| /* |
| * ADPCM codecs |
| * Copyright (c) 2001-2003 The ffmpeg Project |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "avcodec.h" |
| #include "bitstream.h" |
| #include "bytestream.h" |
| |
| /** |
| * @file libavcodec/adpcm.c |
| * ADPCM codecs. |
| * First version by Francois Revol (revol@free.fr) |
| * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood) |
| * by Mike Melanson (melanson@pcisys.net) |
| * CD-ROM XA ADPCM codec by BERO |
| * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com) |
| * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org) |
| * EA IMA EACS decoder by Peter Ross (pross@xvid.org) |
| * EA IMA SEAD decoder by Peter Ross (pross@xvid.org) |
| * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org) |
| * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com) |
| * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl) |
| * |
| * Features and limitations: |
| * |
| * Reference documents: |
| * http://www.pcisys.net/~melanson/codecs/simpleaudio.html |
| * http://www.geocities.com/SiliconValley/8682/aud3.txt |
| * http://openquicktime.sourceforge.net/plugins.htm |
| * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html |
| * http://www.cs.ucla.edu/~leec/mediabench/applications.html |
| * SoX source code http://home.sprynet.com/~cbagwell/sox.html |
| * |
| * CD-ROM XA: |
| * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html |
| * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html |
| * readstr http://www.geocities.co.jp/Playtown/2004/ |
| */ |
| |
| #define BLKSIZE 1024 |
| |
| /* step_table[] and index_table[] are from the ADPCM reference source */ |
| /* This is the index table: */ |
| static const int index_table[16] = { |
| -1, -1, -1, -1, 2, 4, 6, 8, |
| -1, -1, -1, -1, 2, 4, 6, 8, |
| }; |
| |
| /** |
| * This is the step table. Note that many programs use slight deviations from |
| * this table, but such deviations are negligible: |
| */ |
| static const int step_table[89] = { |
| 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, |
| 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, |
| 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, |
| 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, |
| 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, |
| 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, |
| 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, |
| 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, |
| 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 |
| }; |
| |
| /* These are for MS-ADPCM */ |
| /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */ |
| static const int AdaptationTable[] = { |
| 230, 230, 230, 230, 307, 409, 512, 614, |
| 768, 614, 512, 409, 307, 230, 230, 230 |
| }; |
| |
| static const uint8_t AdaptCoeff1[] = { |
| 64, 128, 0, 48, 60, 115, 98 |
| }; |
| |
| static const int8_t AdaptCoeff2[] = { |
| 0, -64, 0, 16, 0, -52, -58 |
| }; |
| |
| /* These are for CD-ROM XA ADPCM */ |
| static const int xa_adpcm_table[5][2] = { |
| { 0, 0 }, |
| { 60, 0 }, |
| { 115, -52 }, |
| { 98, -55 }, |
| { 122, -60 } |
| }; |
| |
| static const int ea_adpcm_table[] = { |
| 0, 240, 460, 392, 0, 0, -208, -220, 0, 1, |
| 3, 4, 7, 8, 10, 11, 0, -1, -3, -4 |
| }; |
| |
| // padded to zero where table size is less then 16 |
| static const int swf_index_tables[4][16] = { |
| /*2*/ { -1, 2 }, |
| /*3*/ { -1, -1, 2, 4 }, |
| /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 }, |
| /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 } |
| }; |
| |
| static const int yamaha_indexscale[] = { |
| 230, 230, 230, 230, 307, 409, 512, 614, |
| 230, 230, 230, 230, 307, 409, 512, 614 |
| }; |
| |
| static const int yamaha_difflookup[] = { |
| 1, 3, 5, 7, 9, 11, 13, 15, |
| -1, -3, -5, -7, -9, -11, -13, -15 |
| }; |
| |
| /* end of tables */ |
| |
| typedef struct ADPCMChannelStatus { |
| int predictor; |
| short int step_index; |
| int step; |
| /* for encoding */ |
| int prev_sample; |
| |
| /* MS version */ |
| short sample1; |
| short sample2; |
| int coeff1; |
| int coeff2; |
| int idelta; |
| } ADPCMChannelStatus; |
| |
| typedef struct ADPCMContext { |
| ADPCMChannelStatus status[6]; |
| } ADPCMContext; |
| |
| /* XXX: implement encoding */ |
| |
| #if CONFIG_ENCODERS |
| static av_cold int adpcm_encode_init(AVCodecContext *avctx) |
| { |
| if (avctx->channels > 2) |
| return -1; /* only stereo or mono =) */ |
| |
| if(avctx->trellis && (unsigned)avctx->trellis > 16U){ |
| av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n"); |
| return -1; |
| } |
| |
| switch(avctx->codec->id) { |
| case CODEC_ID_ADPCM_IMA_WAV: |
| avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */ |
| /* and we have 4 bytes per channel overhead */ |
| avctx->block_align = BLKSIZE; |
| /* seems frame_size isn't taken into account... have to buffer the samples :-( */ |
| break; |
| case CODEC_ID_ADPCM_IMA_QT: |
| avctx->frame_size = 64; |
| avctx->block_align = 34 * avctx->channels; |
| break; |
| case CODEC_ID_ADPCM_MS: |
| avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */ |
| /* and we have 7 bytes per channel overhead */ |
| avctx->block_align = BLKSIZE; |
| break; |
| case CODEC_ID_ADPCM_YAMAHA: |
| avctx->frame_size = BLKSIZE * avctx->channels; |
| avctx->block_align = BLKSIZE; |
| break; |
| case CODEC_ID_ADPCM_SWF: |
| if (avctx->sample_rate != 11025 && |
| avctx->sample_rate != 22050 && |
| avctx->sample_rate != 44100) { |
| av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n"); |
| return -1; |
| } |
| avctx->frame_size = 512 * (avctx->sample_rate / 11025); |
| break; |
| default: |
| return -1; |
| break; |
| } |
| |
| avctx->coded_frame= avcodec_alloc_frame(); |
| avctx->coded_frame->key_frame= 1; |
| |
| return 0; |
| } |
| |
| static av_cold int adpcm_encode_close(AVCodecContext *avctx) |
| { |
| av_freep(&avctx->coded_frame); |
| |
| return 0; |
| } |
| |
| |
| static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample) |
| { |
| int delta = sample - c->prev_sample; |
| int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8; |
| c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8); |
| c->prev_sample = av_clip_int16(c->prev_sample); |
| c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88); |
| return nibble; |
