0.den; |
| |
| if(a2n > max || a2d > max){ |
| if(a1.num) x= (max - a0.num) / a1.num; |
| if(a1.den) x= FFMIN(x, (max - a0.den) / a1.den); |
| |
| if (den*(2*x*a1.den + a0.den) > num*a1.den) |
| a1 = (AVRational){x*a1.num + a0.num, x*a1.den + a0.den}; |
| break; |
| } |
| |
| a0= a1; |
| a1= (AVRational){a2n, a2d}; |
| num= den; |
| den= next_den; |
| } |
| assert(av_gcd(a1.num, a1.den) <= 1U); |
| |
| *dst_num = sign ? -a1.num : a1.num; |
| *dst_den = a1.den; |
| |
| return den==0; |
| } |
| |
| AVRational av_mul_q(AVRational b, AVRational c){ |
| av_reduce(&b.num, &b.den, b.num * (int64_t)c.num, b.den * (int64_t)c.den, INT_MAX); |
| return b; |
| } |
| |
| AVRational av_div_q(AVRational b, AVRational c){ |
| return av_mul_q(b, (AVRational){c.den, c.num}); |
| } |
| |
| AVRational av_add_q(AVRational b, AVRational c){ |
| av_reduce(&b.num, &b.den, b.num * (int64_t)c.den + c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX); |
| return b; |
| } |
| |
| AVRational av_sub_q(AVRational b, AVRational c){ |
| return av_add_q(b, (AVRational){-c.num, c.den}); |
| } |
| |
| AVRational av_d2q(double d, int max){ |
| AVRational a; |
| #define LOG2 0.69314718055994530941723212145817656807550013436025 |
| int exponent= FFMAX( (int)(log(fabs(d) + 1e-20)/LOG2), 0); |
| int64_t den= 1LL << (61 - exponent); |
| av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max); |
| |
| return a; |
| } |
| |
| int av_nearer_q(AVRational q, AVRational q1, AVRational q2) |
| { |
| /* n/d is q, a/b is the median between q1 and q2 */ |
| int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den; |
| int64_t b = 2 * (int64_t)q1.den * q2.den; |
| |
| /* rnd_up(a*d/b) > n => a*d/b > n */ |
| int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP); |
| |
| /* rnd_down(a*d/b) < n => a*d/b < n */ |
| int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN); |
| |
| return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1); |
| } |
| |
| int av_find_nearest_q_idx(AVRational q, const AVRational* q_list) |
| { |
| int i, nearest_q_idx = 0; |
| for(i=0; q_list[i].den; i++) |
| if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0) |
| nearest_q_idx = i; |
| |
| return nearest_q_idx; |
| } |