| /* |
| * DCA compatible decoder |
| * Copyright (C) 2004 Gildas Bazin |
| * Copyright (C) 2004 Benjamin Zores |
| * Copyright (C) 2006 Benjamin Larsson |
| * Copyright (C) 2007 Konstantin Shishkov |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file libavcodec/dca.c |
| */ |
| |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| |
| #include "avcodec.h" |
| #include "dsputil.h" |
| #include "bitstream.h" |
| #include "dcadata.h" |
| #include "dcahuff.h" |
| #include "dca.h" |
| |
| //#define TRACE |
| |
| #define DCA_PRIM_CHANNELS_MAX (5) |
| #define DCA_SUBBANDS (32) |
| #define DCA_ABITS_MAX (32) /* Should be 28 */ |
| #define DCA_SUBSUBFAMES_MAX (4) |
| #define DCA_LFE_MAX (3) |
| |
| enum DCAMode { |
| DCA_MONO = 0, |
| DCA_CHANNEL, |
| DCA_STEREO, |
| DCA_STEREO_SUMDIFF, |
| DCA_STEREO_TOTAL, |
| DCA_3F, |
| DCA_2F1R, |
| DCA_3F1R, |
| DCA_2F2R, |
| DCA_3F2R, |
| DCA_4F2R |
| }; |
| |
| /* Tables for mapping dts channel configurations to libavcodec multichannel api. |
| * Some compromises have been made for special configurations. Most configurations |
| * are never used so complete accuracy is not needed. |
| * |
| * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead. |
| * S -> side, when both rear and back are configured move one of them to the side channel |
| * OV -> center back |
| * All 2 channel configurations -> CH_LAYOUT_STEREO |
| */ |
| |
| static const int64_t dca_core_channel_layout[] = { |
| CH_FRONT_CENTER, ///< 1, A |
| CH_LAYOUT_STEREO, ///< 2, A + B (dual mono) |
| CH_LAYOUT_STEREO, ///< 2, L + R (stereo) |
| CH_LAYOUT_STEREO, ///< 2, (L+R) + (L-R) (sum-difference) |
| CH_LAYOUT_STEREO, ///< 2, LT +RT (left and right total) |
| CH_LAYOUT_STEREO|CH_FRONT_CENTER, ///< 3, C+L+R |
| CH_LAYOUT_STEREO|CH_BACK_CENTER, ///< 3, L+R+S |
| CH_LAYOUT_STEREO|CH_FRONT_CENTER|CH_BACK_CENTER, ///< 4, C + L + R+ S |
| CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT, ///< 4, L + R +SL+ SR |
| CH_LAYOUT_STEREO|CH_FRONT_CENTER|CH_SIDE_LEFT|CH_SIDE_RIGHT, ///< 5, C + L + R+ SL+SR |
| CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT|CH_FRONT_LEFT_OF_CENTER|CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR |
| CH_LAYOUT_STEREO|CH_BACK_LEFT|CH_BACK_RIGHT|CH_FRONT_CENTER|CH_BACK_CENTER, ///< 6, C + L + R+ LR + RR + OV |
| CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_FRONT_LEFT_OF_CENTER|CH_BACK_CENTER|CH_BACK_LEFT|CH_BACK_RIGHT, ///< 6, CF+ CR+LF+ RF+LR + RR |
| CH_FRONT_LEFT_OF_CENTER|CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR |
| CH_FRONT_LEFT_OF_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_SIDE_RIGHT|CH_BACK_LEFT|CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2+ SR1 + SR2 |
| CH_FRONT_LEFT_OF_CENTER|CH_FRONT_CENTER|CH_FRONT_RIGHT_OF_CENTER|CH_LAYOUT_STEREO|CH_SIDE_LEFT|CH_BACK_CENTER|CH_SIDE_RIGHT, ///< 8, CL + C+ CR + L + R + SL + S+ SR |
| }; |
| |
| static const int8_t dca_lfe_index[] = { |
| 1,2,2,2,2,3,2,3,2,3,2,3,1,3,2,3 |
| }; |
| |
| static const int8_t dca_channel_reorder_lfe[][8] = { |
| { 0, -1, -1, -1, -1, -1, -1, -1}, |
| { 0, 1, -1, -1, -1, -1, -1, -1}, |
| { 0, 1, -1, -1, -1, -1, -1, -1}, |
| { 0, 1, -1, -1, -1, -1, -1, -1}, |
| { 0, 1, -1, -1, -1, -1, -1, -1}, |
| { 2, 0, 1, -1, -1, -1, -1, -1}, |
| { 0, 1, 3, -1, -1, -1, -1, -1}, |
| { 2, 0, 1, 4, -1, -1, -1, -1}, |
| { 0, 1, 3, 4, -1, -1, -1, -1}, |
| { 2, 0, 1, 4, 5, -1, -1, -1}, |
| { 3, 4, 0, 1, 5, 6, -1, -1}, |
| { 2, 0, 1, 4, 5, 6, -1, -1}, |
| { 0, 6, 4, 5, 2, 3, -1, -1}, |
| { 4, 2, 5, 0, 1, 6, 7, -1}, |
| { 5, 6, 0, 1, 7, 3, 8, 4}, |
| { 4, 2, 5, 0, 1, 6, 8, 7}, |
| }; |
| |
| static const int8_t dca_channel_reorder_nolfe[][8] = { |
| { 0, -1, -1, -1, -1, -1, -1, -1}, |
| { 0, 1, -1, -1, -1, -1, -1, -1}, |
| { 0, 1, -1, -1, -1, -1, -1, -1}, |
| { 0, 1, -1, -1, -1, -1, -1, -1}, |
| { 0, 1, -1, -1, -1, -1, -1, -1}, |
| { 2, 0, 1, -1, -1, -1, -1, -1}, |
| { 0, 1, 2, -1, -1, -1, -1, -1}, |
| { 2, 0, 1, 3, -1, -1, -1, -1}, |
| { 0, 1, 2, 3, -1, -1, -1, -1}, |
| { 2, 0, 1, 3, 4, -1, -1, -1}, |
| { 2, 3, 0, 1, 4, 5, -1, -1}, |
| { 2, 0, 1, 3, 4, 5, -1, -1}, |
| { 0, 5, 3, 4, 1, 2, -1, -1}, |
| { 3, 2, 4, 0, 1, 5, 6, -1}, |
| { 4, 5, 0, 1, 6, 2, 7, 3}, |
| { 3, 2, 4, 0, 1, 5, 7, 6}, |
| }; |
| |
| |
| #define DCA_DOLBY 101 /* FIXME */ |
| |
| #define DCA_CHANNEL_BITS 6 |
| #define DCA_CHANNEL_MASK 0x3F |
| |
| #define DCA_LFE 0x80 |
| |
| #define HEADER_SIZE 14 |
| |
| #define DCA_MAX_FRAME_SIZE 16384 |
| |
| /** Bit allocation */ |
| typedef struct { |
| int offset; ///< code values offset |
| int maxbits[8]; ///< max bits in VLC |
| int wrap; ///< wrap for get_vlc2() |
| VLC vlc[8]; ///< actual codes |
| } BitAlloc; |
| |
| static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select |
| static BitAlloc dca_tmode; ///< transition mode VLCs |
| static BitAlloc dca_scalefactor; ///< scalefactor VLCs |
| static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs |
| |
| static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba, int idx) |
| { |
| return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) + ba->offset; |
| } |
| |
| typedef struct { |
| AVCodecContext *avctx; |
| /* Frame header */ |
| int frame_type; ///< type of the current frame |
| int samples_deficit; ///< deficit sample count |
| int crc_present; ///< crc is present in the bitstream |
| int sample_blocks; ///< number of PCM sample blocks |
| int frame_size; ///< primary frame byte size |
| int amode; ///< audio channels arrangement |
| int sample_rate; ///< audio sampling rate |
| int bit_rate; ///< transmission bit rate |
| int bit_rate_index; ///< transmission bit rate index |
| |