| } |
| |
| static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample) |
| { |
| int predictor, nibble, bias; |
| |
| predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64; |
| |
| nibble= sample - predictor; |
| if(nibble>=0) bias= c->idelta/2; |
| else bias=-c->idelta/2; |
| |
| nibble= (nibble + bias) / c->idelta; |
| nibble= av_clip(nibble, -8, 7)&0x0F; |
| |
| predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; |
| |
| c->sample2 = c->sample1; |
| c->sample1 = av_clip_int16(predictor); |
| |
| c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; |
| if (c->idelta < 16) c->idelta = 16; |
| |
| return nibble; |
| } |
| |
| static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample) |
| { |
| int nibble, delta; |
| |
| if(!c->step) { |
| c->predictor = 0; |
| c->step = 127; |
| } |
| |
| delta = sample - c->predictor; |
| |
| nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8; |
| |
| c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8); |
| c->predictor = av_clip_int16(c->predictor); |
| c->step = (c->step * yamaha_indexscale[nibble]) >> 8; |
| c->step = av_clip(c->step, 127, 24567); |
| |
| return nibble; |
| } |
| |
| typedef struct TrellisPath { |
| int nibble; |
| int prev; |
| } TrellisPath; |
| |
| typedef struct TrellisNode { |
| uint32_t ssd; |
| int path; |
| int sample1; |
| int sample2; |
| int step; |
| } TrellisNode; |
| |
| static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples, |
| uint8_t *dst, ADPCMChannelStatus *c, int n) |
| { |
| #define FREEZE_INTERVAL 128 |
| //FIXME 6% faster if frontier is a compile-time constant |
| const int frontier = 1 << avctx->trellis; |
| const int stride = avctx->channels; |
| const int version = avctx->codec->id; |
| const int max_paths = frontier*FREEZE_INTERVAL; |
| TrellisPath paths[max_paths], *p; |
| TrellisNode node_buf[2][frontier]; |
| TrellisNode *nodep_buf[2][frontier]; |
| TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd |
| TrellisNode **nodes_next = nodep_buf[1]; |
| int pathn = 0, froze = -1, i, j, k; |
| |
| assert(!(max_paths&(max_paths-1))); |
| |
| memset(nodep_buf, 0, sizeof(nodep_buf)); |
| nodes[0] = &node_buf[1][0]; |
| nodes[0]->ssd = 0; |
| nodes[0]->path = 0; |
| nodes[0]->step = c->step_index; |
| nodes[0]->sample1 = c->sample1; |
| nodes[0]->sample2 = c->sample2; |
| if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF)) |
| nodes[0]->sample1 = c->prev_sample; |
| if(version == CODEC_ID_ADPCM_MS) |
| nodes[0]->step = c->idelta; |
| if(version == CODEC_ID_ADPCM_YAMAHA) { |
| if(c->step == 0) { |
| nodes[0]->step = 127; |
| nodes[0]->sample1 = 0; |
| } else { |
| nodes[0]->step = c->step; |
| nodes[0]->sample1 = c->predictor; |
| } |
| } |
| |
| for(i=0; i<n; i++) { |
| TrellisNode *t = node_buf[i&1]; |
| TrellisNode **u; |
| int sample = samples[i*stride]; |
| memset(nodes_next, 0, frontier*sizeof(TrellisNode*)); |
| for(j=0; j<frontier && nodes[j]; j++) { |
| // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too |
| const int range = (j < frontier/2) ? 1 : 0; |
| const int step = nodes[j]->step; |
| int nidx; |
| if(version == CODEC_ID_ADPCM_MS) { |
| const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64; |
| const int div = (sample - predictor) / step; |
| const int nmin = av_clip(div-range, -8, 6); |
| const int nmax = av_clip(div+range, -7, 7); |
| for(nidx=nmin; nidx<=nmax; nidx++) { |
| const int nibble = nidx & 0xf; |
| int dec_sample = predictor + nidx * step; |
| #define STORE_NODE(NAME, STEP_INDEX)\ |
| int d;\ |
| uint32_t ssd;\ |
| dec_sample = av_clip_int16(dec_sample);\ |
| d = sample - dec_sample;\ |
| ssd = nodes[j]->ssd + d*d;\ |
| if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\ |
| continue;\ |
| /* Collapse any two states with the same previous sample value. \ |
| * One could also distinguish states by step and by 2nd to last |
| * sample, but the effects of that are negligible. */\ |
| for(k=0; k<frontier && nodes_next[k]; k++) {\ |
| if(dec_sample == nodes_next[k]->sample1) {\ |
| assert(ssd >= nodes_next[k]->ssd);\ |
| goto next_##NAME;\ |
| }\ |
| }\ |
| for(k=0; k<frontier; k++) {\ |
| if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\ |
| TrellisNode *u = nodes_next[frontier-1];\ |
| if(!u) {\ |
| assert(pathn < max_paths);\ |
| u = t++;\ |
| u->path = pathn++;\ |
| }\ |
| u->ssd = ssd;\ |
| u->step = STEP_INDEX;\ |
| u->sample2 = nodes[j]->sample1;\ |
| u->sample1 = dec_sample;\ |
| paths[u->path].nibble = nibble;\ |
| paths[u->path].prev = nodes[j]->path;\ |
| memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\ |
| nodes_next[k] = u;\ |
| break;\ |
| }\ |
| }\ |
| next_##NAME:; |
| STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8)); |
| } |
| } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) { |
| #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\ |
| const int predictor = nodes[j]->sample1;\ |
| const int div = (sample - predictor) * 4 / STEP_TABLE;\ |
| int nmin = av_clip(div-range, -7, 6);\ |
| int nmax = av_clip(div+range, -6, 7);\ |
| if(nmin<=0) nmin--; /* distinguish -0 from +0 */\ |
| if(nmax<0) nmax--;\ |
| for(nidx=nmin; nidx<=nmax; nidx++) {\ |
| const int nibble = nidx<0 ? 7-nidx : nidx;\ |
| int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\ |
| STORE_NODE(NAME, STEP_INDEX);\ |
| } |
| LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88)); |
| } else { //CODEC_ID_ADPCM_YAMAHA |
| LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567)); |
| #undef LOOP_NODES |
| #undef STORE_NODE |
| } |
| } |
| |
| u = nodes; |
| nodes = nodes_next; |
| nodes_next = u; |
| |
| // prevent overflow |
| if(nodes[0]->ssd > (1<<28)) { |
| for(j=1; j<frontier && nodes[j]; j++) |
| nodes[j]->ssd -= nodes[0]->ssd; |
| nodes[0]->ssd = 0; |
| } |
| |
| // merge old paths to save memory |
| if(i == froze + FREEZE_INTERVAL) { |
| p = &paths[nodes[0]->path]; |
| for(k=i; k>froze; k--) { |
| dst[k] = p->nibble; |
| p = &paths[p->prev]; |
| } |
| froze = i; |
| pathn = 0; |
| // other nodes might use paths that don't coincide with the frozen one. |
| // checking which nodes do so is too slow, so just kill them all. |
| // this also slightly improves quality, but I don't know why. |
| memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*)); |
