| /* |
| * COOK compatible decoder |
| * Copyright (c) 2003 Sascha Sommer |
| * Copyright (c) 2005 Benjamin Larsson |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file libavcodec/cook.c |
| * Cook compatible decoder. Bastardization of the G.722.1 standard. |
| * This decoder handles RealNetworks, RealAudio G2 data. |
| * Cook is identified by the codec name cook in RM files. |
| * |
| * To use this decoder, a calling application must supply the extradata |
| * bytes provided from the RM container; 8+ bytes for mono streams and |
| * 16+ for stereo streams (maybe more). |
| * |
| * Codec technicalities (all this assume a buffer length of 1024): |
| * Cook works with several different techniques to achieve its compression. |
| * In the timedomain the buffer is divided into 8 pieces and quantized. If |
| * two neighboring pieces have different quantization index a smooth |
| * quantization curve is used to get a smooth overlap between the different |
| * pieces. |
| * To get to the transformdomain Cook uses a modulated lapped transform. |
| * The transform domain has 50 subbands with 20 elements each. This |
| * means only a maximum of 50*20=1000 coefficients are used out of the 1024 |
| * available. |
| */ |
| |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| |
| #include "libavutil/lfg.h" |
| #include "libavutil/random_seed.h" |
| #include "avcodec.h" |
| #include "bitstream.h" |
| #include "dsputil.h" |
| #include "bytestream.h" |
| |
| #include "cookdata.h" |
| |
| /* the different Cook versions */ |
| #define MONO 0x1000001 |
| #define STEREO 0x1000002 |
| #define JOINT_STEREO 0x1000003 |
| #define MC_COOK 0x2000000 //multichannel Cook, not supported |
| |
| #define SUBBAND_SIZE 20 |
| #define MAX_SUBPACKETS 5 |
| //#define COOKDEBUG |
| |
| typedef struct { |
| int *now; |
| int *previous; |
| } cook_gains; |
| |
| typedef struct cook { |
| /* |
| * The following 5 functions provide the lowlevel arithmetic on |
| * the internal audio buffers. |
| */ |
| void (* scalar_dequant)(struct cook *q, int index, int quant_index, |
| int* subband_coef_index, int* subband_coef_sign, |
| float* mlt_p); |
| |
| void (* decouple) (struct cook *q, |
| int subband, |
| float f1, float f2, |
| float *decode_buffer, |
| float *mlt_buffer1, float *mlt_buffer2); |
| |
| void (* imlt_window) (struct cook *q, float *buffer1, |
| cook_gains *gains_ptr, float *previous_buffer); |
| |
| void (* interpolate) (struct cook *q, float* buffer, |
| int gain_index, int gain_index_next); |
| |
| void (* saturate_output) (struct cook *q, int chan, int16_t *out); |
| |
| AVCodecContext* avctx; |
| GetBitContext gb; |
| /* stream data */ |
| int nb_channels; |
| int joint_stereo; |
| int bit_rate; |
| int sample_rate; |
| int samples_per_channel; |
| int samples_per_frame; |
| int subbands; |
| int log2_numvector_size; |
| int numvector_size; //1 << log2_numvector_size; |
| int js_subband_start; |
| int total_subbands; |
| int num_vectors; |
| int bits_per_subpacket; |
| int cookversion; |
| /* states */ |
| AVLFG random_state; |
| |
| /* transform data */ |
| MDCTContext mdct_ctx; |
| float* mlt_window; |
| |
| /* gain buffers */ |
| cook_gains gains1; |
| cook_gains gains2; |
| int gain_1[9]; |
| int gain_2[9]; |
| int gain_3[9]; |
| int gain_4[9]; |
| |
| /* VLC data */ |
| int js_vlc_bits; |
| VLC envelope_quant_index[13]; |
| VLC sqvh[7]; //scalar quantization |
| VLC ccpl; //channel coupling |
| |
| /* generatable tables and related variables */ |
| int gain_size_factor; |
| float gain_table[23]; |
| |
| /* data buffers */ |
| |
| uint8_t* decoded_bytes_buffer; |
| DECLARE_ALIGNED_16(float,mono_mdct_output[2048]); |
| float mono_previous_buffer1[1024]; |
| float mono_previous_buffer2[1024]; |
| float decode_buffer_1[1024]; |
| float decode_buffer_2[1024]; |
| float decode_buffer_0[1060]; /* static allocation for joint decode */ |
| |
| const float *cplscales[5]; |
| } COOKContext; |
| |
| static float pow2tab[127]; |
| static float rootpow2tab[127]; |
| |
| /* debug functions */ |
| |
| #ifdef COOKDEBUG |
| static void dump_float_table(float* table, int size, int delimiter) { |
| int i=0; |
| av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); |
| for (i=0 ; i<size ; i++) { |
| av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]); |
| if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); |
| } |
| } |
| |
| static void dump_int_table(int* table, int size, int delimiter) { |
| int i=0; |