| int downmix; ///< embedded downmix enabled |
| int dynrange; ///< embedded dynamic range flag |
| int timestamp; ///< embedded time stamp flag |
| int aux_data; ///< auxiliary data flag |
| int hdcd; ///< source material is mastered in HDCD |
| int ext_descr; ///< extension audio descriptor flag |
| int ext_coding; ///< extended coding flag |
| int aspf; ///< audio sync word insertion flag |
| int lfe; ///< low frequency effects flag |
| int predictor_history; ///< predictor history flag |
| int header_crc; ///< header crc check bytes |
| int multirate_inter; ///< multirate interpolator switch |
| int version; ///< encoder software revision |
| int copy_history; ///< copy history |
| int source_pcm_res; ///< source pcm resolution |
| int front_sum; ///< front sum/difference flag |
| int surround_sum; ///< surround sum/difference flag |
| int dialog_norm; ///< dialog normalisation parameter |
| |
| /* Primary audio coding header */ |
| int subframes; ///< number of subframes |
| int total_channels; ///< number of channels including extensions |
| int prim_channels; ///< number of primary audio channels |
| int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count |
| int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband |
| int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index |
| int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book |
| int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book |
| int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select |
| int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select |
| float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment |
| |
| /* Primary audio coding side information */ |
| int subsubframes; ///< number of subsubframes |
| int partial_samples; ///< partial subsubframe samples count |
| int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not) |
| int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs |
| int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index |
| int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients) |
| int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient) |
| int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook |
| int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors |
| int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients |
| int dynrange_coef; ///< dynamic range coefficient |
| |
| int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands |
| |
| float lfe_data[2 * DCA_SUBSUBFAMES_MAX * DCA_LFE_MAX * |
| 2 /*history */ ]; ///< Low frequency effect data |
| int lfe_scale_factor; |
| |
| /* Subband samples history (for ADPCM) */ |
| float subband_samples_hist[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4]; |
| DECLARE_ALIGNED_16(float, subband_fir_hist[DCA_PRIM_CHANNELS_MAX][512]); |
| float subband_fir_noidea[DCA_PRIM_CHANNELS_MAX][32]; |
| int hist_index[DCA_PRIM_CHANNELS_MAX]; |
| |
| int output; ///< type of output |
| float add_bias; ///< output bias |
| float scale_bias; ///< output scale |
| |
| DECLARE_ALIGNED_16(float, samples[1536]); /* 6 * 256 = 1536, might only need 5 */ |
| const float *samples_chanptr[6]; |
| |
| uint8_t dca_buffer[DCA_MAX_FRAME_SIZE]; |
| int dca_buffer_size; ///< how much data is in the dca_buffer |
| |
| const int8_t* channel_order_tab; ///< channel reordering table, lfe and non lfe |
| GetBitContext gb; |
| /* Current position in DCA frame */ |
| int current_subframe; |
| int current_subsubframe; |
| |
| int debug_flag; ///< used for suppressing repeated error messages output |
| DSPContext dsp; |
| MDCTContext imdct; |
| } DCAContext; |
| |
| static av_cold void dca_init_vlcs(void) |
| { |
| static int vlcs_initialized = 0; |
| int i, j; |
| |
| if (vlcs_initialized) |
| return; |
| |
| dca_bitalloc_index.offset = 1; |
| dca_bitalloc_index.wrap = 2; |
| for (i = 0; i < 5; i++) |
| init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12, |
| bitalloc_12_bits[i], 1, 1, |
| bitalloc_12_codes[i], 2, 2, 1); |
| dca_scalefactor.offset = -64; |
| dca_scalefactor.wrap = 2; |
| for (i = 0; i < 5; i++) |
| init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129, |
| scales_bits[i], 1, 1, |
| scales_codes[i], 2, 2, 1); |
| dca_tmode.offset = 0; |
| dca_tmode.wrap = 1; |
| for (i = 0; i < 4; i++) |
| init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4, |
| tmode_bits[i], 1, 1, |
| tmode_codes[i], 2, 2, 1); |
| |
| for(i = 0; i < 10; i++) |
| for(j = 0; j < 7; j++){ |
| if(!bitalloc_codes[i][j]) break; |
| dca_smpl_bitalloc[i+1].offset = bitalloc_offsets[i]; |
| dca_smpl_bitalloc[i+1].wrap = 1 + (j > 4); |
| init_vlc(&dca_smpl_bitalloc[i+1].vlc[j], bitalloc_maxbits[i][j], |
| bitalloc_sizes[i], |
| bitalloc_bits[i][j], 1, 1, |
| bitalloc_codes[i][j], 2, 2, 1); |
| } |
| vlcs_initialized = 1; |
| } |
| |
| static inline void get_array(GetBitContext *gb, int *dst, int len, int bits) |
| { |
| while(len--) |
| *dst++ = get_bits(gb, bits); |
| } |
| |
| static int dca_parse_frame_header(DCAContext * s) |
| { |
| int i, j; |
| static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 }; |
| static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 }; |
| static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 }; |
| uint32_t syncword = 0; |
| |
| init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8); |
| |
| /* Sync code */ |
| syncword = get_bits(&s->gb, 32); |
| |
| /* Frame header */ |
| s->frame_type = get_bits(&s->gb, 1); |
| s->samples_deficit = get_bits(&s->gb, 5) + 1; |
| s->crc_present = get_bits(&s->gb, 1); |
| s->sample_blocks = get_bits(&s->gb, 7) + 1; |
| s->frame_size = get_bits(&s->gb, 14) + 1; |