| } |
| } |
| |
| p = &paths[nodes[0]->path]; |
| for(i=n-1; i>froze; i--) { |
| dst[i] = p->nibble; |
| p = &paths[p->prev]; |
| } |
| |
| c->predictor = nodes[0]->sample1; |
| c->sample1 = nodes[0]->sample1; |
| c->sample2 = nodes[0]->sample2; |
| c->step_index = nodes[0]->step; |
| c->step = nodes[0]->step; |
| c->idelta = nodes[0]->step; |
| } |
| |
| static int adpcm_encode_frame(AVCodecContext *avctx, |
| unsigned char *frame, int buf_size, void *data) |
| { |
| int n, i, st; |
| short *samples; |
| unsigned char *dst; |
| ADPCMContext *c = avctx->priv_data; |
| |
| dst = frame; |
| samples = (short *)data; |
| st= avctx->channels == 2; |
| /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */ |
| |
| switch(avctx->codec->id) { |
| case CODEC_ID_ADPCM_IMA_WAV: |
| n = avctx->frame_size / 8; |
| c->status[0].prev_sample = (signed short)samples[0]; /* XXX */ |
| /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */ |
| bytestream_put_le16(&dst, c->status[0].prev_sample); |
| *dst++ = (unsigned char)c->status[0].step_index; |
| *dst++ = 0; /* unknown */ |
| samples++; |
| if (avctx->channels == 2) { |
| c->status[1].prev_sample = (signed short)samples[0]; |
| /* c->status[1].step_index = 0; */ |
| bytestream_put_le16(&dst, c->status[1].prev_sample); |
| *dst++ = (unsigned char)c->status[1].step_index; |
| *dst++ = 0; |
| samples++; |
| } |
| |
| /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */ |
| if(avctx->trellis > 0) { |
| uint8_t buf[2][n*8]; |
| adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8); |
| if(avctx->channels == 2) |
| adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8); |
| for(i=0; i<n; i++) { |
| *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4); |
| *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4); |
| *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4); |
| *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4); |
| if (avctx->channels == 2) { |
| *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4); |
| *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4); |
| *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4); |
| *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4); |
| } |
| } |
| } else |
| for (; n>0; n--) { |
| *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]); |
| *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4; |
| dst++; |
| *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]); |
| *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4; |
| dst++; |
| *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]); |
| *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4; |
| dst++; |
| *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]); |
| *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4; |
| dst++; |
| /* right channel */ |
| if (avctx->channels == 2) { |
| *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]); |
| *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4; |
| dst++; |
| *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]); |
| *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4; |
| dst++; |
| *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]); |
| *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4; |
| dst++; |
| *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]); |
| *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4; |
| dst++; |
| } |
| samples += 8 * avctx->channels; |
| } |
| break; |
| case CODEC_ID_ADPCM_IMA_QT: |
| { |
| int ch, i; |
| PutBitContext pb; |
| init_put_bits(&pb, dst, buf_size*8); |
| |
| for(ch=0; ch<avctx->channels; ch++){ |
| put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7); |
| put_bits(&pb, 7, c->status[ch].step_index); |
| if(avctx->trellis > 0) { |
| uint8_t buf[64]; |
| adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64); |
| for(i=0; i<64; i++) |
| put_bits(&pb, 4, buf[i^1]); |
| c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F; |
| } else { |
| for (i=0; i<64; i+=2){ |
| int t1, t2; |
| t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]); |
| t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]); |
| put_bits(&pb, 4, t2); |
| put_bits(&pb, 4, t1); |
| } |
| c->status[ch].prev_sample &= ~0x7F; |
| } |
| } |
| |
| dst += put_bits_count(&pb)>>3; |
| break; |
| } |
| case CODEC_ID_ADPCM_SWF: |
| { |
| int i; |
| PutBitContext pb; |
| init_put_bits(&pb, dst, buf_size*8); |
| |
| n = avctx->frame_size-1; |
| |
| //Store AdpcmCodeSize |
| put_bits(&pb, 2, 2); //Set 4bits flash adpcm format |
| |
| //Init the encoder state |
| for(i=0; i<avctx->channels; i++){ |
| c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits |
| put_sbits(&pb, 16, samples[i]); |
| put_bits(&pb, 6, c->status[i].step_index); |
| c->status[i].prev_sample = (signed short)samples[i]; |
| } |
| |
| if(avctx->trellis > 0) { |
| uint8_t buf[2][n]; |
| adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n); |
| if (avctx->channels == 2) |
| adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n); |
| for(i=0; i<n; i++) { |
| put_bits(&pb, 4, buf[0][i]); |
| if (avctx->channels == 2) |
| put_bits(&pb, 4, buf[1][i]); |
| } |
| } else { |
| for (i=1; i<avctx->frame_size; i++) { |
| put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i])); |
| if (avctx->channels == 2) |
| put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1])); |
| } |
| } |
| flush_put_bits(&pb); |
| dst += put_bits_count(&pb)>>3; |
| break; |
| } |
| case CODEC_ID_ADPCM_MS: |
| for(i=0; i<avctx->channels; i++){ |
| int predictor=0; |
| |
| *dst++ = predictor; |
| c->status[i].coeff1 = AdaptCoeff1[predictor]; |
| c->status[i].coeff2 = AdaptCoeff2[predictor]; |
| } |
| for(i=0; i<avctx->channels; i++){ |
| if (c->status[i].idelta < 16) |
| c->status[i].idelta = 16; |
| |
| bytestream_put_le16(&dst, c->status[i].idelta); |
| } |
| for(i=0; i<avctx->channels; i++){ |
| c->status[i].sample2= *samples++; |
| } |
| for(i=0; i<avctx->channels; i++){ |
| c->status[i].sample1= *samples++; |
| |
| bytestream_put_le16(&dst, c->status[i].sample1); |
| } |
| for(i=0; i<avctx->channels; i++) |
| bytestream_put_le16(&dst, c->status[i].sample2); |
| |
| if(avctx->trellis > 0) { |
| int n = avctx->block_align - 7*avctx->channels; |
| uint8_t buf[2][n]; |
| if(avctx->channels == 1) { |
| n *= 2; |
| adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
| for(i=0; i<n; i+=2) |
| *dst++ = (buf[0][i] << 4) | buf[0][i+1]; |
| } else { |
| adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
| adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n); |
| for(i=0; i<n; i++) |
| *dst++ = (buf[0][i] << 4) | buf[1][i]; |
| } |
| } else |
| for(i=7*avctx->channels; i<avctx->block_align; i++) { |
| int nibble; |
| nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4; |
| nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++); |
| *dst++ = nibble; |
| } |
| break; |
| case CODEC_ID_ADPCM_YAMAHA: |
| n = avctx->frame_size / 2; |
| if(avctx->trellis > 0) { |
| uint8_t buf[2][n*2]; |
| n *= 2; |
| if(avctx->channels == 1) { |
| adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
| for(i=0; i<n; i+=2) |
| *dst++ = buf[0][i] | (buf[0][i+1] << 4); |
| } else { |
| adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
| adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n); |
| for(i=0; i<n; i++) |
| *dst++ = buf[0][i] | (buf[1][i] << 4); |
| } |
| } else |
| for (; n>0; n--) { |
| for(i = 0; i < avctx->channels; i++) { |
| int nibble; |
| nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]); |
| nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4; |
| *dst++ = nibble; |
| } |
| samples += 2 * avctx->channels; |
| } |
| break; |
| default: |
| return -1; |
| } |
| return dst - frame; |
| } |
| #endif //CONFIG_ENCODERS |
| |
| static av_cold int adpcm_decode_init(AVCodecContext * avctx) |
| { |
| ADPCMContext *c = avctx->priv_data; |
| unsigned int min_channels = 1; |
| unsigned int max_channels = 2; |
| |
| switch(avctx->codec->id) { |
| case CODEC_ID_ADPCM_EA: |
| min_channels = 2; |
| break; |
| case CODEC_ID_ADPCM_EA_R1: |
| case CODEC_ID_ADPCM_EA_R2: |
| case CODEC_ID_ADPCM_EA_R3: |
| max_channels = 6; |
| break; |
| } |
| |
| if (avctx->channels < min_channels || avctx->channels > max_channels) { |
| av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| switch(avctx->codec->id) { |
| case CODEC_ID_ADPCM_CT: |
| c->status[0].step = c->status[1].step = 511; |
| break; |
| case CODEC_ID_ADPCM_IMA_WS: |
| if (avctx->extradata && avctx->extradata_size == 2 * 4) { |
| c->status[0].predictor = AV_RL32(avctx->extradata); |
| c->status[1].predictor = AV_RL32(avctx->extradata + 4); |
| } |
| break; |
| default: |
| break; |
| } |
| avctx->sample_fmt = SAMPLE_FMT_S16; |
| return 0; |
| } |
| |
| static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift) |
| { |
| int step_index; |
| int predictor; |
| int sign, delta, diff, step; |
| |
| step = step_table[c->step_index]; |
| step_index = c->step_index + index_table[(unsigned)nibble]; |
| if (step_index < 0) step_index = 0; |
| else if (step_index > 88) step_index = 88; |
| |
| sign = nibble & 8; |
| delta = nibble & 7; |
| /* perform direct multiplication instead of series of jumps proposed by |
| * the reference ADPCM implementation since modern CPUs can do the mults |
| * quickly enough */ |
| diff = ((2 * delta + 1) * step) >> shift; |
| predictor = c->predictor; |
| if (sign) predictor -= diff; |
| else predictor += diff; |
| |
| c->predictor = av_clip_int16(predictor); |
| c->step_index = step_index; |
| |
| return (short)c->predictor; |
| } |
| |
| static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble) |
| { |
| int predictor; |
| |
| predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64; |
| predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; |
| |
| c->sample2 = c->sample1; |
| c->sample1 = av_clip_int16(predictor); |
| c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; |
| if (c->idelta < 16) c->idelta = 16; |
| |
| return c->sample1; |
| } |
| |
| static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) |
| { |
| int sign, delta, diff; |
| int new_step; |
| |
| sign = nibble & 8; |
| delta = nibble & 7; |
| /* perform direct multiplication instead of series of jumps proposed by |
| * the reference ADPCM implementation since modern CPUs can do the mults |
| * quickly enough */ |
| diff = ((2 * delta + 1) * c->step) >> 3; |
| /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ |
| c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff); |
| c->predictor = av_clip_int16(c->predictor); |
| /* calculate new step and clamp it to range 511..32767 */ |
| new_step = (AdaptationTable[nibble & 7] * c->step) >> 8; |
| c->step = av_clip(new_step, 511, 32767); |
| |
| return (short)c->predictor; |
| } |
| |
| static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift) |
| { |
| int sign, delta, diff; |
| |
| sign = nibble & (1<<(size-1)); |
| delta = nibble & ((1<<(size-1))-1); |
| diff = delta << (7 + c->step + shift); |
| |
| /* clamp result */ |
| c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256); |
| |
| /* calculate new step */ |
| if (delta >= (2*size - 3) && c->step < 3) |
| c->step++; |
| else if (delta == 0 && c->step > 0) |
| c->step--; |
| |
| return (short) c->predictor; |
| } |
| |
| static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble) |
| { |
| if(!c->step) { |
| c->predictor = 0; |
| c->step = 127; |
| } |
| |
| c->predictor += (c->step * yamaha_difflookup[nibble]) / 8; |
| c->predictor = av_clip_int16(c->predictor); |
| c->step = (c->step * yamaha_indexscale[nibble]) >> 8; |
| c->step = av_clip(c->step, 127, 24567); |
| return c->predictor; |
| } |
| |
| static void xa_decode(short *out, const unsigned char *in, |
| ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc) |
| { |
| int i, j; |
| int shift,filter,f0,f1; |
| int s_1,s_2; |
| int d,s,t; |
| |
| for(i=0;i<4;i++) { |
| |
| shift = 12 - (in[4+i*2] & 15); |
| filter = in[4+i*2] >> 4; |
| f0 = xa_adpcm_table[filter][0]; |
| f1 = xa_adpcm_table[filter][1]; |
| |
| s_1 = left->sample1; |
| s_2 = left->sample2; |
| |
| for(j=0;j<28;j++) { |
| d = in[16+i+j*4]; |
| |
| t = (signed char)(d<<4)>>4; |
| s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); |
| s_2 = s_1; |
| s_1 = av_clip_int16(s); |
| *out = s_1; |
| out += inc; |
| } |
| |
| if (inc==2) { /* stereo */ |
| left->sample1 = s_1; |
| left->sample2 = s_2; |
| s_1 = right->sample1; |
| s_2 = right->sample2; |
| out = out + 1 - 28*2; |
| } |
| |
| shift = 12 - (in[5+i*2] & 15); |
| filter = in[5+i*2] >> 4; |
