| /* |
| * FFT/IFFT transforms |
| * Copyright (c) 2008 Loren Merritt |
| * Copyright (c) 2002 Fabrice Bellard |
| * Partly based on libdjbfft by D. J. Bernstein |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file libavcodec/fft.c |
| * FFT/IFFT transforms. |
| */ |
| |
| #include "dsputil.h" |
| |
| /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */ |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_16[8]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_32[16]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_64[32]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_128[64]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_256[128]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_512[256]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_1024[512]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_2048[1024]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_4096[2048]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_8192[4096]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_16384[8192]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_32768[16384]); |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_65536[32768]); |
| FFTSample *ff_cos_tabs[] = { |
| ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024, |
| ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536, |
| }; |
| |
| static int split_radix_permutation(int i, int n, int inverse) |
| { |
| int m; |
| if(n <= 2) return i&1; |
| m = n >> 1; |
| if(!(i&m)) return split_radix_permutation(i, m, inverse)*2; |
| m >>= 1; |
| if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1; |
| else return split_radix_permutation(i, m, inverse)*4 - 1; |
| } |
| |
| av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse) |
| { |
| int i, j, m, n; |
| float alpha, c1, s1, s2; |
| int split_radix = 1; |
| int av_unused has_vectors; |
| |
| if (nbits < 2 || nbits > 16) |
| goto fail; |
| s->nbits = nbits; |
| n = 1 << nbits; |
| |
| s->tmp_buf = NULL; |
| s->exptab = av_malloc((n / 2) * sizeof(FFTComplex)); |
| if (!s->exptab) |
| goto fail; |
| s->revtab = av_malloc(n * sizeof(uint16_t)); |
| if (!s->revtab) |
| goto fail; |
| s->inverse = inverse; |
| |
| s2 = inverse ? 1.0 : -1.0; |
| |
| s->fft_permute = ff_fft_permute_c; |
| s->fft_calc = ff_fft_calc_c; |
| s->imdct_calc = ff_imdct_calc_c; |
| s->imdct_half = ff_imdct_half_c; |
| s->exptab1 = NULL; |
| |
| #if HAVE_MMX && HAVE_YASM |
| has_vectors = mm_support(); |
| if (has_vectors & FF_MM_SSE && HAVE_SSE) { |
| /* SSE for P3/P4/K8 */ |
| s->imdct_calc = ff_imdct_calc_sse; |
| s->imdct_half = ff_imdct_half_sse; |
| s->fft_permute = ff_fft_permute_sse; |
| s->fft_calc = ff_fft_calc_sse; |
| } else if (has_vectors & FF_MM_3DNOWEXT && HAVE_AMD3DNOWEXT) { |
| /* 3DNowEx for K7 */ |
| s->imdct_calc = ff_imdct_calc_3dn2; |
| s->imdct_half = ff_imdct_half_3dn2; |
| s->fft_calc = ff_fft_calc_3dn2; |
| } else if (has_vectors & FF_MM_3DNOW && HAVE_AMD3DNOW) { |
| /* 3DNow! for K6-2/3 */ |
| s->imdct_calc = ff_imdct_calc_3dn; |
| s->imdct_half = ff_imdct_half_3dn; |
| s->fft_calc = ff_fft_calc_3dn; |
| } |
| #elif HAVE_ALTIVEC |
| has_vectors = mm_support(); |
| if (has_vectors & FF_MM_ALTIVEC) { |