| if (s->frame_size < 95) |
| return -1; |
| s->amode = get_bits(&s->gb, 6); |
| s->sample_rate = dca_sample_rates[get_bits(&s->gb, 4)]; |
| if (!s->sample_rate) |
| return -1; |
| s->bit_rate_index = get_bits(&s->gb, 5); |
| s->bit_rate = dca_bit_rates[s->bit_rate_index]; |
| if (!s->bit_rate) |
| return -1; |
| |
| s->downmix = get_bits(&s->gb, 1); |
| s->dynrange = get_bits(&s->gb, 1); |
| s->timestamp = get_bits(&s->gb, 1); |
| s->aux_data = get_bits(&s->gb, 1); |
| s->hdcd = get_bits(&s->gb, 1); |
| s->ext_descr = get_bits(&s->gb, 3); |
| s->ext_coding = get_bits(&s->gb, 1); |
| s->aspf = get_bits(&s->gb, 1); |
| s->lfe = get_bits(&s->gb, 2); |
| s->predictor_history = get_bits(&s->gb, 1); |
| |
| /* TODO: check CRC */ |
| if (s->crc_present) |
| s->header_crc = get_bits(&s->gb, 16); |
| |
| s->multirate_inter = get_bits(&s->gb, 1); |
| s->version = get_bits(&s->gb, 4); |
| s->copy_history = get_bits(&s->gb, 2); |
| s->source_pcm_res = get_bits(&s->gb, 3); |
| s->front_sum = get_bits(&s->gb, 1); |
| s->surround_sum = get_bits(&s->gb, 1); |
| s->dialog_norm = get_bits(&s->gb, 4); |
| |
| /* FIXME: channels mixing levels */ |
| s->output = s->amode; |
| if(s->lfe) s->output |= DCA_LFE; |
| |
| #ifdef TRACE |
| av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type); |
| av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit); |
| av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present); |
| av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n", |
| s->sample_blocks, s->sample_blocks * 32); |
| av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size); |
| av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n", |
| s->amode, dca_channels[s->amode]); |
| av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n", |
| s->sample_rate); |
| av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n", |
| s->bit_rate); |
| av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix); |
| av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange); |
| av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp); |
| av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data); |
| av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd); |
| av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr); |
| av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding); |
| av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf); |
| av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe); |
| av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n", |
| s->predictor_history); |
| av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc); |
| av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n", |
| s->multirate_inter); |
| av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version); |
| av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history); |
| av_log(s->avctx, AV_LOG_DEBUG, |
| "source pcm resolution: %i (%i bits/sample)\n", |
| s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]); |
| av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum); |
| av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum); |
| av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm); |
| av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
| #endif |
| |
| /* Primary audio coding header */ |
| s->subframes = get_bits(&s->gb, 4) + 1; |
| s->total_channels = get_bits(&s->gb, 3) + 1; |
| s->prim_channels = s->total_channels; |
| if (s->prim_channels > DCA_PRIM_CHANNELS_MAX) |
| s->prim_channels = DCA_PRIM_CHANNELS_MAX; /* We only support DTS core */ |
| |
| |
| for (i = 0; i < s->prim_channels; i++) { |
| s->subband_activity[i] = get_bits(&s->gb, 5) + 2; |
| if (s->subband_activity[i] > DCA_SUBBANDS) |
| s->subband_activity[i] = DCA_SUBBANDS; |
| } |
| for (i = 0; i < s->prim_channels; i++) { |
| s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1; |
| if (s->vq_start_subband[i] > DCA_SUBBANDS) |
| s->vq_start_subband[i] = DCA_SUBBANDS; |
| } |
| get_array(&s->gb, s->joint_intensity, s->prim_channels, 3); |
| get_array(&s->gb, s->transient_huffman, s->prim_channels, 2); |
| get_array(&s->gb, s->scalefactor_huffman, s->prim_channels, 3); |
| get_array(&s->gb, s->bitalloc_huffman, s->prim_channels, 3); |
| |
| /* Get codebooks quantization indexes */ |
| memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman)); |
| for (j = 1; j < 11; j++) |
| for (i = 0; i < s->prim_channels; i++) |
| s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]); |
| |
| /* Get scale factor adjustment */ |
| for (j = 0; j < 11; j++) |
| for (i = 0; i < s->prim_channels; i++) |
| s->scalefactor_adj[i][j] = 1; |
| |
| for (j = 1; j < 11; j++) |
| for (i = 0; i < s->prim_channels; i++) |
| if (s->quant_index_huffman[i][j] < thr[j]) |
| s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)]; |
| |
| if (s->crc_present) { |
| /* Audio header CRC check */ |
| get_bits(&s->gb, 16); |
| } |
| |
| s->current_subframe = 0; |
| s->current_subsubframe = 0; |
| |
| #ifdef TRACE |
| av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes); |
| av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels); |
| for(i = 0; i < s->prim_channels; i++){ |
| av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n", s->subband_activity[i]); |
| av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n", s->vq_start_subband[i]); |
| av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n", s->joint_intensity[i]); |
| av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n", s->transient_huffman[i]); |
| av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n", s->scalefactor_huffman[i]); |