| |
| f0 = xa_adpcm_table[filter][0]; |
| f1 = xa_adpcm_table[filter][1]; |
| |
| for(j=0;j<28;j++) { |
| d = in[16+i+j*4]; |
| |
| t = (signed char)d >> 4; |
| s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); |
| s_2 = s_1; |
| s_1 = av_clip_int16(s); |
| *out = s_1; |
| out += inc; |
| } |
| |
| if (inc==2) { /* stereo */ |
| right->sample1 = s_1; |
| right->sample2 = s_2; |
| out -= 1; |
| } else { |
| left->sample1 = s_1; |
| left->sample2 = s_2; |
| } |
| } |
| } |
| |
| |
| /* DK3 ADPCM support macro */ |
| #define DK3_GET_NEXT_NIBBLE() \ |
| if (decode_top_nibble_next) \ |
| { \ |
| nibble = last_byte >> 4; \ |
| decode_top_nibble_next = 0; \ |
| } \ |
| else \ |
| { \ |
| last_byte = *src++; \ |
| if (src >= buf + buf_size) break; \ |
| nibble = last_byte & 0x0F; \ |
| decode_top_nibble_next = 1; \ |
| } |
| |
| static int adpcm_decode_frame(AVCodecContext *avctx, |
| void *data, int *data_size, |
| const uint8_t *buf, int buf_size) |
| { |
| ADPCMContext *c = avctx->priv_data; |
| ADPCMChannelStatus *cs; |
| int n, m, channel, i; |
| int block_predictor[2]; |
| short *samples; |
| short *samples_end; |
| const uint8_t *src; |
| int st; /* stereo */ |
| |
| /* DK3 ADPCM accounting variables */ |
| unsigned char last_byte = 0; |
| unsigned char nibble; |
| int decode_top_nibble_next = 0; |
| int diff_channel; |
| |
| /* EA ADPCM state variables */ |
| uint32_t samples_in_chunk; |
| int32_t previous_left_sample, previous_right_sample; |
| int32_t current_left_sample, current_right_sample; |
| int32_t next_left_sample, next_right_sample; |
| int32_t coeff1l, coeff2l, coeff1r, coeff2r; |
| uint8_t shift_left, shift_right; |
| int count1, count2; |
| int coeff[2][2], shift[2];//used in EA MAXIS ADPCM |
| |
| if (!buf_size) |
| return 0; |
| |
| //should protect all 4bit ADPCM variants |
| //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels |
| // |
| if(*data_size/4 < buf_size + 8) |
| return -1; |
| |
| samples = data; |
| samples_end= samples + *data_size/2; |
| *data_size= 0; |
| src = buf; |
| |
| st = avctx->channels == 2 ? 1 : 0; |
| |
| switch(avctx->codec->id) { |
| case CODEC_ID_ADPCM_IMA_QT: |
| n = buf_size - 2*avctx->channels; |
| for (channel = 0; channel < avctx->channels; channel++) { |
| cs = &(c->status[channel]); |
| /* (pppppp) (piiiiiii) */ |
| |
| /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ |
| cs->predictor = (*src++) << 8; |
| cs->predictor |= (*src & 0x80); |
| cs->predictor &= 0xFF80; |
| |
| /* sign extension */ |
| if(cs->predictor & 0x8000) |
| cs->predictor -= 0x10000; |
| |
| cs->predictor = av_clip_int16(cs->predictor); |
| |
| cs->step_index = (*src++) & 0x7F; |
| |
| if (cs->step_index > 88){ |
| av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); |
| cs->step_index = 88; |
| } |
| |
| cs->step = step_table[cs->step_index]; |
| |
| samples = (short*)data + channel; |
| |
| for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */ |
| *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3); |
| samples += avctx->channels; |
| *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3); |
| samples += avctx->channels; |
| src ++; |
| } |
| } |
| if (st) |
| samples--; |
| break; |
| case CODEC_ID_ADPCM_IMA_WAV: |
| if (avctx->block_align != 0 && buf_size > avctx->block_align) |
| buf_size = avctx->block_align; |
| |
| // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1; |
| |
| for(i=0; i<avctx->channels; i++){ |
| cs = &(c->status[i]); |
| cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src); |
| |
| cs->step_index = *src++; |
| if (cs->step_index > 88){ |
| av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); |
| cs->step_index = 88; |
| } |
| if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */ |
| } |
| |
| while(src < buf + buf_size){ |
| for(m=0; m<4; m++){ |
| for(i=0; i<=st; i++) |
| *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3); |
| for(i=0; i<=st; i++) |
| *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3); |
| src++; |
| } |
| src += 4*st; |
| } |
| break; |
| case CODEC_ID_ADPCM_4XM: |
| cs = &(c->status[0]); |
| c->status[0].predictor= (int16_t)bytestream_get_le16(&src); |
| if(st){ |
| c->status[1].predictor= (int16_t)bytestream_get_le16(&src); |
| } |
| c->status[0].step_index= (int16_t)bytestream_get_le16(&src); |
| if(st){ |
| c->status[1].step_index= (int16_t)bytestream_get_le16(&src); |
| } |
| if (cs->step_index < 0) cs->step_index = 0; |
| if (cs->step_index > 88) cs->step_index = 88; |
| |
| m= (buf_size - (src - buf))>>st; |
| for(i=0; i<m; i++) { |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4); |
| if (st) |
| *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4); |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4); |
| if (st) |
| *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4); |
| } |
| |
| src += m<<st; |
| |
| break; |
| case CODEC_ID_ADPCM_MS: |
| if (avctx->block_align != 0 && buf_size > avctx->block_align) |
| buf_size = avctx->block_align; |
| n = buf_size - 7 * avctx->channels; |
| if (n < 0) |
| return -1; |
| block_predictor[0] = av_clip(*src++, 0, 6); |
| block_predictor[1] = 0; |
| if (st) |
| block_predictor[1] = av_clip(*src++, 0, 6); |
| c->status[0].idelta = (int16_t)bytestream_get_le16(&src); |
| if (st){ |
| c->status[1].idelta = (int16_t)bytestream_get_le16(&src); |
| } |
| c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]]; |
| c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]]; |
| c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]]; |
| c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]]; |
| |
| c->status[0].sample1 = bytestream_get_le16(&src); |
| if (st) c->status[1].sample1 = bytestream_get_le16(&src); |
| c->status[0].sample2 = bytestream_get_le16(&src); |
| if (st) c->status[1].sample2 = bytestream_get_le16(&src); |
| |
| *samples++ = c->status[0].sample2; |
| if (st) *samples++ = c->status[1].sample2; |
| *samples++ = c->status[0].sample1; |
| if (st) *samples++ = c->status[1].sample1; |
| for(;n>0;n--) { |
| *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 ); |
| *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F); |
| src ++; |
| } |
| break; |
| case CODEC_ID_ADPCM_IMA_DK4: |
| if (avctx->block_align != 0 && buf_size > avctx->block_align) |