| av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); |
| for (i=0 ; i<size ; i++) { |
| av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); |
| if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); |
| } |
| } |
| |
| static void dump_short_table(short* table, int size, int delimiter) { |
| int i=0; |
| av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); |
| for (i=0 ; i<size ; i++) { |
| av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); |
| if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); |
| } |
| } |
| |
| #endif |
| |
| /*************** init functions ***************/ |
| |
| /* table generator */ |
| static av_cold void init_pow2table(void){ |
| int i; |
| for (i=-63 ; i<64 ; i++){ |
| pow2tab[63+i]= pow(2, i); |
| rootpow2tab[63+i]=sqrt(pow(2, i)); |
| } |
| } |
| |
| /* table generator */ |
| static av_cold void init_gain_table(COOKContext *q) { |
| int i; |
| q->gain_size_factor = q->samples_per_channel/8; |
| for (i=0 ; i<23 ; i++) { |
| q->gain_table[i] = pow(pow2tab[i+52] , |
| (1.0/(double)q->gain_size_factor)); |
| } |
| } |
| |
| |
| static av_cold int init_cook_vlc_tables(COOKContext *q) { |
| int i, result; |
| |
| result = 0; |
| for (i=0 ; i<13 ; i++) { |
| result |= init_vlc (&q->envelope_quant_index[i], 9, 24, |
| envelope_quant_index_huffbits[i], 1, 1, |
| envelope_quant_index_huffcodes[i], 2, 2, 0); |
| } |
| av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n"); |
| for (i=0 ; i<7 ; i++) { |
| result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], |
| cvh_huffbits[i], 1, 1, |
| cvh_huffcodes[i], 2, 2, 0); |
| } |
| |
| if (q->nb_channels==2 && q->joint_stereo==1){ |
| result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1, |
| ccpl_huffbits[q->js_vlc_bits-2], 1, 1, |
| ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0); |
| av_log(q->avctx,AV_LOG_DEBUG,"Joint-stereo VLC used.\n"); |
| } |
| |
| av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n"); |
| return result; |
| } |
| |
| static av_cold int init_cook_mlt(COOKContext *q) { |
| int j; |
| int mlt_size = q->samples_per_channel; |
| |
| if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0) |
| return -1; |
| |
| /* Initialize the MLT window: simple sine window. */ |
| ff_sine_window_init(q->mlt_window, mlt_size); |
| for(j=0 ; j<mlt_size ; j++) |
| q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel); |
| |
| /* Initialize the MDCT. */ |
| if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) { |
| av_free(q->mlt_window); |
| return -1; |
| } |
| av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n", |
| av_log2(mlt_size)+1); |
| |
| return 0; |
| } |
| |
| static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n) |
| { |
| if (1) |
| return ptr; |
| } |
| |
| static av_cold void init_cplscales_table (COOKContext *q) { |
| int i; |
| for (i=0;i<5;i++) |
| q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1); |
| } |
| |
| /*************** init functions end ***********/ |
| |
| /** |
| * Cook indata decoding, every 32 bits are XORed with 0x37c511f2. |
| * Why? No idea, some checksum/error detection method maybe. |
| * |
| * Out buffer size: extra bytes are needed to cope with |
| * padding/misalignment. |
| * Subpackets passed to the decoder can contain two, consecutive |
| * half-subpackets, of identical but arbitrary size. |
| * 1234 1234 1234 1234 extraA extraB |
| * Case 1: AAAA BBBB 0 0 |
| * Case 2: AAAA ABBB BB-- 3 3 |
| * Case 3: AAAA AABB BBBB 2 2 |
| * Case 4: AAAA AAAB BBBB BB-- 1 5 |
| * |
| * Nice way to waste CPU cycles. |
| * |
| * @param inbuffer pointer to byte array of indata |
| * @param out pointer to byte array of outdata |
| * @param bytes number of bytes |
| */ |
| #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4) |
| #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) |
| |
| static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){ |
| int i, off; |
| uint32_t c; |
| const uint32_t* buf; |
| uint32_t* obuf = (uint32_t*) out; |
| /* FIXME: 64 bit platforms would be able to do 64 bits at a time. |
| * I'm too lazy though, should be something like |
| * for(i=0 ; i<bitamount/64 ; i++) |
| * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]); |
| * Buffer alignment needs to be checked. */ |
| |
| off = (int)((long)inbuffer & 3); |
| buf = (const uint32_t*) (inbuffer - off); |
| c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8)))); |
| bytes += 3 + off; |
| for (i = 0; i < bytes/4; i++) |
| obuf[i] = c ^ buf[i]; |