| av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n", s->bitalloc_huffman[i]); |
| av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:"); |
| for (j = 0; j < 11; j++) |
| av_log(s->avctx, AV_LOG_DEBUG, " %i", |
| s->quant_index_huffman[i][j]); |
| av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
| av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:"); |
| for (j = 0; j < 11; j++) |
| av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]); |
| av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| |
| static inline int get_scale(GetBitContext *gb, int level, int value) |
| { |
| if (level < 5) { |
| /* huffman encoded */ |
| value += get_bitalloc(gb, &dca_scalefactor, level); |
| } else if(level < 8) |
| value = get_bits(gb, level + 1); |
| return value; |
| } |
| |
| static int dca_subframe_header(DCAContext * s) |
| { |
| /* Primary audio coding side information */ |
| int j, k; |
| |
| s->subsubframes = get_bits(&s->gb, 2) + 1; |
| s->partial_samples = get_bits(&s->gb, 3); |
| for (j = 0; j < s->prim_channels; j++) { |
| for (k = 0; k < s->subband_activity[j]; k++) |
| s->prediction_mode[j][k] = get_bits(&s->gb, 1); |
| } |
| |
| /* Get prediction codebook */ |
| for (j = 0; j < s->prim_channels; j++) { |
| for (k = 0; k < s->subband_activity[j]; k++) { |
| if (s->prediction_mode[j][k] > 0) { |
| /* (Prediction coefficient VQ address) */ |
| s->prediction_vq[j][k] = get_bits(&s->gb, 12); |
| } |
| } |
| } |
| |
| /* Bit allocation index */ |
| for (j = 0; j < s->prim_channels; j++) { |
| for (k = 0; k < s->vq_start_subband[j]; k++) { |
| if (s->bitalloc_huffman[j] == 6) |
| s->bitalloc[j][k] = get_bits(&s->gb, 5); |
| else if (s->bitalloc_huffman[j] == 5) |
| s->bitalloc[j][k] = get_bits(&s->gb, 4); |
| else if (s->bitalloc_huffman[j] == 7) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid bit allocation index\n"); |
| return -1; |
| } else { |
| s->bitalloc[j][k] = |
| get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]); |
| } |
| |
| if (s->bitalloc[j][k] > 26) { |
| // av_log(s->avctx,AV_LOG_DEBUG,"bitalloc index [%i][%i] too big (%i)\n", |
| // j, k, s->bitalloc[j][k]); |
| return -1; |
| } |
| } |
| } |
| |
| /* Transition mode */ |
| for (j = 0; j < s->prim_channels; j++) { |
| for (k = 0; k < s->subband_activity[j]; k++) { |
| s->transition_mode[j][k] = 0; |
| if (s->subsubframes > 1 && |
| k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) { |
| s->transition_mode[j][k] = |
| get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]); |
| } |
| } |
| } |
| |
| for (j = 0; j < s->prim_channels; j++) { |
| const uint32_t *scale_table; |
| int scale_sum; |
| |
| memset(s->scale_factor[j], 0, s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2); |
| |
| if (s->scalefactor_huffman[j] == 6) |
| scale_table = scale_factor_quant7; |
| else |
| scale_table = scale_factor_quant6; |
| |
| /* When huffman coded, only the difference is encoded */ |
| scale_sum = 0; |
| |
| for (k = 0; k < s->subband_activity[j]; k++) { |
| if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) { |
| scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum); |
| s->scale_factor[j][k][0] = scale_table[scale_sum]; |
| } |
| |
| if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) { |
| /* Get second scale factor */ |
| scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum); |
| s->scale_factor[j][k][1] = scale_table[scale_sum]; |
| } |
| } |
| } |
| |
| /* Joint subband scale factor codebook select */ |
| for (j = 0; j < s->prim_channels; j++) { |
| /* Transmitted only if joint subband coding enabled */ |
| if (s->joint_intensity[j] > 0) |
| s->joint_huff[j] = get_bits(&s->gb, 3); |
| } |
| |
| /* Scale factors for joint subband coding */ |
| for (j = 0; j < s->prim_channels; j++) { |
| int source_channel; |
| |
| /* Transmitted only if joint subband coding enabled */ |
| if (s->joint_intensity[j] > 0) { |
| int scale = 0; |
| source_channel = s->joint_intensity[j] - 1; |
| |
| /* When huffman coded, only the difference is encoded |
| * (is this valid as well for joint scales ???) */ |
| |
| for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) { |
| scale = get_scale(&s->gb, s->joint_huff[j], 0); |
| scale += 64; /* bias */ |
| s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */ |
| } |
| |
| if (!s->debug_flag & 0x02) { |
| av_log(s->avctx, AV_LOG_DEBUG, |
| "Joint stereo coding not supported\n"); |
| s->debug_flag |= 0x02; |
| } |
| } |
| } |
| |
| /* Stereo downmix coefficients */ |
| if (s->prim_channels > 2) { |
| if(s->downmix) { |
| for (j = 0; j < s->prim_channels; j++) { |
| s->downmix_coef[j][0] = get_bits(&s->gb, 7); |
| s->downmix_coef[j][1] = get_bits(&s->gb, 7); |
| } |
| } else { |
| int am = s->amode & DCA_CHANNEL_MASK; |
| for (j = 0; j < s->prim_channels; j++) { |
| s->downmix_coef[j][0] = dca_default_coeffs[am][j][0]; |
| s->downmix_coef[j][1] = dca_default_coeffs[am][j][1]; |
| } |
| } |
| } |
| |
| /* Dynamic range coefficient */ |
| if (s->dynrange) |
| s->dynrange_coef = get_bits(&s->gb, 8); |
| |
| /* Side information CRC check word */ |
| if (s->crc_present) { |
| get_bits(&s->gb, 16); |
| } |
| |
| /* |
| * Primary audio data arrays |
| */ |
| |
| /* VQ encoded high frequency subbands */ |
| for (j = 0; j < s->prim_channels; j++) |
| for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++) |
| /* 1 vector -> 32 samples */ |
| s->high_freq_vq[j][k] = get_bits(&s->gb, 10); |
| |
| /* Low frequency effect data */ |
| if (s->lfe) { |
| /* LFE samples */ |
| int lfe_samples = 2 * s->lfe * s->subsubframes; |
| float lfe_scale; |
| |
| for (j = lfe_samples; j < lfe_samples * 2; j++) { |
