blob: b5b6649f931cb17661eebe58f980d34d30160932 [file] [log] [blame]
/*
* Copyright (C) 2001-2003 Michael Niedermayer (michaelni@gmx.at)
*
* AltiVec optimizations (C) 2004 Romain Dolbeau <romain@dolbeau.org>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libpostproc/postprocess.c
* postprocessing.
*/
/*
C MMX MMX2 3DNow AltiVec
isVertDC Ec Ec Ec
isVertMinMaxOk Ec Ec Ec
doVertLowPass E e e Ec
doVertDefFilter Ec Ec e e Ec
isHorizDC Ec Ec Ec
isHorizMinMaxOk a E Ec
doHorizLowPass E e e Ec
doHorizDefFilter Ec Ec e e Ec
do_a_deblock Ec E Ec E
deRing E e e* Ecp
Vertical RKAlgo1 E a a
Horizontal RKAlgo1 a a
Vertical X1# a E E
Horizontal X1# a E E
LinIpolDeinterlace e E E*
CubicIpolDeinterlace a e e*
LinBlendDeinterlace e E E*
MedianDeinterlace# E Ec Ec
TempDeNoiser# E e e Ec
* I do not have a 3DNow! CPU -> it is untested, but no one said it does not work so it seems to work
# more or less selfinvented filters so the exactness is not too meaningful
E = Exact implementation
e = almost exact implementation (slightly different rounding,...)
a = alternative / approximate impl
c = checked against the other implementations (-vo md5)
p = partially optimized, still some work to do
*/
/*
TODO:
reduce the time wasted on the mem transfer
unroll stuff if instructions depend too much on the prior one
move YScale thing to the end instead of fixing QP
write a faster and higher quality deblocking filter :)
make the mainloop more flexible (variable number of blocks at once
(the if/else stuff per block is slowing things down)
compare the quality & speed of all filters
split this huge file
optimize c versions
try to unroll inner for(x=0 ... loop to avoid these damn if(x ... checks
...
*/
//Changelog: use the Subversion log
#include "config.h"
#include "libavutil/avutil.h"
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//#undef HAVE_MMX2
//#define HAVE_AMD3DNOW
//#undef HAVE_MMX
//#undef ARCH_X86
//#define DEBUG_BRIGHTNESS
#include "postprocess.h"
#include "postprocess_internal.h"
unsigned postproc_version(void)
{
return LIBPOSTPROC_VERSION_INT;
}
#if HAVE_ALTIVEC_H
#include <altivec.h>
#endif
#define GET_MODE_BUFFER_SIZE 500
#define OPTIONS_ARRAY_SIZE 10
#define BLOCK_SIZE 8
#define TEMP_STRIDE 8
//#define NUM_BLOCKS_AT_ONCE 16 //not used yet
#if ARCH_X86
DECLARE_ASM_CONST(8, uint64_t, w05)= 0x0005000500050005LL;
DECLARE_ASM_CONST(8, uint64_t, w04)= 0x0004000400040004LL;
DECLARE_ASM_CONST(8, uint64_t, w20)= 0x0020002000200020LL;
DECLARE_ASM_CONST(8, uint64_t, b00)= 0x0000000000000000LL;
DECLARE_ASM_CONST(8, uint64_t, b01)= 0x0101010101010101LL;
DECLARE_ASM_CONST(8, uint64_t, b02)= 0x0202020202020202LL;
DECLARE_ASM_CONST(8, uint64_t, b08)= 0x0808080808080808LL;
DECLARE_ASM_CONST(8, uint64_t, b80)= 0x8080808080808080LL;
#endif
DECLARE_ASM_CONST(8, int, deringThreshold)= 20;
static struct PPFilter filters[]=
{
{"hb", "hdeblock", 1, 1, 3, H_DEBLOCK},
{"vb", "vdeblock", 1, 2, 4, V_DEBLOCK},
/* {"hr", "rkhdeblock", 1, 1, 3, H_RK1_FILTER},
{"vr", "rkvdeblock", 1, 2, 4, V_RK1_FILTER},*/
{"h1", "x1hdeblock", 1, 1, 3, H_X1_FILTER},