| |
| return off; |
| } |
| |
| /** |
| * Cook uninit |
| */ |
| |
| static av_cold int cook_decode_close(AVCodecContext *avctx) |
| { |
| int i; |
| COOKContext *q = avctx->priv_data; |
| av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n"); |
| |
| /* Free allocated memory buffers. */ |
| av_free(q->mlt_window); |
| av_free(q->decoded_bytes_buffer); |
| |
| /* Free the transform. */ |
| ff_mdct_end(&q->mdct_ctx); |
| |
| /* Free the VLC tables. */ |
| for (i=0 ; i<13 ; i++) { |
| free_vlc(&q->envelope_quant_index[i]); |
| } |
| for (i=0 ; i<7 ; i++) { |
| free_vlc(&q->sqvh[i]); |
| } |
| if(q->nb_channels==2 && q->joint_stereo==1 ){ |
| free_vlc(&q->ccpl); |
| } |
| |
| av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * Fill the gain array for the timedomain quantization. |
| * |
| * @param q pointer to the COOKContext |
| * @param gaininfo[9] array of gain indexes |
| */ |
| |
| static void decode_gain_info(GetBitContext *gb, int *gaininfo) |
| { |
| int i, n; |
| |
| while (get_bits1(gb)) {} |
| n = get_bits_count(gb) - 1; //amount of elements*2 to update |
| |
| i = 0; |
| while (n--) { |
| int index = get_bits(gb, 3); |
| int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1; |
| |
| while (i <= index) gaininfo[i++] = gain; |
| } |
| while (i <= 8) gaininfo[i++] = 0; |
| } |
| |
| /** |
| * Create the quant index table needed for the envelope. |
| * |
| * @param q pointer to the COOKContext |
| * @param quant_index_table pointer to the array |
| */ |
| |
| static void decode_envelope(COOKContext *q, int* quant_index_table) { |
| int i,j, vlc_index; |
| |
| quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize |
| |
| for (i=1 ; i < q->total_subbands ; i++){ |
| vlc_index=i; |
| if (i >= q->js_subband_start * 2) { |
| vlc_index-=q->js_subband_start; |
| } else { |
| vlc_index/=2; |
| if(vlc_index < 1) vlc_index = 1; |
| } |
| if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13 |
| |
| j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table, |
| q->envelope_quant_index[vlc_index-1].bits,2); |
| quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding |
| } |
| } |
| |
| /** |
| * Calculate the category and category_index vector. |
| * |
| * @param q pointer to the COOKContext |
| * @param quant_index_table pointer to the array |
| * @param category pointer to the category array |
| * @param category_index pointer to the category_index array |
| */ |
| |
| static void categorize(COOKContext *q, int* quant_index_table, |
| int* category, int* category_index){ |
| int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j; |
| int exp_index2[102]; |
| int exp_index1[102]; |
| |
| int tmp_categorize_array[128*2]; |
| int tmp_categorize_array1_idx=q->numvector_size; |
| int tmp_categorize_array2_idx=q->numvector_size; |
| |
| bits_left = q->bits_per_subpacket - get_bits_count(&q->gb); |
| |
| if(bits_left > q->samples_per_channel) { |
| bits_left = q->samples_per_channel + |
| ((bits_left - q->samples_per_channel)*5)/8; |
| //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left); |
| } |
| |
| memset(&exp_index1,0,102*sizeof(int)); |
| memset(&exp_index2,0,102*sizeof(int)); |
| memset(&tmp_categorize_array,0,128*2*sizeof(int)); |
| |
| bias=-32; |
| |
| /* Estimate bias. */ |
| for (i=32 ; i>0 ; i=i/2){ |
| num_bits = 0; |
| index = 0; |
| for (j=q->total_subbands ; j>0 ; j--){ |
| exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7); |
| index++; |
| num_bits+=expbits_tab[exp_idx]; |
| } |
| if(num_bits >= bits_left - 32){ |
| bias+=i; |
| } |
| } |
| |
| /* Calculate total number of bits. */ |
| num_bits=0; |
| for (i=0 ; i<q->total_subbands ; i++) { |
| exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7); |
| num_bits += expbits_tab[exp_idx]; |
| exp_index1[i] = exp_idx; |
| exp_index2[i] = exp_idx; |
| } |
| tmpbias1 = tmpbias2 = num_bits; |
| |
| for (j = 1 ; j < q->numvector_size ; j++) { |
| if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */ |
| int max = -999999; |
| index=-1; |
| for (i=0 ; i<q->total_subbands ; i++){ |
| if (exp_index1[i] < 7) { |
| v = (-2*exp_index1[i]) - quant_index_table[i] + bias; |
| if ( v >= max) { |
| max = v; |
| index = i; |
| } |
| } |
| } |
| if(index==-1)break; |
| tmp_categorize_array[tmp_categorize_array1_idx++] = index; |
| tmpbias1 -= expbits_tab[exp_index1[index]] - |
| expbits_tab[exp_index1[index]+1]; |
| ++exp_index1[index]; |
| } else { /* <--- */ |
| int min = 999999; |
| index=-1; |
