| /* |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file libavcodec/intrax8dsp.c |
| *@brief IntraX8 frame subdecoder image manipulation routines |
| */ |
| |
| #include "dsputil.h" |
| |
| /* |
| area positions, #3 is 1 pixel only, other are 8 pixels |
| |66666666| |
| 3|44444444|55555555| |
| - -+--------+--------+ |
| 1 2|XXXXXXXX| |
| 1 2|XXXXXXXX| |
| 1 2|XXXXXXXX| |
| 1 2|XXXXXXXX| |
| 1 2|XXXXXXXX| |
| 1 2|XXXXXXXX| |
| 1 2|XXXXXXXX| |
| 1 2|XXXXXXXX| |
| ^-start |
| */ |
| |
| #define area1 (0) |
| #define area2 (8) |
| #define area3 (8+8) |
| #define area4 (8+8+1) |
| #define area5 (8+8+1+8) |
| #define area6 (8+8+1+16) |
| |
| /** |
| Collect statistics and prepare the edge pixels required by the other spatial compensation functions. |
| |
| * @param src pointer to the beginning of the processed block |
| * @param dst pointer to emu_edge, edge pixels are stored the way other compensation routines do. |
| * @param linesize byte offset between 2 vertical pixels in the source image |
| * @param range pointer to the variable where the edge pixel range is to be stored (max-min values) |
| * @param psum pointer to the variable where the edge pixel sum is to be stored |
| * @param edges Informs this routine that the block is on an image border, so it has to interpolate the missing edge pixels. |
| and some of the edge pixels should be interpolated, the flag has the following meaning: |
| 1 - mb_x==0 - first block in the row, interpolate area #1,#2,#3; |
| 2 - mb_y==0 - first row, interpolate area #3,#4,#5,#6; |
| note: 1|2 - mb_x==mb_y==0 - first block, use 0x80 value for all areas; |
| 4 - mb_x>= (mb_width-1) last block in the row, interpolate area #5; |
| */ |
| static void x8_setup_spatial_compensation(uint8_t *src, uint8_t *dst, int linesize, |
| int * range, int * psum, int edges){ |
| uint8_t * ptr; |
| int sum; |
| int i; |
| int min_pix,max_pix; |
| uint8_t c; |
| |
| if((edges&3)==3){ |
| *psum=0x80*(8+1+8+2); |
| *range=0; |
| memset(dst,0x80,16+1+16+8); |
| //this triggers flat_dc for sure. |
| //flat_dc avoids all (other) prediction modes, but requires dc_level decoding. |
| return; |
| } |
| |
| min_pix=256; |
| max_pix=-1; |
| |
| sum=0; |
| |
| if(!(edges&1)){//(mb_x!=0)//there is previous block on this row |
| ptr=src-1;//left column, area 2 |
| for(i=7;i>=0;i--){ |
| c=*(ptr-1);//area1, same mb as area2, no need to check |
| dst[area1+i]=c; |
| c=*(ptr); |
| |
| sum+=c; |
| min_pix=FFMIN(min_pix,c); |
| max_pix=FFMAX(max_pix,c); |
| dst[area2+i]=c; |
| |
| ptr+=linesize; |
| } |
| } |
| |
| if(!(edges&2)){ //(mb_y!=0)//there is row above |
| ptr=src-linesize;//top line |
| for(i=0;i<8;i++){ |
| c=*(ptr+i); |
| sum+=c; |
| min_pix=FFMIN(min_pix, c); |
| max_pix=FFMAX(max_pix, c); |
| } |
| if(edges&4){//last block on the row? |
| memset(dst+area5,c,8);//set with last pixel fr |
| memcpy(dst+area4, ptr, 8); |
| }else{ |
| memcpy(dst+area4, ptr, 16);//both area4 and 5 |
| } |
| memcpy(dst+area6, ptr-linesize, 8);//area6 always present in the above block |
| } |
| //now calculate the stuff we need |
| if(edges&3){//mb_x==0 || mb_y==0){ |
| int avg=(sum+4)>>3; |
| if(edges&1){ //(mb_x==0) {//implies mb_y!=0 |
| memset(dst+area1,avg,8+8+1);//areas 1,2 and 3 are averaged |
| }else{//implies y==0 x!=0 |
| memset(dst+area3,avg, 1+16+8);//areas 3, 4,5,6 |
| } |
| sum+=avg*9; |
| }else{ |
| uint8_t c=*(src-1-linesize);//the edge pixel, in the top line and left column |
| dst[area3]=c; |
| sum+=c; |
| //edge pixel is not part of min/max |
| } |
| (*range) = max_pix - min_pix; |