| /* Signed 8 bits int */ |
| s->lfe_data[j] = get_sbits(&s->gb, 8); |
| } |
| |
| /* Scale factor index */ |
| s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 8)]; |
| |
| /* Quantization step size * scale factor */ |
| lfe_scale = 0.035 * s->lfe_scale_factor; |
| |
| for (j = lfe_samples; j < lfe_samples * 2; j++) |
| s->lfe_data[j] *= lfe_scale; |
| } |
| |
| #ifdef TRACE |
| av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n", s->subsubframes); |
| av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n", |
| s->partial_samples); |
| for (j = 0; j < s->prim_channels; j++) { |
| av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:"); |
| for (k = 0; k < s->subband_activity[j]; k++) |
| av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]); |
| av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
| } |
| for (j = 0; j < s->prim_channels; j++) { |
| for (k = 0; k < s->subband_activity[j]; k++) |
| av_log(s->avctx, AV_LOG_DEBUG, |
| "prediction coefs: %f, %f, %f, %f\n", |
| (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192, |
| (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192, |
| (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192, |
| (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192); |
| } |
| for (j = 0; j < s->prim_channels; j++) { |
| av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: "); |
| for (k = 0; k < s->vq_start_subband[j]; k++) |
| av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]); |
| av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
| } |
| for (j = 0; j < s->prim_channels; j++) { |
| av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:"); |
| for (k = 0; k < s->subband_activity[j]; k++) |
| av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]); |
| av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
| } |
| for (j = 0; j < s->prim_channels; j++) { |
| av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:"); |
| for (k = 0; k < s->subband_activity[j]; k++) { |
| if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) |
| av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]); |
| if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) |
| av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]); |
| } |
| av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
| } |
| for (j = 0; j < s->prim_channels; j++) { |
| if (s->joint_intensity[j] > 0) { |
| int source_channel = s->joint_intensity[j] - 1; |
| av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n"); |
| for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) |
| av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]); |
| av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
| } |
| } |
| if (s->prim_channels > 2 && s->downmix) { |
| av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n"); |
| for (j = 0; j < s->prim_channels; j++) { |
| av_log(s->avctx, AV_LOG_DEBUG, "Channel 0,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][0]]); |
| av_log(s->avctx, AV_LOG_DEBUG, "Channel 1,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][1]]); |
| } |
| av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
| } |
| for (j = 0; j < s->prim_channels; j++) |
| for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++) |
| av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]); |
| if(s->lfe){ |
| int lfe_samples = 2 * s->lfe * s->subsubframes; |
| av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n"); |
| for (j = lfe_samples; j < lfe_samples * 2; j++) |
| av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]); |
| av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static void qmf_32_subbands(DCAContext * s, int chans, |
| float samples_in[32][8], float *samples_out, |
| float scale, float bias) |
| { |
| const float *prCoeff; |
| int i, j; |
| DECLARE_ALIGNED_16(float, raXin[32]); |
| |
| int hist_index= s->hist_index[chans]; |
| float *subband_fir_hist2 = s->subband_fir_noidea[chans]; |
| |
| int subindex; |
| |
| scale *= sqrt(1/8.0); |
| |
| /* Select filter */ |
| if (!s->multirate_inter) /* Non-perfect reconstruction */ |
| prCoeff = fir_32bands_nonperfect; |
| else /* Perfect reconstruction */ |
| prCoeff = fir_32bands_perfect; |
| |
| /* Reconstructed channel sample index */ |
| for (subindex = 0; subindex < 8; subindex++) { |
| float *subband_fir_hist = s->subband_fir_hist[chans] + hist_index; |
| /* Load in one sample from each subband and clear inactive subbands */ |
| for (i = 0; i < s->subband_activity[chans]; i++){ |
| if((i-1)&2) raXin[i] = -samples_in[i][subindex]; |
| else raXin[i] = samples_in[i][subindex]; |
| } |
| for (; i < 32; i++) |
| raXin[i] = 0.0; |
| |
| ff_imdct_half(&s->imdct, subband_fir_hist, raXin); |
| |
| /* Multiply by filter coefficients */ |
| for (i = 0; i < 16; i++){ |
| float a= subband_fir_hist2[i ]; |
| float b= subband_fir_hist2[i+16]; |
| float c= 0; |
| float d= 0; |
| for (j = 0; j < 512-hist_index; j += 64){ |
| a += prCoeff[i+j ]*(-subband_fir_hist[15-i+j]); |
| b += prCoeff[i+j+16]*( subband_fir_hist[ i+j]); |
| c += prCoeff[i+j+32]*( subband_fir_hist[16+i+j]); |
| d += prCoeff[i+j+48]*( subband_fir_hist[31-i+j]); |
| } |
| for ( ; j < 512; j += 64){ |
| a += prCoeff[i+j ]*(-subband_fir_hist[15-i+j-512]); |
| b += prCoeff[i+j+16]*( subband_fir_hist[ i+j-512]); |
| c += prCoeff[i+j+32]*( subband_fir_hist[16+i+j-512]); |
| d += prCoeff[i+j+48]*( subband_fir_hist[31-i+j-512]); |
| } |
| samples_out[i ] = a * scale + bias; |
| samples_out[i+16] = b * scale + bias; |
| subband_fir_hist2[i ] = c; |
| subband_fir_hist2[i+16] = d; |
| } |
| samples_out+= 32; |
| |
| hist_index = (hist_index-32)&511; |