| for (i=0 ; i<q->total_subbands ; i++){ |
| if(exp_index2[i] > 0){ |
| v = (-2*exp_index2[i])-quant_index_table[i]+bias; |
| if ( v < min) { |
| min = v; |
| index = i; |
| } |
| } |
| } |
| if(index == -1)break; |
| tmp_categorize_array[--tmp_categorize_array2_idx] = index; |
| tmpbias2 -= expbits_tab[exp_index2[index]] - |
| expbits_tab[exp_index2[index]-1]; |
| --exp_index2[index]; |
| } |
| } |
| |
| for(i=0 ; i<q->total_subbands ; i++) |
| category[i] = exp_index2[i]; |
| |
| for(i=0 ; i<q->numvector_size-1 ; i++) |
| category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++]; |
| |
| } |
| |
| |
| /** |
| * Expand the category vector. |
| * |
| * @param q pointer to the COOKContext |
| * @param category pointer to the category array |
| * @param category_index pointer to the category_index array |
| */ |
| |
| static inline void expand_category(COOKContext *q, int* category, |
| int* category_index){ |
| int i; |
| for(i=0 ; i<q->num_vectors ; i++){ |
| ++category[category_index[i]]; |
| } |
| } |
| |
| /** |
| * The real requantization of the mltcoefs |
| * |
| * @param q pointer to the COOKContext |
| * @param index index |
| * @param quant_index quantisation index |
| * @param subband_coef_index array of indexes to quant_centroid_tab |
| * @param subband_coef_sign signs of coefficients |
| * @param mlt_p pointer into the mlt buffer |
| */ |
| |
| static void scalar_dequant_float(COOKContext *q, int index, int quant_index, |
| int* subband_coef_index, int* subband_coef_sign, |
| float* mlt_p){ |
| int i; |
| float f1; |
| |
| for(i=0 ; i<SUBBAND_SIZE ; i++) { |
| if (subband_coef_index[i]) { |
| f1 = quant_centroid_tab[index][subband_coef_index[i]]; |
| if (subband_coef_sign[i]) f1 = -f1; |
| } else { |
| /* noise coding if subband_coef_index[i] == 0 */ |
| f1 = dither_tab[index]; |
| if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1; |
| } |
| mlt_p[i] = f1 * rootpow2tab[quant_index+63]; |
| } |
| } |
| /** |
| * Unpack the subband_coef_index and subband_coef_sign vectors. |
| * |
| * @param q pointer to the COOKContext |
| * @param category pointer to the category array |
| * @param subband_coef_index array of indexes to quant_centroid_tab |
| * @param subband_coef_sign signs of coefficients |
| */ |
| |
| static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index, |
| int* subband_coef_sign) { |
| int i,j; |
| int vlc, vd ,tmp, result; |
| |
| vd = vd_tab[category]; |
| result = 0; |
| for(i=0 ; i<vpr_tab[category] ; i++){ |
| vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3); |
| if (q->bits_per_subpacket < get_bits_count(&q->gb)){ |
| vlc = 0; |
| result = 1; |
| } |
| for(j=vd-1 ; j>=0 ; j--){ |
| tmp = (vlc * invradix_tab[category])/0x100000; |
| subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1); |
| vlc = tmp; |
| } |
| for(j=0 ; j<vd ; j++){ |
| if (subband_coef_index[i*vd + j]) { |
| if(get_bits_count(&q->gb) < q->bits_per_subpacket){ |
| subband_coef_sign[i*vd+j] = get_bits1(&q->gb); |
| } else { |
| result=1; |
| subband_coef_sign[i*vd+j]=0; |
| } |
| } else { |
| subband_coef_sign[i*vd+j]=0; |
| } |
| } |
| } |
| return result; |
| } |
| |
| |
| /** |
| * Fill the mlt_buffer with mlt coefficients. |
| * |
| * @param q pointer to the COOKContext |
| * @param category pointer to the category array |
| * @param quant_index_table pointer to the array |
| * @param mlt_buffer pointer to mlt coefficients |
| */ |
| |
| |
| static void decode_vectors(COOKContext* q, int* category, |
| int *quant_index_table, float* mlt_buffer){ |
| /* A zero in this table means that the subband coefficient is |
| random noise coded. */ |
| int subband_coef_index[SUBBAND_SIZE]; |
| /* A zero in this table means that the subband coefficient is a |
| positive multiplicator. */ |
| int subband_coef_sign[SUBBAND_SIZE]; |
| int band, j; |
| int index=0; |
| |
| for(band=0 ; band<q->total_subbands ; band++){ |
| index = category[band]; |
| if(category[band] < 7){ |
| if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){ |
| index=7; |
| for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7; |
| } |
| } |
| if(index==7) { |
| memset(subband_coef_index, 0, sizeof(subband_coef_index)); |
| memset(subband_coef_sign, 0, sizeof(subband_coef_sign)); |
| } |
| q->scalar_dequant(q, index, quant_index_table[band], |
| subband_coef_index, subband_coef_sign, |
| &mlt_buffer[band * SUBBAND_SIZE]); |
| } |
| |
| if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){ |
| return; |