| s->fft_calc = ff_fft_calc_altivec; |
| split_radix = 0; |
| } |
| #endif |
| |
| if (split_radix) { |
| for(j=4; j<=nbits; j++) { |
| int m = 1<<j; |
| double freq = 2*M_PI/m; |
| FFTSample *tab = ff_cos_tabs[j-4]; |
| for(i=0; i<=m/4; i++) |
| tab[i] = cos(i*freq); |
| for(i=1; i<m/4; i++) |
| tab[m/2-i] = tab[i]; |
| } |
| for(i=0; i<n; i++) |
| s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i; |
| s->tmp_buf = av_malloc(n * sizeof(FFTComplex)); |
| } else { |
| int np, nblocks, np2, l; |
| FFTComplex *q; |
| |
| for(i=0; i<(n/2); i++) { |
| alpha = 2 * M_PI * (float)i / (float)n; |
| c1 = cos(alpha); |
| s1 = sin(alpha) * s2; |
| s->exptab[i].re = c1; |
| s->exptab[i].im = s1; |
| } |
| |
| np = 1 << nbits; |
| nblocks = np >> 3; |
| np2 = np >> 1; |
| s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex)); |
| if (!s->exptab1) |
| goto fail; |
| q = s->exptab1; |
| do { |
| for(l = 0; l < np2; l += 2 * nblocks) { |
| *q++ = s->exptab[l]; |
| *q++ = s->exptab[l + nblocks]; |
| |
| q->re = -s->exptab[l].im; |
| q->im = s->exptab[l].re; |
| q++; |
| q->re = -s->exptab[l + nblocks].im; |
| q->im = s->exptab[l + nblocks].re; |
| q++; |
| } |
| nblocks = nblocks >> 1; |
| } while (nblocks != 0); |
| av_freep(&s->exptab); |
| |
| /* compute bit reverse table */ |
| for(i=0;i<n;i++) { |
| m=0; |
| for(j=0;j<nbits;j++) { |
| m |= ((i >> j) & 1) << (nbits-j-1); |
| } |
| s->revtab[i]=m; |
| } |
| } |
| |
| return 0; |
| fail: |
| av_freep(&s->revtab); |
| av_freep(&s->exptab); |
| av_freep(&s->exptab1); |
| av_freep(&s->tmp_buf); |
| return -1; |
| } |
| |
| void ff_fft_permute_c(FFTContext *s, FFTComplex *z) |
| { |
| int j, k, np; |
| FFTComplex tmp; |
| const uint16_t *revtab = s->revtab; |
| np = 1 << s->nbits; |
| |
| if (s->tmp_buf) { |
| /* TODO: handle split-radix permute in a more optimal way, probably in-place */ |
| for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j]; |
| memcpy(z, s->tmp_buf, np * sizeof(FFTComplex)); |
| return; |
| } |
| |
| /* reverse */ |
| for(j=0;j<np;j++) { |
| k = revtab[j]; |
| if (k < j) { |
| tmp = z[k]; |
| z[k] = z[j]; |
| z[j] = tmp; |
| } |
| } |
| } |
| |
| av_cold void ff_fft_end(FFTContext *s) |
| { |
| av_freep(&s->revtab); |
| av_freep(&s->exptab); |
| av_freep(&s->exptab1); |
| av_freep(&s->tmp_buf); |
| } |
| |
| #define sqrthalf (float)M_SQRT1_2 |
| |
| #define BF(x,y,a,b) {\ |
| x = a - b;\ |
| y = a + b;\ |
| } |
| |
| #define BUTTERFLIES(a0,a1,a2,a3) {\ |
| BF(t3, t5, t5, t1);\ |
| BF(a2.re, a0.re, a0.re, t5);\ |
| BF(a3.im, a1.im, a1.im, t3);\ |
| BF(t4, t6, t2, t6);\ |
| BF(a3.re, a1.re, a1.re, t4);\ |
| BF(a2.im, a0.im, a0.im, t6);\ |
| } |
| |
| // force loading all the inputs before storing any. |
| // this is slightly slower for small data, but avoids store->load aliasing |
| // for addresses separated by large powers of 2. |
| #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\ |
| FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\ |
| BF(t3, t5, t5, t1);\ |
| BF(a2.re, a0.re, r0, t5);\ |
| BF(a3.im, a1.im, i1, t3);\ |
| BF(t4, t6, t2, t6);\ |
| BF(a3.re, a1.re, r1, t4);\ |
| BF(a2.im, a0.im, i0, t6);\ |
| } |
| |
| #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\ |
| t1 = a2.re * wre + a2.im * wim;\ |