| } |
| s->hist_index[chans]= hist_index; |
| } |
| |
| static void lfe_interpolation_fir(int decimation_select, |
| int num_deci_sample, float *samples_in, |
| float *samples_out, float scale, |
| float bias) |
| { |
| /* samples_in: An array holding decimated samples. |
| * Samples in current subframe starts from samples_in[0], |
| * while samples_in[-1], samples_in[-2], ..., stores samples |
| * from last subframe as history. |
| * |
| * samples_out: An array holding interpolated samples |
| */ |
| |
| int decifactor, k, j; |
| const float *prCoeff; |
| |
| int interp_index = 0; /* Index to the interpolated samples */ |
| int deciindex; |
| |
| /* Select decimation filter */ |
| if (decimation_select == 1) { |
| decifactor = 128; |
| prCoeff = lfe_fir_128; |
| } else { |
| decifactor = 64; |
| prCoeff = lfe_fir_64; |
| } |
| /* Interpolation */ |
| for (deciindex = 0; deciindex < num_deci_sample; deciindex++) { |
| /* One decimated sample generates decifactor interpolated ones */ |
| for (k = 0; k < decifactor; k++) { |
| float rTmp = 0.0; |
| //FIXME the coeffs are symetric, fix that |
| for (j = 0; j < 512 / decifactor; j++) |
| rTmp += samples_in[deciindex - j] * prCoeff[k + j * decifactor]; |
| samples_out[interp_index++] = (rTmp * scale) + bias; |
| } |
| } |
| } |
| |
| /* downmixing routines */ |
| #define MIX_REAR1(samples, si1, rs, coef) \ |
| samples[i] += samples[si1] * coef[rs][0]; \ |
| samples[i+256] += samples[si1] * coef[rs][1]; |
| |
| #define MIX_REAR2(samples, si1, si2, rs, coef) \ |
| samples[i] += samples[si1] * coef[rs][0] + samples[si2] * coef[rs+1][0]; \ |
| samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs+1][1]; |
| |
| #define MIX_FRONT3(samples, coef) \ |
| t = samples[i]; \ |
| samples[i] = t * coef[0][0] + samples[i+256] * coef[1][0] + samples[i+512] * coef[2][0]; \ |
| samples[i+256] = t * coef[0][1] + samples[i+256] * coef[1][1] + samples[i+512] * coef[2][1]; |
| |
| #define DOWNMIX_TO_STEREO(op1, op2) \ |
| for(i = 0; i < 256; i++){ \ |
| op1 \ |
| op2 \ |
| } |
| |
| static void dca_downmix(float *samples, int srcfmt, |
| int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]) |
| { |
| int i; |
| float t; |
| float coef[DCA_PRIM_CHANNELS_MAX][2]; |
| |
| for(i=0; i<DCA_PRIM_CHANNELS_MAX; i++) { |
| coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]]; |
| coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]]; |
| } |
| |
| switch (srcfmt) { |
| case DCA_MONO: |
| case DCA_CHANNEL: |
| case DCA_STEREO_TOTAL: |
| case DCA_STEREO_SUMDIFF: |
| case DCA_4F2R: |
| av_log(NULL, 0, "Not implemented!\n"); |
| break; |
| case DCA_STEREO: |
| break; |
| case DCA_3F: |
| DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),); |
| break; |
| case DCA_2F1R: |
| DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + 512, 2, coef),); |
| break; |
| case DCA_3F1R: |
| DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), |
| MIX_REAR1(samples, i + 768, 3, coef)); |
| break; |
| case DCA_2F2R: |
| DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + 512, i + 768, 2, coef),); |
| break; |
| case DCA_3F2R: |
| DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), |
| MIX_REAR2(samples, i + 768, i + 1024, 3, coef)); |
| break; |
| } |
| } |
| |
| |
| /* Very compact version of the block code decoder that does not use table |
| * look-up but is slightly slower */ |
| static int decode_blockcode(int code, int levels, int *values) |
| { |
| int i; |
| int offset = (levels - 1) >> 1; |
| |
| for (i = 0; i < 4; i++) { |
| values[i] = (code % levels) - offset; |
| code /= levels; |
| } |
| |
| if (code == 0) |
| return 0; |
| else { |
| // av_log(NULL, AV_LOG_ERROR, "ERROR: block code look-up failed\n"); |
| return -1; |
| } |
| } |
| |
| static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 }; |
| static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 }; |
| |
| static int dca_subsubframe(DCAContext * s) |
| { |
| int k, l; |
| int subsubframe = s->current_subsubframe; |
| |
| const float *quant_step_table; |
| |
| /* FIXME */ |
| float subband_samples[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8]; |
| |
| /* |
| * Audio data |
| */ |
| |
| /* Select quantization step size table */ |
| if (s->bit_rate_index == 0x1f) |
| quant_step_table = lossless_quant_d; |
| else |
| quant_step_table = lossy_quant_d; |
| |
| for (k = 0; k < s->prim_channels; k++) { |
| for (l = 0; l < s->vq_start_subband[k]; l++) { |
| int m; |
| |
| /* Select the mid-tread linear quantizer */ |
| int abits = s->bitalloc[k][l]; |
| |
| float quant_step_size = quant_step_table[abits]; |
| float rscale; |
| |
| /* |
| * Determine quantization index code book and its type |
| */ |
| |
| /* Select quantization index code book */ |
| int sel = s->quant_index_huffman[k][abits]; |
| |
| /* |
| * Extract bits from the bit stream |
| */ |
| if(!abits){ |
| memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0])); |
| }else if(abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table){ |
| if(abits <= 7){ |
| /* Block code */ |
| int block_code1, block_code2, size, levels; |
| int block[8]; |
| |
| size = abits_sizes[abits-1]; |
| levels = abits_levels[abits-1]; |
| |
| block_code1 = get_bits(&s->gb, size); |
| /* FIXME Should test return value */ |
| decode_blockcode(block_code1, levels, block); |
| block_code2 = get_bits(&s->gb, size); |
| decode_blockcode(block_code2, levels, &block[4]); |
| for (m = 0; m < 8; m++) |
| subband_samples[k][l][m] = block[m]; |
| }else{ |
| /* no coding */ |
| for (m = 0; m < 8; m++) |
| subband_samples[k][l][m] = get_sbits(&s->gb, abits - 3); |