| } /* FIXME: should this be removed, or moved into loop above? */ |
| } |
| |
| |
| /** |
| * function for decoding mono data |
| * |
| * @param q pointer to the COOKContext |
| * @param mlt_buffer pointer to mlt coefficients |
| */ |
| |
| static void mono_decode(COOKContext *q, float* mlt_buffer) { |
| |
| int category_index[128]; |
| int quant_index_table[102]; |
| int category[128]; |
| |
| memset(&category, 0, 128*sizeof(int)); |
| memset(&category_index, 0, 128*sizeof(int)); |
| |
| decode_envelope(q, quant_index_table); |
| q->num_vectors = get_bits(&q->gb,q->log2_numvector_size); |
| categorize(q, quant_index_table, category, category_index); |
| expand_category(q, category, category_index); |
| decode_vectors(q, category, quant_index_table, mlt_buffer); |
| } |
| |
| |
| /** |
| * the actual requantization of the timedomain samples |
| * |
| * @param q pointer to the COOKContext |
| * @param buffer pointer to the timedomain buffer |
| * @param gain_index index for the block multiplier |
| * @param gain_index_next index for the next block multiplier |
| */ |
| |
| static void interpolate_float(COOKContext *q, float* buffer, |
| int gain_index, int gain_index_next){ |
| int i; |
| float fc1, fc2; |
| fc1 = pow2tab[gain_index+63]; |
| |
| if(gain_index == gain_index_next){ //static gain |
| for(i=0 ; i<q->gain_size_factor ; i++){ |
| buffer[i]*=fc1; |
| } |
| return; |
| } else { //smooth gain |
| fc2 = q->gain_table[11 + (gain_index_next-gain_index)]; |
| for(i=0 ; i<q->gain_size_factor ; i++){ |
| buffer[i]*=fc1; |
| fc1*=fc2; |
| } |
| return; |
| } |
| } |
| |
| /** |
| * Apply transform window, overlap buffers. |
| * |
| * @param q pointer to the COOKContext |
| * @param inbuffer pointer to the mltcoefficients |
| * @param gains_ptr current and previous gains |
| * @param previous_buffer pointer to the previous buffer to be used for overlapping |
| */ |
| |
| static void imlt_window_float (COOKContext *q, float *buffer1, |
| cook_gains *gains_ptr, float *previous_buffer) |
| { |
| const float fc = pow2tab[gains_ptr->previous[0] + 63]; |
| int i; |
| /* The weird thing here, is that the two halves of the time domain |
| * buffer are swapped. Also, the newest data, that we save away for |
| * next frame, has the wrong sign. Hence the subtraction below. |
| * Almost sounds like a complex conjugate/reverse data/FFT effect. |
| */ |
| |
| /* Apply window and overlap */ |
| for(i = 0; i < q->samples_per_channel; i++){ |
| buffer1[i] = buffer1[i] * fc * q->mlt_window[i] - |
| previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i]; |
| } |
| } |
| |
| /** |
| * The modulated lapped transform, this takes transform coefficients |
| * and transforms them into timedomain samples. |
| * Apply transform window, overlap buffers, apply gain profile |
| * and buffer management. |
| * |
| * @param q pointer to the COOKContext |
| * @param inbuffer pointer to the mltcoefficients |
| * @param gains_ptr current and previous gains |
| * @param previous_buffer pointer to the previous buffer to be used for overlapping |
| */ |
| |
| static void imlt_gain(COOKContext *q, float *inbuffer, |
| cook_gains *gains_ptr, float* previous_buffer) |
| { |
| float *buffer0 = q->mono_mdct_output; |
| float *buffer1 = q->mono_mdct_output + q->samples_per_channel; |
| int i; |
| |
| /* Inverse modified discrete cosine transform */ |
| ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer); |
| |
| q->imlt_window (q, buffer1, gains_ptr, previous_buffer); |
| |
| /* Apply gain profile */ |
| for (i = 0; i < 8; i++) { |
| if (gains_ptr->now[i] || gains_ptr->now[i + 1]) |
| q->interpolate(q, &buffer1[q->gain_size_factor * i], |
| gains_ptr->now[i], gains_ptr->now[i + 1]); |
| } |
| |
| /* Save away the current to be previous block. */ |
| memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel); |
| } |
| |
| |
| /** |
| * function for getting the jointstereo coupling information |
| * |
| * @param q pointer to the COOKContext |
| * @param decouple_tab decoupling array |
| * |
| */ |
| |
| static void decouple_info(COOKContext *q, int* decouple_tab){ |
| int length, i; |
| |
| if(get_bits1(&q->gb)) { |
| if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return; |
| |
| length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1; |
| for (i=0 ; i<length ; i++) { |
| decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2); |
| } |
| return; |
| } |
| |
| if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return; |