| buf_size = avctx->block_align; |
| |
| c->status[0].predictor = (int16_t)bytestream_get_le16(&src); |
| c->status[0].step_index = *src++; |
| src++; |
| *samples++ = c->status[0].predictor; |
| if (st) { |
| c->status[1].predictor = (int16_t)bytestream_get_le16(&src); |
| c->status[1].step_index = *src++; |
| src++; |
| *samples++ = c->status[1].predictor; |
| } |
| while (src < buf + buf_size) { |
| |
| /* take care of the top nibble (always left or mono channel) */ |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
| src[0] >> 4, 3); |
| |
| /* take care of the bottom nibble, which is right sample for |
| * stereo, or another mono sample */ |
| if (st) |
| *samples++ = adpcm_ima_expand_nibble(&c->status[1], |
| src[0] & 0x0F, 3); |
| else |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
| src[0] & 0x0F, 3); |
| |
| src++; |
| } |
| break; |
| case CODEC_ID_ADPCM_IMA_DK3: |
| if (avctx->block_align != 0 && buf_size > avctx->block_align) |
| buf_size = avctx->block_align; |
| |
| if(buf_size + 16 > (samples_end - samples)*3/8) |
| return -1; |
| |
| c->status[0].predictor = (int16_t)AV_RL16(src + 10); |
| c->status[1].predictor = (int16_t)AV_RL16(src + 12); |
| c->status[0].step_index = src[14]; |
| c->status[1].step_index = src[15]; |
| /* sign extend the predictors */ |
| src += 16; |
| diff_channel = c->status[1].predictor; |
| |
| /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when |
| * the buffer is consumed */ |
| while (1) { |
| |
| /* for this algorithm, c->status[0] is the sum channel and |
| * c->status[1] is the diff channel */ |
| |
| /* process the first predictor of the sum channel */ |
| DK3_GET_NEXT_NIBBLE(); |
| adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
| |
| /* process the diff channel predictor */ |
| DK3_GET_NEXT_NIBBLE(); |
| adpcm_ima_expand_nibble(&c->status[1], nibble, 3); |
| |
| /* process the first pair of stereo PCM samples */ |
| diff_channel = (diff_channel + c->status[1].predictor) / 2; |
| *samples++ = c->status[0].predictor + c->status[1].predictor; |
| *samples++ = c->status[0].predictor - c->status[1].predictor; |
| |
| /* process the second predictor of the sum channel */ |
| DK3_GET_NEXT_NIBBLE(); |
| adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
| |
| /* process the second pair of stereo PCM samples */ |
| diff_channel = (diff_channel + c->status[1].predictor) / 2; |
| *samples++ = c->status[0].predictor + c->status[1].predictor; |
| *samples++ = c->status[0].predictor - c->status[1].predictor; |
| } |
| break; |
| case CODEC_ID_ADPCM_IMA_ISS: |
| c->status[0].predictor = (int16_t)AV_RL16(src + 0); |
| c->status[0].step_index = src[2]; |
| src += 4; |
| if(st) { |
| c->status[1].predictor = (int16_t)AV_RL16(src + 0); |
| c->status[1].step_index = src[2]; |
| src += 4; |
| } |
| |
| while (src < buf + buf_size) { |
| |
| if (st) { |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
| src[0] >> 4 , 3); |
| *samples++ = adpcm_ima_expand_nibble(&c->status[1], |
| src[0] & 0x0F, 3); |
| } else { |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
| src[0] & 0x0F, 3); |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
| src[0] >> 4 , 3); |
| } |
| |
| src++; |
| } |
| break; |
| case CODEC_ID_ADPCM_IMA_WS: |
| /* no per-block initialization; just start decoding the data */ |
| while (src < buf + buf_size) { |
| |
| if (st) { |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
| src[0] >> 4 , 3); |
| *samples++ = adpcm_ima_expand_nibble(&c->status[1], |
| src[0] & 0x0F, 3); |
| } else { |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
| src[0] >> 4 , 3); |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
| src[0] & 0x0F, 3); |
| } |
| |
| src++; |
| } |
| break; |
| case CODEC_ID_ADPCM_XA: |
| while (buf_size >= 128) { |
| xa_decode(samples, src, &c->status[0], &c->status[1], |
| avctx->channels); |
| src += 128; |
| samples += 28 * 8; |
| buf_size -= 128; |
| } |
| break; |
| case CODEC_ID_ADPCM_IMA_EA_EACS: |
| samples_in_chunk = bytestream_get_le32(&src) >> (1-st); |
| |
| if (samples_in_chunk > buf_size-4-(8<<st)) { |
| src += buf_size - 4; |
| break; |
| } |
| |
| for (i=0; i<=st; i++) |
| c->status[i].step_index = bytestream_get_le32(&src); |
| for (i=0; i<=st; i++) |
| c->status[i].predictor = bytestream_get_le32(&src); |
| |
| for (; samples_in_chunk; samples_in_chunk--, src++) { |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3); |
| *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3); |
| } |
| break; |
| case CODEC_ID_ADPCM_IMA_EA_SEAD: |
| for (; src < buf+buf_size; src++) { |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6); |
| *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6); |
| } |
| break; |
| case CODEC_ID_ADPCM_EA: |
| samples_in_chunk = AV_RL32(src); |
| if (samples_in_chunk >= ((buf_size - 12) * 2)) { |
| src += buf_size; |
| break; |
| } |
| src += 4; |
| current_left_sample = (int16_t)bytestream_get_le16(&src); |
| previous_left_sample = (int16_t)bytestream_get_le16(&src); |
| current_right_sample = (int16_t)bytestream_get_le16(&src); |
| previous_right_sample = (int16_t)bytestream_get_le16(&src); |
| |
| for (count1 = 0; count1 < samples_in_chunk/28;count1++) { |
| coeff1l = ea_adpcm_table[ *src >> 4 ]; |
| coeff2l = ea_adpcm_table[(*src >> 4 ) + 4]; |
| coeff1r = ea_adpcm_table[*src & 0x0F]; |
| coeff2r = ea_adpcm_table[(*src & 0x0F) + 4]; |
| src++; |
| |
| shift_left = (*src >> 4 ) + 8; |
| shift_right = (*src & 0x0F) + 8; |
| src++; |
| |
| for (count2 = 0; count2 < 28; count2++) { |
| next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left; |
| next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right; |
| src++; |
| |
| next_left_sample = (next_left_sample + |
| (current_left_sample * coeff1l) + |
| (previous_left_sample * coeff2l) + 0x80) >> 8; |
| next_right_sample = (next_right_sample + |
| (current_right_sample * coeff1r) + |
| (previous_right_sample * coeff2r) + 0x80) >> 8; |
| |
| previous_left_sample = current_left_sample; |
| current_left_sample = av_clip_int16(next_left_sample); |
| previous_right_sample = current_right_sample; |
| current_right_sample = av_clip_int16(next_right_sample); |
| *samples++ = (unsigned short)current_left_sample; |
| *samples++ = (unsigned short)current_right_sample; |