| } |
| }else{ |
| /* Huffman coded */ |
| for (m = 0; m < 8; m++) |
| subband_samples[k][l][m] = get_bitalloc(&s->gb, &dca_smpl_bitalloc[abits], sel); |
| } |
| |
| /* Deal with transients */ |
| if (s->transition_mode[k][l] && |
| subsubframe >= s->transition_mode[k][l]) |
| rscale = quant_step_size * s->scale_factor[k][l][1]; |
| else |
| rscale = quant_step_size * s->scale_factor[k][l][0]; |
| |
| rscale *= s->scalefactor_adj[k][sel]; |
| |
| for (m = 0; m < 8; m++) |
| subband_samples[k][l][m] *= rscale; |
| |
| /* |
| * Inverse ADPCM if in prediction mode |
| */ |
| if (s->prediction_mode[k][l]) { |
| int n; |
| for (m = 0; m < 8; m++) { |
| for (n = 1; n <= 4; n++) |
| if (m >= n) |
| subband_samples[k][l][m] += |
| (adpcm_vb[s->prediction_vq[k][l]][n - 1] * |
| subband_samples[k][l][m - n] / 8192); |
| else if (s->predictor_history) |
| subband_samples[k][l][m] += |
| (adpcm_vb[s->prediction_vq[k][l]][n - 1] * |
| s->subband_samples_hist[k][l][m - n + |
| 4] / 8192); |
| } |
| } |
| } |
| |
| /* |
| * Decode VQ encoded high frequencies |
| */ |
| for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) { |
| /* 1 vector -> 32 samples but we only need the 8 samples |
| * for this subsubframe. */ |
| int m; |
| |
| if (!s->debug_flag & 0x01) { |
| av_log(s->avctx, AV_LOG_DEBUG, "Stream with high frequencies VQ coding\n"); |
| s->debug_flag |= 0x01; |
| } |
| |
| for (m = 0; m < 8; m++) { |
| subband_samples[k][l][m] = |
| high_freq_vq[s->high_freq_vq[k][l]][subsubframe * 8 + |
| m] |
| * (float) s->scale_factor[k][l][0] / 16.0; |
| } |
| } |
| } |
| |
| /* Check for DSYNC after subsubframe */ |
| if (s->aspf || subsubframe == s->subsubframes - 1) { |
| if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */ |
| #ifdef TRACE |
| av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n"); |
| #endif |
| } else { |
| av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n"); |
| } |
| } |
| |
| /* Backup predictor history for adpcm */ |
| for (k = 0; k < s->prim_channels; k++) |
| for (l = 0; l < s->vq_start_subband[k]; l++) |
| memcpy(s->subband_samples_hist[k][l], &subband_samples[k][l][4], |
| 4 * sizeof(subband_samples[0][0][0])); |
| |
| /* 32 subbands QMF */ |
| for (k = 0; k < s->prim_channels; k++) { |
| /* static float pcm_to_double[8] = |
| {32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/ |
| qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * s->channel_order_tab[k]], |
| M_SQRT1_2*s->scale_bias /*pcm_to_double[s->source_pcm_res] */ , |
| s->add_bias ); |
| } |
| |
| /* Down mixing */ |
| |
| if (s->prim_channels > dca_channels[s->output & DCA_CHANNEL_MASK]) { |
| dca_downmix(s->samples, s->amode, s->downmix_coef); |
| } |
| |
| /* Generate LFE samples for this subsubframe FIXME!!! */ |
| if (s->output & DCA_LFE) { |
| int lfe_samples = 2 * s->lfe * s->subsubframes; |
| |
| lfe_interpolation_fir(s->lfe, 2 * s->lfe, |
| s->lfe_data + lfe_samples + |
| 2 * s->lfe * subsubframe, |
| &s->samples[256 * dca_lfe_index[s->amode]], |
| (1.0/256.0)*s->scale_bias, s->add_bias); |
| /* Outputs 20bits pcm samples */ |
| } |
| |
| return 0; |
| } |
| |
| |
| static int dca_subframe_footer(DCAContext * s) |
| { |
| int aux_data_count = 0, i; |
| int lfe_samples; |
| |
| /* |
| * Unpack optional information |
| */ |
| |
| if (s->timestamp) |
| get_bits(&s->gb, 32); |
| |
| if (s->aux_data) |
| aux_data_count = get_bits(&s->gb, 6); |
| |
| for (i = 0; i < aux_data_count; i++) |
| get_bits(&s->gb, 8); |
| |
| if (s->crc_present && (s->downmix || s->dynrange)) |
| get_bits(&s->gb, 16); |
| |
| lfe_samples = 2 * s->lfe * s->subsubframes; |
| for (i = 0; i < lfe_samples; i++) { |
| s->lfe_data[i] = s->lfe_data[i + lfe_samples]; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Decode a dca frame block |
| * |
| * @param s pointer to the DCAContext |
| */ |
| |
| static int dca_decode_block(DCAContext * s) |
| { |
| |
| /* Sanity check */ |
| if (s->current_subframe >= s->subframes) { |
| av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i", |
| s->current_subframe, s->subframes); |
| return -1; |
| } |
| |
| if (!s->current_subsubframe) { |
| #ifdef TRACE |
| av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n"); |
| #endif |
| /* Read subframe header */ |
| if (dca_subframe_header(s)) |
| return -1; |
| } |
| |
| /* Read subsubframe */ |
| #ifdef TRACE |
| av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n"); |
| #endif |
| if (dca_subsubframe(s)) |
| return -1; |
| |
| /* Update state */ |
| s->current_subsubframe++; |
| if (s->current_subsubframe >= s->subsubframes) { |
| s->current_subsubframe = 0; |
| s->current_subframe++; |
| } |
| if (s->current_subframe >= s->subframes) { |
| #ifdef TRACE |
| av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n"); |
| #endif |
| /* Read subframe footer */ |
| if (dca_subframe_footer(s)) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Convert bitstream to one representation based on sync marker |
| */ |
| static int dca_convert_bitstream(const uint8_t * src, int src_size, uint8_t * dst, |
| int max_size) |
| { |
| uint32_t mrk; |
| int i, tmp; |
| const uint16_t *ssrc = (const uint16_t *) src; |
| uint16_t *sdst = (uint16_t *) dst; |
| PutBitContext pb; |
| |
| if((unsigned)src_size > (unsigned)max_size) { |
| // av_log(NULL, AV_LOG_ERROR, "Input frame size larger then DCA_MAX_FRAME_SIZE!\n"); |
| // return -1; |
| src_size = max_size; |
| } |
| |
| mrk = AV_RB32(src); |
| switch (mrk) { |
| case DCA_MARKER_RAW_BE: |
| memcpy(dst, src, src_size); |
| return src_size; |
| case DCA_MARKER_RAW_LE: |
| for (i = 0; i < (src_size + 1) >> 1; i++) |