| |
| length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1; |
| for (i=0 ; i<length ; i++) { |
| decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits); |
| } |
| return; |
| } |
| |
| /* |
| * function decouples a pair of signals from a single signal via multiplication. |
| * |
| * @param q pointer to the COOKContext |
| * @param subband index of the current subband |
| * @param f1 multiplier for channel 1 extraction |
| * @param f2 multiplier for channel 2 extraction |
| * @param decode_buffer input buffer |
| * @param mlt_buffer1 pointer to left channel mlt coefficients |
| * @param mlt_buffer2 pointer to right channel mlt coefficients |
| */ |
| static void decouple_float (COOKContext *q, |
| int subband, |
| float f1, float f2, |
| float *decode_buffer, |
| float *mlt_buffer1, float *mlt_buffer2) |
| { |
| int j, tmp_idx; |
| for (j=0 ; j<SUBBAND_SIZE ; j++) { |
| tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j; |
| mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx]; |
| mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx]; |
| } |
| } |
| |
| /** |
| * function for decoding joint stereo data |
| * |
| * @param q pointer to the COOKContext |
| * @param mlt_buffer1 pointer to left channel mlt coefficients |
| * @param mlt_buffer2 pointer to right channel mlt coefficients |
| */ |
| |
| static void joint_decode(COOKContext *q, float* mlt_buffer1, |
| float* mlt_buffer2) { |
| int i,j; |
| int decouple_tab[SUBBAND_SIZE]; |
| float *decode_buffer = q->decode_buffer_0; |
| int idx, cpl_tmp; |
| float f1,f2; |
| const float* cplscale; |
| |
| memset(decouple_tab, 0, sizeof(decouple_tab)); |
| memset(decode_buffer, 0, sizeof(decode_buffer)); |
| |
| /* Make sure the buffers are zeroed out. */ |
| memset(mlt_buffer1,0, 1024*sizeof(float)); |
| memset(mlt_buffer2,0, 1024*sizeof(float)); |
| decouple_info(q, decouple_tab); |
| mono_decode(q, decode_buffer); |
| |
| /* The two channels are stored interleaved in decode_buffer. */ |
| for (i=0 ; i<q->js_subband_start ; i++) { |
| for (j=0 ; j<SUBBAND_SIZE ; j++) { |
| mlt_buffer1[i*20+j] = decode_buffer[i*40+j]; |
| mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j]; |
| } |
| } |
| |
| /* When we reach js_subband_start (the higher frequencies) |
| the coefficients are stored in a coupling scheme. */ |
| idx = (1 << q->js_vlc_bits) - 1; |
| for (i=q->js_subband_start ; i<q->subbands ; i++) { |
| cpl_tmp = cplband[i]; |
| idx -=decouple_tab[cpl_tmp]; |
| cplscale = q->cplscales[q->js_vlc_bits-2]; //choose decoupler table |
| f1 = cplscale[decouple_tab[cpl_tmp]]; |
| f2 = cplscale[idx-1]; |
| q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2); |
| idx = (1 << q->js_vlc_bits) - 1; |
| } |
| } |
| |
| /** |
| * First part of subpacket decoding: |
| * decode raw stream bytes and read gain info. |
| * |
| * @param q pointer to the COOKContext |
| * @param inbuffer pointer to raw stream data |
| * @param gain_ptr array of current/prev gain pointers |
| */ |
| |
| static inline void |
| decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer, |
| cook_gains *gains_ptr) |
| { |
| int offset; |
| |
| offset = decode_bytes(inbuffer, q->decoded_bytes_buffer, |
| q->bits_per_subpacket/8); |
| init_get_bits(&q->gb, q->decoded_bytes_buffer + offset, |
| q->bits_per_subpacket); |
| decode_gain_info(&q->gb, gains_ptr->now); |
| |
| /* Swap current and previous gains */ |
| FFSWAP(int *, gains_ptr->now, gains_ptr->previous); |
| } |
| |
| /** |
| * Saturate the output signal to signed 16bit integers. |
| * |
| * @param q pointer to the COOKContext |
| * @param chan channel to saturate |
| * @param out pointer to the output vector |
| */ |
| static void |
| saturate_output_float (COOKContext *q, int chan, int16_t *out) |
| { |
| int j; |
| float *output = q->mono_mdct_output + q->samples_per_channel; |
| /* Clip and convert floats to 16 bits. |
| */ |
| for (j = 0; j < q->samples_per_channel; j++) { |
| out[chan + q->nb_channels * j] = |
| av_clip_int16(lrintf(output[j])); |
| } |
| } |
| |
| /** |
| * Final part of subpacket decoding: |
| * Apply modulated lapped transform, gain compensation, |
| * clip and convert to integer. |
| * |
| * @param q pointer to the COOKContext |
| * @param decode_buffer pointer to the mlt coefficients |
| * @param gain_ptr array of current/prev gain pointers |
| * @param previous_buffer pointer to the previous buffer to be used for overlapping |
| * @param out pointer to the output buffer |