| } |
| } |
| break; |
| case CODEC_ID_ADPCM_EA_MAXIS_XA: |
| for(channel = 0; channel < avctx->channels; channel++) { |
| for (i=0; i<2; i++) |
| coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i]; |
| shift[channel] = (*src & 0x0F) + 8; |
| src++; |
| } |
| for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) { |
| for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */ |
| for(channel = 0; channel < avctx->channels; channel++) { |
| int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel]; |
| sample = (sample + |
| c->status[channel].sample1 * coeff[channel][0] + |
| c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8; |
| c->status[channel].sample2 = c->status[channel].sample1; |
| c->status[channel].sample1 = av_clip_int16(sample); |
| *samples++ = c->status[channel].sample1; |
| } |
| } |
| src+=avctx->channels; |
| } |
| break; |
| case CODEC_ID_ADPCM_EA_R1: |
| case CODEC_ID_ADPCM_EA_R2: |
| case CODEC_ID_ADPCM_EA_R3: { |
| /* channel numbering |
| 2chan: 0=fl, 1=fr |
| 4chan: 0=fl, 1=rl, 2=fr, 3=rr |
| 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */ |
| const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3; |
| int32_t previous_sample, current_sample, next_sample; |
| int32_t coeff1, coeff2; |
| uint8_t shift; |
| unsigned int channel; |
| uint16_t *samplesC; |
| const uint8_t *srcC; |
| const uint8_t *src_end = buf + buf_size; |
| |
| samples_in_chunk = (big_endian ? bytestream_get_be32(&src) |
| : bytestream_get_le32(&src)) / 28; |
| if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) || |
| 28*samples_in_chunk*avctx->channels > samples_end-samples) { |
| src += buf_size - 4; |
| break; |
| } |
| |
| for (channel=0; channel<avctx->channels; channel++) { |
| int32_t offset = (big_endian ? bytestream_get_be32(&src) |
| : bytestream_get_le32(&src)) |
| + (avctx->channels-channel-1) * 4; |
| |
| if ((offset < 0) || (offset >= src_end - src - 4)) break; |
| srcC = src + offset; |
| samplesC = samples + channel; |
| |
| if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) { |
| current_sample = (int16_t)bytestream_get_le16(&srcC); |
| previous_sample = (int16_t)bytestream_get_le16(&srcC); |
| } else { |
| current_sample = c->status[channel].predictor; |
| previous_sample = c->status[channel].prev_sample; |
| } |
| |
| for (count1=0; count1<samples_in_chunk; count1++) { |
| if (*srcC == 0xEE) { /* only seen in R2 and R3 */ |
| srcC++; |
| if (srcC > src_end - 30*2) break; |
| current_sample = (int16_t)bytestream_get_be16(&srcC); |
| previous_sample = (int16_t)bytestream_get_be16(&srcC); |
| |
| for (count2=0; count2<28; count2++) { |
| *samplesC = (int16_t)bytestream_get_be16(&srcC); |
| samplesC += avctx->channels; |
| } |
| } else { |
| coeff1 = ea_adpcm_table[ *srcC>>4 ]; |
| coeff2 = ea_adpcm_table[(*srcC>>4) + 4]; |
| shift = (*srcC++ & 0x0F) + 8; |
| |
| if (srcC > src_end - 14) break; |
| for (count2=0; count2<28; count2++) { |
| if (count2 & 1) |
| next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift; |
| else |
| next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift; |
| |
| next_sample += (current_sample * coeff1) + |
| (previous_sample * coeff2); |
| next_sample = av_clip_int16(next_sample >> 8); |
| |
| previous_sample = current_sample; |
| current_sample = next_sample; |
| *samplesC = current_sample; |
| samplesC += avctx->channels; |
| } |
| } |
| } |
| |
| if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) { |
| c->status[channel].predictor = current_sample; |
| c->status[channel].prev_sample = previous_sample; |
| } |
| } |
| |
| src = src + buf_size - (4 + 4*avctx->channels); |
| samples += 28 * samples_in_chunk * avctx->channels; |
| break; |
| } |
| case CODEC_ID_ADPCM_EA_XAS: |
| if (samples_end-samples < 32*4*avctx->channels |
| || buf_size < (4+15)*4*avctx->channels) { |
| src += buf_size; |
| break; |
| } |
| for (channel=0; channel<avctx->channels; channel++) { |
| int coeff[2][4], shift[4]; |
| short *s2, *s = &samples[channel]; |
| for (n=0; n<4; n++, s+=32*avctx->channels) { |
| for (i=0; i<2; i++) |
| coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i]; |
| shift[n] = (src[2]&0x0F) + 8; |
| for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels) |
| s2[0] = (src[0]&0xF0) + (src[1]<<8); |
| } |
| |
| for (m=2; m<32; m+=2) { |
| s = &samples[m*avctx->channels + channel]; |
| for (n=0; n<4; n++, src++, s+=32*avctx->channels) { |
| for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) { |
| int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n]; |
| int pred = s2[-1*avctx->channels] * coeff[0][n] |
| + s2[-2*avctx->channels] * coeff[1][n]; |
| s2[0] = av_clip_int16((level + pred + 0x80) >> 8); |
| } |
| } |
| } |
| } |
| samples += 32*4*avctx->channels; |
| break; |
| case CODEC_ID_ADPCM_IMA_AMV: |
| case CODEC_ID_ADPCM_IMA_SMJPEG: |
| c->status[0].predictor = (int16_t)bytestream_get_le16(&src); |
| c->status[0].step_index = bytestream_get_le16(&src); |
| |
| if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) |
| src+=4; |
| |
| while (src < buf + buf_size) { |
| char hi, lo; |
| lo = *src & 0x0F; |
| hi = *src >> 4; |
| |
| if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) |
| FFSWAP(char, hi, lo); |
| |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
| lo, 3); |
| *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
| hi, 3); |
| src++; |
| } |
| break; |
| case CODEC_ID_ADPCM_CT: |
| while (src < buf + buf_size) { |
| if (st) { |
| *samples++ = adpcm_ct_expand_nibble(&c->status[0], |
| src[0] >> 4); |
| *samples++ = adpcm_ct_expand_nibble(&c->status[1], |
| src[0] & 0x0F); |
| } else { |
| *samples++ = adpcm_ct_expand_nibble(&c->status[0], |
| src[0] >> 4); |
| *samples++ = adpcm_ct_expand_nibble(&c->status[0], |
| src[0] & 0x0F); |
| } |
| src++; |
| } |
| break; |
| case CODEC_ID_ADPCM_SBPRO_4: |
| case CODEC_ID_ADPCM_SBPRO_3: |
| case CODEC_ID_ADPCM_SBPRO_2: |
| if (!c->status[0].step_index) { |
| /* the first byte is a raw sample */ |
| *samples++ = 128 * (*src++ - 0x80); |
| if (st) |
| *samples++ = 128 * (*src++ - 0x80); |
| c->status[0].step_index = 1; |
| } |
| if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) { |
| while (src < buf + buf_size) { |
| *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