| *sdst++ = bswap_16(*ssrc++); |
| return src_size; |
| case DCA_MARKER_14B_BE: |
| case DCA_MARKER_14B_LE: |
| init_put_bits(&pb, dst, max_size); |
| for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) { |
| tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF; |
| put_bits(&pb, 14, tmp); |
| } |
| flush_put_bits(&pb); |
| return (put_bits_count(&pb) + 7) >> 3; |
| default: |
| return -1; |
| } |
| } |
| |
| /** |
| * Main frame decoding function |
| * FIXME add arguments |
| */ |
| static int dca_decode_frame(AVCodecContext * avctx, |
| void *data, int *data_size, |
| const uint8_t * buf, int buf_size) |
| { |
| |
| int i; |
| int16_t *samples = data; |
| DCAContext *s = avctx->priv_data; |
| int channels; |
| uint32_t mrk=0; |
| |
| |
| s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer, DCA_MAX_FRAME_SIZE); |
| if (s->dca_buffer_size == -1) { |
| av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n"); |
| return -1; |
| } |
| |
| init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8); |
| if (dca_parse_frame_header(s) < 0) { |
| //seems like the frame is corrupt, try with the next one |
| *data_size=0; |
| return buf_size; |
| } |
| //set AVCodec values with parsed data |
| avctx->sample_rate = s->sample_rate; |
| avctx->bit_rate = s->bit_rate; |
| // JFT, so we only look at 1 frame when looking for DTS-HD/DTS-MA |
| avctx->frame_size = s->sample_blocks*32; |
| |
| channels = s->prim_channels + !!s->lfe; |
| |
| if (s->amode<16) { |
| avctx->channel_layout = dca_core_channel_layout[s->amode]; |
| |
| if (s->lfe) { |
| avctx->channel_layout |= CH_LOW_FREQUENCY; |
| s->channel_order_tab = dca_channel_reorder_lfe[s->amode]; |
| } else |
| s->channel_order_tab = dca_channel_reorder_nolfe[s->amode]; |
| |
| if(avctx->request_channels == 2 && s->prim_channels > 2) { |
| channels = 2; |
| s->output = DCA_STEREO; |
| avctx->channel_layout = CH_LAYOUT_STEREO; |
| } |
| } else { |
| av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n",s->amode); |
| return -1; |
| } |
| |
| |
| /* There is nothing that prevents a dts frame to change channel configuration |
| but FFmpeg doesn't support that so only set the channels if it is previously |
| unset. Ideally during the first probe for channels the crc should be checked |
| and only set avctx->channels when the crc is ok. Right now the decoder could |
| set the channels based on a broken first frame.*/ |
| if (!avctx->channels) |
| avctx->channels = channels; |
| |
| if(*data_size < (s->sample_blocks / 8) * 256 * sizeof(int16_t) * channels) |
| return -1; |
| *data_size = 256 / 8 * s->sample_blocks * sizeof(int16_t) * channels; |
| for (i = 0; i < (s->sample_blocks / 8); i++) { |
| dca_decode_block(s); |
| s->dsp.float_to_int16_interleave(samples, s->samples_chanptr, 256, channels); |
| samples += 256 * channels; |
| } |
| |
| // See if there is a HD extension |
| |
| /* extensions start at 32-bit boundaries into bitstream */ |
| skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31); |
| /*align_get_bits(&s->gb); |
| while(get_bits_count(&s->gb)<(s->dca_buffer_size * 8)) |
| { |
| mrk=get_bits_long(&s->gb, 8); |
| if(mrk!=0) |
| { |
| mrk=(mrk<<24)|get_bits_long(&s->gb, 24); |
| break; |
| } |
| } |
| av_log(avctx, AV_LOG_ERROR, "Marker %X\n",mrk); |
| if(mrk==DCA_HD_MARKER) |
| { |
| avctx->codec_id=CODEC_ID_DTS_MA; |
| }*/ |
| while(get_bits_count(&s->gb)<(s->dca_buffer_size * 8-31)) |
| { |
| uint32_t bits = get_bits_long(&s->gb, 32); |
| switch(bits) { |
| case DCA_HD_MARKER: |
| avctx->codec_id=CODEC_ID_DTS_MA; |
| break; |
| } |
| |
| skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31); |
| } |
| |
| return buf_size; |
| } |
| |
| |
| |
| /** |
| * DCA initialization |
| * |
| * @param avctx pointer to the AVCodecContext |
| */ |
| |
| static av_cold int dca_decode_init(AVCodecContext * avctx) |
| { |
| DCAContext *s = avctx->priv_data; |
| int i; |
| |
| s->avctx = avctx; |
| dca_init_vlcs(); |
| |
| dsputil_init(&s->dsp, avctx); |
| ff_mdct_init(&s->imdct, 6, 1); |
| |
| for(i = 0; i < 6; i++) |
| s->samples_chanptr[i] = s->samples + i * 256; |
| avctx->sample_fmt = SAMPLE_FMT_S16; |
| |
| if(s->dsp.float_to_int16 == ff_float_to_int16_c) { |
| s->add_bias = 385.0f; |
| s->scale_bias = 1.0 / 32768.0; |
| } else { |
| s->add_bias = 0.0f; |
| s->scale_bias = 1.0; |
| |
| /* allow downmixing to stereo */ |
| if (avctx->channels > 0 && avctx->request_channels < avctx->channels && |
| avctx->request_channels == 2) { |
| avctx->channels = avctx->request_channels; |
| } |
| } |
| |
| |
| return 0; |
| } |
| |
| static av_cold int dca_decode_end(AVCodecContext * avctx) |
| { |
| DCAContext *s = avctx->priv_data; |
| ff_mdct_end(&s->imdct); |
| return 0; |
| } |
| |
| AVCodec dca_decoder = { |
| .name = "dca", |
| .type = CODEC_TYPE_AUDIO, |
| .id = CODEC_ID_DTS, |
| .priv_data_size = sizeof(DCAContext), |
| .init = dca_decode_init, |
| .decode = dca_decode_frame, |
| .close = dca_decode_end, |
| .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"), |
| }; |
| |
| AVCodec dts_hd_decoder = { |
| .name = "dts_hd", |
| .type = CODEC_TYPE_AUDIO, |
| .id = CODEC_ID_DTS_HD, |
| .priv_data_size = sizeof(DCAContext), |
| .init = dca_decode_init, |
| .decode = dca_decode_frame, |
| .close = dca_decode_end, |
| .long_name = NULL_IF_CONFIG_SMALL("DTS-HD"), |
| }; |
| |
| AVCodec dts_ma_decoder = { |
| .name = "dts_ma", |
| .type = CODEC_TYPE_AUDIO, |
| .id = CODEC_ID_DTS_MA, |
| .priv_data_size = sizeof(DCAContext), |
| .init = dca_decode_init, |
| .decode = dca_decode_frame, |
| .close = dca_decode_end, |
| .long_name = NULL_IF_CONFIG_SMALL("DTS-MA"), |
| }; |