| * @param chan 0: left or single channel, 1: right channel |
| */ |
| |
| static inline void |
| mlt_compensate_output(COOKContext *q, float *decode_buffer, |
| cook_gains *gains, float *previous_buffer, |
| int16_t *out, int chan) |
| { |
| imlt_gain(q, decode_buffer, gains, previous_buffer); |
| q->saturate_output (q, chan, out); |
| } |
| |
| |
| /** |
| * Cook subpacket decoding. This function returns one decoded subpacket, |
| * usually 1024 samples per channel. |
| * |
| * @param q pointer to the COOKContext |
| * @param inbuffer pointer to the inbuffer |
| * @param sub_packet_size subpacket size |
| * @param outbuffer pointer to the outbuffer |
| */ |
| |
| |
| static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer, |
| int sub_packet_size, int16_t *outbuffer) { |
| /* packet dump */ |
| // for (i=0 ; i<sub_packet_size ; i++) { |
| // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]); |
| // } |
| // av_log(q->avctx, AV_LOG_ERROR, "\n"); |
| |
| decode_bytes_and_gain(q, inbuffer, &q->gains1); |
| |
| if (q->joint_stereo) { |
| joint_decode(q, q->decode_buffer_1, q->decode_buffer_2); |
| } else { |
| mono_decode(q, q->decode_buffer_1); |
| |
| if (q->nb_channels == 2) { |
| decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2); |
| mono_decode(q, q->decode_buffer_2); |
| } |
| } |
| |
| mlt_compensate_output(q, q->decode_buffer_1, &q->gains1, |
| q->mono_previous_buffer1, outbuffer, 0); |
| |
| if (q->nb_channels == 2) { |
| if (q->joint_stereo) { |
| mlt_compensate_output(q, q->decode_buffer_2, &q->gains1, |
| q->mono_previous_buffer2, outbuffer, 1); |
| } else { |
| mlt_compensate_output(q, q->decode_buffer_2, &q->gains2, |
| q->mono_previous_buffer2, outbuffer, 1); |
| } |
| } |
| return q->samples_per_frame * sizeof(int16_t); |
| } |
| |
| |
| /** |
| * Cook frame decoding |
| * |
| * @param avctx pointer to the AVCodecContext |
| */ |
| |
| static int cook_decode_frame(AVCodecContext *avctx, |
| void *data, int *data_size, |
| const uint8_t *buf, int buf_size) { |
| COOKContext *q = avctx->priv_data; |
| |
| if (buf_size < avctx->block_align) |
| return buf_size; |
| |
| *data_size = decode_subpacket(q, buf, avctx->block_align, data); |
| |
| /* Discard the first two frames: no valid audio. */ |
| if (avctx->frame_number < 2) *data_size = 0; |
| |
| return avctx->block_align; |
| } |
| |
| #ifdef COOKDEBUG |
| static void dump_cook_context(COOKContext *q) |
| { |
| //int i=0; |
| #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b); |
| av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n"); |
| av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion); |
| if (q->cookversion > STEREO) { |
| PRINT("js_subband_start",q->js_subband_start); |
| PRINT("js_vlc_bits",q->js_vlc_bits); |
| } |
| av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n"); |
| PRINT("nb_channels",q->nb_channels); |
| PRINT("bit_rate",q->bit_rate); |
| PRINT("sample_rate",q->sample_rate); |
| PRINT("samples_per_channel",q->samples_per_channel); |
| PRINT("samples_per_frame",q->samples_per_frame); |
| PRINT("subbands",q->subbands); |
| PRINT("random_state",q->random_state); |
| PRINT("js_subband_start",q->js_subband_start); |
| PRINT("log2_numvector_size",q->log2_numvector_size); |
| PRINT("numvector_size",q->numvector_size); |
| PRINT("total_subbands",q->total_subbands); |
| } |
| #endif |
| |
| static av_cold int cook_count_channels(unsigned int mask){ |
| int i; |
| int channels = 0; |
| for(i = 0;i<32;i++){ |
| if(mask & (1<<i)) |
| ++channels; |
| } |
| return channels; |
| } |
| |
| /** |
| * Cook initialization |
| * |
| * @param avctx pointer to the AVCodecContext |
| */ |
| |
| static av_cold int cook_decode_init(AVCodecContext *avctx) |
| { |
| COOKContext *q = avctx->priv_data; |
| const uint8_t *edata_ptr = avctx->extradata; |
| q->avctx = avctx; |
| |
| /* Take care of the codec specific extradata. */ |
| if (avctx->extradata_size <= 0) { |
| av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n"); |
| return -1; |
| } else { |
| /* 8 for mono, 16 for stereo, ? for multichannel |
| Swap to right endianness so we don't need to care later on. */ |
| av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size); |
| if (avctx->extradata_size >= 8){ |
| q->cookversion = bytestream_get_be32(&edata_ptr); |
| q->samples_per_frame = bytestream_get_be16(&edata_ptr); |
| q->subbands = bytestream_get_be16(&edata_ptr); |
| } |
| if (avctx->extradata_size >= 16){ |
| bytestream_get_be32(&edata_ptr); //Unknown unused |