| sum += *(dst+area5) + *(dst+area5+1); |
| *psum = sum; |
| } |
| |
| |
| static const uint16_t zero_prediction_weights[64*2] = { |
| 640, 640, 669, 480, 708, 354, 748, 257, 792, 198, 760, 143, 808, 101, 772, 72, |
| 480, 669, 537, 537, 598, 416, 661, 316, 719, 250, 707, 185, 768, 134, 745, 97, |
| 354, 708, 416, 598, 488, 488, 564, 388, 634, 317, 642, 241, 716, 179, 706, 132, |
| 257, 748, 316, 661, 388, 564, 469, 469, 543, 395, 571, 311, 655, 238, 660, 180, |
| 198, 792, 250, 719, 317, 634, 395, 543, 469, 469, 507, 380, 597, 299, 616, 231, |
| 161, 855, 206, 788, 266, 710, 340, 623, 411, 548, 455, 455, 548, 366, 576, 288, |
| 122, 972, 159, 914, 211, 842, 276, 758, 341, 682, 389, 584, 483, 483, 520, 390, |
| 110, 1172, 144, 1107, 193, 1028, 254, 932, 317, 846, 366, 731, 458, 611, 499, 499 |
| }; |
| |
| static void spatial_compensation_0(uint8_t *src , uint8_t *dst, int linesize){ |
| int i,j; |
| int x,y; |
| unsigned int p;//power divided by 2 |
| int a; |
| uint16_t left_sum[2][8]; |
| uint16_t top_sum[2][8]; |
| memset(left_sum,0,2*8*sizeof(uint16_t)); |
| memset( top_sum,0,2*8*sizeof(uint16_t)); |
| |
| for(i=0;i<8;i++){ |
| a=src[area2+7-i]<<4; |
| for(j=0;j<8;j++){ |
| p=abs(i-j); |
| left_sum[p&1][j]+= a>>(p>>1); |
| } |
| } |
| |
| for(i=0;i<8;i++){ |
| a=src[area4+i]<<4; |
| for(j=0;j<8;j++){ |
| p=abs(i-j); |
| top_sum[p&1][j]+= a>>(p>>1); |
| } |
| } |
| for(;i<10;i++){ |
| a=src[area4+i]<<4; |
| for(j=5;j<8;j++){ |
| p=abs(i-j); |
| top_sum[p&1][j]+= a>>(p>>1); |
| } |
| } |
| for(;i<12;i++){ |
| a=src[area4+i]<<4; |
| for(j=7;j<8;j++){ |
| p=abs(i-j); |
| top_sum[p&1][j]+= a>>(p>>1); |
| } |
| } |
| |
| for(i=0;i<8;i++){ |
| top_sum [0][i]+=(top_sum [1][i]*181 + 128 )>>8;//181 is sqrt(2)/2 |
| left_sum[0][i]+=(left_sum[1][i]*181 + 128 )>>8; |
| } |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| dst[x] = ( |
| (uint32_t)top_sum [0][x]*zero_prediction_weights[y*16+x*2+0] + |
| (uint32_t)left_sum[0][y]*zero_prediction_weights[y*16+x*2+1] + |
| 0x8000 |
| )>>16; |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_1(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| dst[x]=src[area4 + FFMIN(2*y+x+2, 15) ]; |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_2(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| dst[x]=src[area4 +1+y+x]; |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_3(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| dst[x]=src[area4 +((y+1)>>1)+x]; |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_4(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| dst[x]=( src[area4+x] + src[area6+x] + 1 )>>1; |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_5(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| if(2*x-y<0){ |
| dst[x]=src[area2+9+2*x-y]; |
| }else{ |
| dst[x]=src[area4 +x-((y+1)>>1)]; |
| } |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_6(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| dst[x]=src[area3+x-y]; |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_7(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| if(x-2*y>0){ |
| dst[x]=( src[area3-1+x-2*y] + src[area3+x-2*y] + 1)>>1; |
| }else{ |
| dst[x]=src[area2+8-y +(x>>1)]; |
| } |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_8(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| dst[x]=( src[area1+7-y] + src[area2+7-y] + 1 )>>1; |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_9(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| dst[x]=src[area2+6-FFMIN(x+y,6)]; |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_10(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| dst[x]=(src[area2+7-y]*(8-x)+src[area4+x]*x+4)>>3; |