| t2 = a2.im * wre - a2.re * wim;\ |
| t5 = a3.re * wre - a3.im * wim;\ |
| t6 = a3.im * wre + a3.re * wim;\ |
| BUTTERFLIES(a0,a1,a2,a3)\ |
| } |
| |
| #define TRANSFORM_ZERO(a0,a1,a2,a3) {\ |
| t1 = a2.re;\ |
| t2 = a2.im;\ |
| t5 = a3.re;\ |
| t6 = a3.im;\ |
| BUTTERFLIES(a0,a1,a2,a3)\ |
| } |
| |
| /* z[0...8n-1], w[1...2n-1] */ |
| #define PASS(name)\ |
| static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\ |
| {\ |
| FFTSample t1, t2, t3, t4, t5, t6;\ |
| int o1 = 2*n;\ |
| int o2 = 4*n;\ |
| int o3 = 6*n;\ |
| const FFTSample *wim = wre+o1;\ |
| n--;\ |
| \ |
| TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\ |
| TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ |
| do {\ |
| z += 2;\ |
| wre += 2;\ |
| wim -= 2;\ |
| TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\ |
| TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ |
| } while(--n);\ |
| } |
| |
| PASS(pass) |
| #undef BUTTERFLIES |
| #define BUTTERFLIES BUTTERFLIES_BIG |
| PASS(pass_big) |
| |
| #define DECL_FFT(n,n2,n4)\ |
| static void fft##n(FFTComplex *z)\ |
| {\ |
| fft##n2(z);\ |
| fft##n4(z+n4*2);\ |
| fft##n4(z+n4*3);\ |
| pass(z,ff_cos_##n,n4/2);\ |
| } |
| |
| static void fft4(FFTComplex *z) |
| { |
| FFTSample t1, t2, t3, t4, t5, t6, t7, t8; |
| |
| BF(t3, t1, z[0].re, z[1].re); |
| BF(t8, t6, z[3].re, z[2].re); |
| BF(z[2].re, z[0].re, t1, t6); |
| BF(t4, t2, z[0].im, z[1].im); |
| BF(t7, t5, z[2].im, z[3].im); |
| BF(z[3].im, z[1].im, t4, t8); |
| BF(z[3].re, z[1].re, t3, t7); |
| BF(z[2].im, z[0].im, t2, t5); |
| } |
| |
| static void fft8(FFTComplex *z) |
| { |
| FFTSample t1, t2, t3, t4, t5, t6, t7, t8; |
| |
| fft4(z); |
| |
| BF(t1, z[5].re, z[4].re, -z[5].re); |
| BF(t2, z[5].im, z[4].im, -z[5].im); |
| BF(t3, z[7].re, z[6].re, -z[7].re); |
| BF(t4, z[7].im, z[6].im, -z[7].im); |
| BF(t8, t1, t3, t1); |
| BF(t7, t2, t2, t4); |
| BF(z[4].re, z[0].re, z[0].re, t1); |
| BF(z[4].im, z[0].im, z[0].im, t2); |
| BF(z[6].re, z[2].re, z[2].re, t7); |
| BF(z[6].im, z[2].im, z[2].im, t8); |
| |
| TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf); |
| } |
| |
| #if !CONFIG_SMALL |
| static void fft16(FFTComplex *z) |
| { |
| FFTSample t1, t2, t3, t4, t5, t6; |
| |
| fft8(z); |
| fft4(z+8); |
| fft4(z+12); |
| |
| TRANSFORM_ZERO(z[0],z[4],z[8],z[12]); |
| TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf); |
| TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]); |
| TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]); |
| } |
| #else |
| DECL_FFT(16,8,4) |
| #endif |
| DECL_FFT(32,16,8) |
| DECL_FFT(64,32,16) |
| DECL_FFT(128,64,32) |
| DECL_FFT(256,128,64) |
| DECL_FFT(512,256,128) |
| #if !CONFIG_SMALL |
| #define pass pass_big |
| #endif |
| DECL_FFT(1024,512,256) |
| DECL_FFT(2048,1024,512) |
| DECL_FFT(4096,2048,1024) |
| DECL_FFT(8192,4096,2048) |
| DECL_FFT(16384,8192,4096) |
| DECL_FFT(32768,16384,8192) |
| DECL_FFT(65536,32768,16384) |
| |
| static void (*fft_dispatch[])(FFTComplex*) = { |
| fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, |
| fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, |
| }; |
| |
| void ff_fft_calc_c(FFTContext *s, FFTComplex *z) |
| { |
| fft_dispatch[s->nbits-2](z); |
| } |
| |