| q->js_subband_start = bytestream_get_be16(&edata_ptr); |
| q->js_vlc_bits = bytestream_get_be16(&edata_ptr); |
| } |
| } |
| |
| /* Take data from the AVCodecContext (RM container). */ |
| q->sample_rate = avctx->sample_rate; |
| q->nb_channels = avctx->channels; |
| q->bit_rate = avctx->bit_rate; |
| |
| /* Initialize RNG. */ |
| av_lfg_init(&q->random_state, ff_random_get_seed()); |
| |
| /* Initialize extradata related variables. */ |
| q->samples_per_channel = q->samples_per_frame / q->nb_channels; |
| q->bits_per_subpacket = avctx->block_align * 8; |
| |
| /* Initialize default data states. */ |
| q->log2_numvector_size = 5; |
| q->total_subbands = q->subbands; |
| |
| /* Initialize version-dependent variables */ |
| av_log(avctx,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion); |
| q->joint_stereo = 0; |
| switch (q->cookversion) { |
| case MONO: |
| if (q->nb_channels != 1) { |
| av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n"); |
| return -1; |
| } |
| av_log(avctx,AV_LOG_DEBUG,"MONO\n"); |
| break; |
| case STEREO: |
| if (q->nb_channels != 1) { |
| q->bits_per_subpacket = q->bits_per_subpacket/2; |
| } |
| av_log(avctx,AV_LOG_DEBUG,"STEREO\n"); |
| break; |
| case JOINT_STEREO: |
| if (q->nb_channels != 2) { |
| av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n"); |
| return -1; |
| } |
| av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n"); |
| if (avctx->extradata_size >= 16){ |
| q->total_subbands = q->subbands + q->js_subband_start; |
| q->joint_stereo = 1; |
| } |
| if (q->samples_per_channel > 256) { |
| q->log2_numvector_size = 6; |
| } |
| if (q->samples_per_channel > 512) { |
| q->log2_numvector_size = 7; |
| } |
| break; |
| case MC_COOK: |
| av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n"); |
| return -1; |
| break; |
| default: |
| av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n"); |
| return -1; |
| break; |
| } |
| |
| /* Initialize variable relations */ |
| q->numvector_size = (1 << q->log2_numvector_size); |
| |
| /* Generate tables */ |
| init_pow2table(); |
| init_gain_table(q); |
| init_cplscales_table(q); |
| |
| if (init_cook_vlc_tables(q) != 0) |
| return -1; |
| |
| |
| if(avctx->block_align >= UINT_MAX/2) |
| return -1; |
| |
| /* Pad the databuffer with: |
| DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(), |
| FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */ |
| if (q->nb_channels==2 && q->joint_stereo==0) { |
| q->decoded_bytes_buffer = |
| av_mallocz(avctx->block_align/2 |
| + DECODE_BYTES_PAD2(avctx->block_align/2) |
| + FF_INPUT_BUFFER_PADDING_SIZE); |
| } else { |
| q->decoded_bytes_buffer = |
| av_mallocz(avctx->block_align |
| + DECODE_BYTES_PAD1(avctx->block_align) |
| + FF_INPUT_BUFFER_PADDING_SIZE); |
| } |
| if (q->decoded_bytes_buffer == NULL) |
| return -1; |
| |
| q->gains1.now = q->gain_1; |
| q->gains1.previous = q->gain_2; |
| q->gains2.now = q->gain_3; |
| q->gains2.previous = q->gain_4; |
| |
| /* Initialize transform. */ |
| if ( init_cook_mlt(q) != 0 ) |
| return -1; |
| |
| /* Initialize COOK signal arithmetic handling */ |
| if (1) { |
| q->scalar_dequant = scalar_dequant_float; |
| q->decouple = decouple_float; |
| q->imlt_window = imlt_window_float; |
| q->interpolate = interpolate_float; |
| q->saturate_output = saturate_output_float; |
| } |
| |
| /* Try to catch some obviously faulty streams, othervise it might be exploitable */ |
| if (q->total_subbands > 53) { |
| av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n"); |
| return -1; |
| } |
| if (q->subbands > 50) { |
| av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n"); |
| return -1; |
| } |
| if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) { |
| } else { |
| av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel); |
| return -1; |
| } |
| if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) { |
| av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits); |
| return -1; |
| } |
| |
| avctx->sample_fmt = SAMPLE_FMT_S16; |
| avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO; |
| |
| #ifdef COOKDEBUG |
| dump_cook_context(q); |
| #endif |
| return 0; |
| } |
| |
| |
| AVCodec cook_decoder = |
| { |
| .name = "cook", |
| .type = CODEC_TYPE_AUDIO, |
| .id = CODEC_ID_COOK, |
| .priv_data_size = sizeof(COOKContext), |
| .init = cook_decode_init, |
| .close = cook_decode_close, |
| .decode = cook_decode_frame, |
| .long_name = NULL_IF_CONFIG_SMALL("COOK"), |
| }; |