| src[0] >> 4, 4, 0); |
| *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
| src[0] & 0x0F, 4, 0); |
| src++; |
| } |
| } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) { |
| while (src < buf + buf_size && samples + 2 < samples_end) { |
| *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
| src[0] >> 5 , 3, 0); |
| *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
| (src[0] >> 2) & 0x07, 3, 0); |
| *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
| src[0] & 0x03, 2, 0); |
| src++; |
| } |
| } else { |
| while (src < buf + buf_size && samples + 3 < samples_end) { |
| *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
| src[0] >> 6 , 2, 2); |
| *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
| (src[0] >> 4) & 0x03, 2, 2); |
| *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
| (src[0] >> 2) & 0x03, 2, 2); |
| *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
| src[0] & 0x03, 2, 2); |
| src++; |
| } |
| } |
| break; |
| case CODEC_ID_ADPCM_SWF: |
| { |
| GetBitContext gb; |
| const int *table; |
| int k0, signmask, nb_bits, count; |
| int size = buf_size*8; |
| |
| init_get_bits(&gb, buf, size); |
| |
| //read bits & initial values |
| nb_bits = get_bits(&gb, 2)+2; |
| //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits); |
| table = swf_index_tables[nb_bits-2]; |
| k0 = 1 << (nb_bits-2); |
| signmask = 1 << (nb_bits-1); |
| |
| while (get_bits_count(&gb) <= size - 22*avctx->channels) { |
| for (i = 0; i < avctx->channels; i++) { |
| *samples++ = c->status[i].predictor = get_sbits(&gb, 16); |
| c->status[i].step_index = get_bits(&gb, 6); |
| } |
| |
| for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) { |
| int i; |
| |
| for (i = 0; i < avctx->channels; i++) { |
| // similar to IMA adpcm |
| int delta = get_bits(&gb, nb_bits); |
| int step = step_table[c->status[i].step_index]; |
| long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 |
| int k = k0; |
| |
| do { |
| if (delta & k) |
| vpdiff += step; |
| step >>= 1; |
| k >>= 1; |
| } while(k); |
| vpdiff += step; |
| |
| if (delta & signmask) |
| c->status[i].predictor -= vpdiff; |
| else |
| c->status[i].predictor += vpdiff; |
| |
| c->status[i].step_index += table[delta & (~signmask)]; |
| |
| c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); |
| c->status[i].predictor = av_clip_int16(c->status[i].predictor); |
| |
| *samples++ = c->status[i].predictor; |
| if (samples >= samples_end) { |
| av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); |
| return -1; |
| } |
| } |
| } |
| } |
| src += buf_size; |
| break; |
| } |
| case CODEC_ID_ADPCM_YAMAHA: |
| while (src < buf + buf_size) { |
| if (st) { |
| *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
| src[0] & 0x0F); |
| *samples++ = adpcm_yamaha_expand_nibble(&c->status[1], |
| src[0] >> 4 ); |
| } else { |
| *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
| src[0] & 0x0F); |
| *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
| src[0] >> 4 ); |
| } |
| src++; |
| } |
| break; |
| case CODEC_ID_ADPCM_THP: |
| { |
| int table[2][16]; |
| unsigned int samplecnt; |
| int prev[2][2]; |
| int ch; |
| |
| if (buf_size < 80) { |
| av_log(avctx, AV_LOG_ERROR, "frame too small\n"); |
| return -1; |
| } |
| |
| src+=4; |
| samplecnt = bytestream_get_be32(&src); |
| |
| for (i = 0; i < 32; i++) |
| table[0][i] = (int16_t)bytestream_get_be16(&src); |
| |
| /* Initialize the previous sample. */ |
| for (i = 0; i < 4; i++) |
| prev[0][i] = (int16_t)bytestream_get_be16(&src); |
| |
| if (samplecnt >= (samples_end - samples) / (st + 1)) { |
| av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); |
| return -1; |
| } |
| |
| for (ch = 0; ch <= st; ch++) { |
| samples = (unsigned short *) data + ch; |
| |
| /* Read in every sample for this channel. */ |
| for (i = 0; i < samplecnt / 14; i++) { |
| int index = (*src >> 4) & 7; |
| unsigned int exp = 28 - (*src++ & 15); |
| int factor1 = table[ch][index * 2]; |
| int factor2 = table[ch][index * 2 + 1]; |
| |
| /* Decode 14 samples. */ |
| for (n = 0; n < 14; n++) { |
| int32_t sampledat; |
| if(n&1) sampledat= *src++ <<28; |
| else sampledat= (*src&0xF0)<<24; |
| |
| sampledat = ((prev[ch][0]*factor1 |
| + prev[ch][1]*factor2) >> 11) + (sampledat>>exp); |
| *samples = av_clip_int16(sampledat); |
| prev[ch][1] = prev[ch][0]; |
| prev[ch][0] = *samples++; |
| |
| /* In case of stereo, skip one sample, this sample |
| is for the other channel. */ |
| samples += st; |
| } |
| } |
| } |
| |
| /* In the previous loop, in case stereo is used, samples is |
| increased exactly one time too often. */ |
| samples -= st; |
| break; |
| } |
| |
| default: |
| return -1; |
| } |
| *data_size = (uint8_t *)samples - (uint8_t *)data; |
| return src - buf; |
| } |
| |
| |
| |
| #if CONFIG_ENCODERS |
| #define ADPCM_ENCODER(id,name,long_name_) \ |
| AVCodec name ## _encoder = { \ |
| #name, \ |
| CODEC_TYPE_AUDIO, \ |
| id, \ |
| sizeof(ADPCMContext), \ |
| adpcm_encode_init, \ |
| adpcm_encode_frame, \ |
| adpcm_encode_close, \ |
| NULL, \ |
| .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \ |
| .long_name = NULL_IF_CONFIG_SMALL(long_name_), \ |
| }; |
| #else |
| #define ADPCM_ENCODER(id,name,long_name_) |
| #endif |
| |
| #if CONFIG_DECODERS |
| #define ADPCM_DECODER(id,name,long_name_) \ |
| AVCodec name ## _decoder = { \ |
| #name, \ |
| CODEC_TYPE_AUDIO, \ |
| id, \ |
| sizeof(ADPCMContext), \ |
| adpcm_decode_init, \ |
| NULL, \ |
| NULL, \ |
| adpcm_decode_frame, \ |
| .long_name = NULL_IF_CONFIG_SMALL(long_name_), \ |
| }; |
| #else |
| #define ADPCM_DECODER(id,name,long_name_) |
| #endif |
| |
| #define ADPCM_CODEC(id,name,long_name_) \ |
| ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_) |
| |
| /* Note: Do not forget to add new entries to the Makefile as well. */ |
| ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS"); |
| ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG"); |
| ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood"); |
| ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit"); |
| ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP"); |
| ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA"); |
| ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha"); |