| } |
| dst+=linesize; |
| } |
| } |
| static void spatial_compensation_11(uint8_t *src , uint8_t *dst, int linesize){ |
| int x,y; |
| |
| for(y=0;y<8;y++){ |
| for(x=0;x<8;x++){ |
| dst[x]=(src[area2+7-y]*y+src[area4+x]*(8-y)+4)>>3; |
| } |
| dst+=linesize; |
| } |
| } |
| |
| static void x8_loop_filter(uint8_t * ptr, const int a_stride, const int b_stride, int quant){ |
| int i,t; |
| int p0,p1,p2,p3,p4,p5,p6,p7,p8,p9; |
| int ql=(quant+10)>>3; |
| |
| for(i=0; i<8; i++,ptr+=b_stride){ |
| p0=ptr[-5*a_stride]; |
| p1=ptr[-4*a_stride]; |
| p2=ptr[-3*a_stride]; |
| p3=ptr[-2*a_stride]; |
| p4=ptr[-1*a_stride]; |
| p5=ptr[ 0 ]; |
| p6=ptr[ 1*a_stride]; |
| p7=ptr[ 2*a_stride]; |
| p8=ptr[ 3*a_stride]; |
| p9=ptr[ 4*a_stride]; |
| |
| t= |
| (FFABS(p1-p2) <= ql) + |
| (FFABS(p2-p3) <= ql) + |
| (FFABS(p3-p4) <= ql) + |
| (FFABS(p4-p5) <= ql); |
| if(t>0){//You need at least 1 to be able to reach a total score of 6. |
| t+= |
| (FFABS(p5-p6) <= ql) + |
| (FFABS(p6-p7) <= ql) + |
| (FFABS(p7-p8) <= ql) + |
| (FFABS(p8-p9) <= ql) + |
| (FFABS(p0-p1) <= ql); |
| if(t>=6){ |
| int min,max; |
| |
| min=max=p1; |
| min=FFMIN(min,p3); max=FFMAX(max,p3); |
| min=FFMIN(min,p5); max=FFMAX(max,p5); |
| min=FFMIN(min,p8); max=FFMAX(max,p8); |
| if(max-min<2*quant){//early stop |
| min=FFMIN(min,p2); max=FFMAX(max,p2); |
| min=FFMIN(min,p4); max=FFMAX(max,p4); |
| min=FFMIN(min,p6); max=FFMAX(max,p6); |
| min=FFMIN(min,p7); max=FFMAX(max,p7); |
| if(max-min<2*quant){ |
| ptr[-2*a_stride]=(4*p2 + 3*p3 + 1*p7 + 4)>>3; |
| ptr[-1*a_stride]=(3*p2 + 3*p4 + 2*p7 + 4)>>3; |
| ptr[ 0 ]=(2*p2 + 3*p5 + 3*p7 + 4)>>3; |
| ptr[ 1*a_stride]=(1*p2 + 3*p6 + 4*p7 + 4)>>3; |
| continue; |
| }; |
| } |
| } |
| } |
| { |
| int x,x0,x1,x2; |
| int m; |
| |
| x0 = (2*p3 - 5*p4 + 5*p5 - 2*p6 + 4)>>3; |
| if(FFABS(x0) < quant){ |
| x1=(2*p1 - 5*p2 + 5*p3 - 2*p4 + 4)>>3; |
| x2=(2*p5 - 5*p6 + 5*p7 - 2*p8 + 4)>>3; |
| |
| x=FFABS(x0) - FFMIN( FFABS(x1), FFABS(x2) ); |
| m=p4-p5; |
| |
| if( x > 0 && (m^x0) <0){ |
| int32_t sign; |
| |
| sign=m>>31; |
| m=(m^sign)-sign;//abs(m) |
| m>>=1; |
| |
| x=(5*x)>>3; |
| |
| if(x>m) x=m; |
| |
| x=(x^sign)-sign; |
| |
| ptr[-1*a_stride] -= x; |
| ptr[ 0] += x; |
| } |
| } |
| } |
| } |
| } |
| |
| static void x8_h_loop_filter(uint8_t *src, int stride, int qscale){ |
| x8_loop_filter(src, stride, 1, qscale); |
| } |
| |
| static void x8_v_loop_filter(uint8_t *src, int stride, int qscale){ |
| x8_loop_filter(src, 1, stride, qscale); |
| } |
| |
| void ff_intrax8dsp_init(DSPContext* dsp, AVCodecContext *avctx) { |
| dsp->x8_h_loop_filter=x8_h_loop_filter; |
| dsp->x8_v_loop_filter=x8_v_loop_filter; |
| dsp->x8_setup_spatial_compensation=x8_setup_spatial_compensation; |
| dsp->x8_spatial_compensation[0]=spatial_compensation_0; |
| dsp->x8_spatial_compensation[1]=spatial_compensation_1; |
| dsp->x8_spatial_compensation[2]=spatial_compensation_2; |
| dsp->x8_spatial_compensation[3]=spatial_compensation_3; |
| dsp->x8_spatial_compensation[4]=spatial_compensation_4; |
| dsp->x8_spatial_compensation[5]=spatial_compensation_5; |
| dsp->x8_spatial_compensation[6]=spatial_compensation_6; |
| dsp->x8_spatial_compensation[7]=spatial_compensation_7; |
| dsp->x8_spatial_compensation[8]=spatial_compensation_8; |
| dsp->x8_spatial_compensation[9]=spatial_compensation_9; |
| dsp->x8_spatial_compensation[10]=spatial_compensation_10; |
| dsp->x8_spatial_compensation[11]=spatial_compensation_11; |
| } |