{"v1", "x1vdeblock", 1, 2, 4, V_X1_FILTER},
{"ha", "ahdeblock", 1, 1, 3, H_A_DEBLOCK},
{"va", "avdeblock", 1, 2, 4, V_A_DEBLOCK},
{"dr", "dering", 1, 5, 6, DERING},
{"al", "autolevels", 0, 1, 2, LEVEL_FIX},
{"lb", "linblenddeint", 1, 1, 4, LINEAR_BLEND_DEINT_FILTER},
{"li", "linipoldeint", 1, 1, 4, LINEAR_IPOL_DEINT_FILTER},
{"ci", "cubicipoldeint", 1, 1, 4, CUBIC_IPOL_DEINT_FILTER},
{"md", "mediandeint", 1, 1, 4, MEDIAN_DEINT_FILTER},
{"fd", "ffmpegdeint", 1, 1, 4, FFMPEG_DEINT_FILTER},
{"l5", "lowpass5", 1, 1, 4, LOWPASS5_DEINT_FILTER},
{"tn", "tmpnoise", 1, 7, 8, TEMP_NOISE_FILTER},
{"fq", "forcequant", 1, 0, 0, FORCE_QUANT},
{NULL, NULL,0,0,0,0} //End Marker
};
static const char *replaceTable[]=
{
"default", "hb:a,vb:a,dr:a",
"de", "hb:a,vb:a,dr:a",
"fast", "h1:a,v1:a,dr:a",
"fa", "h1:a,v1:a,dr:a",
"ac", "ha:a:128:7,va:a,dr:a",
NULL //End Marker
};
#if ARCH_X86
static inline void prefetchnta(void *p)
{
__asm__ volatile( "prefetchnta (%0)\n\t"
: : "r" (p)
);
}
static inline void prefetcht0(void *p)
{
__asm__ volatile( "prefetcht0 (%0)\n\t"
: : "r" (p)
);
}
static inline void prefetcht1(void *p)
{
__asm__ volatile( "prefetcht1 (%0)\n\t"
: : "r" (p)
);
}
static inline void prefetcht2(void *p)
{
__asm__ volatile( "prefetcht2 (%0)\n\t"
: : "r" (p)
);
}
#endif
/* The horizontal functions exist only in C because the MMX
* code is faster with vertical filters and transposing. */
/**
* Check if the given 8x8 Block is mostly "flat"
*/
static inline int isHorizDC_C(uint8_t src[], int stride, PPContext *c)
{
int numEq= 0;
int y;
const int dcOffset= ((c->nonBQP*c->ppMode.baseDcDiff)>>8) + 1;
const int dcThreshold= dcOffset*2 + 1;
for(y=0; y<BLOCK_SIZE; y++){
if(((unsigned)(src[0] - src[1] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[1] - src[2] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[2] - src[3] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[3] - src[4] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[4] - src[5] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[5] - src[6] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[6] - src[7] + dcOffset)) < dcThreshold) numEq++;
src+= stride;
}
return numEq > c->ppMode.flatnessThreshold;
}
/**
* Check if the middle 8x8 Block in the given 8x16 block is flat
*/
static inline int isVertDC_C(uint8_t src[], int stride, PPContext *c)
{
int numEq= 0;
int y;
const int dcOffset= ((c->nonBQP*c->ppMode.baseDcDiff)>>8) + 1;
const int dcThreshold= dcOffset*2 + 1;
src+= stride*4; // src points to begin of the 8x8 Block
for(y=0; y<BLOCK_SIZE-1; y++){
if(((unsigned)(src[0] - src[0+stride] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[1] - src[1+stride] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[2] - src[2+stride] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[3] - src[3+stride] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[4] - src[4+stride] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[5] - src[5+stride] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[6] - src[6+stride] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[7] - src[7+stride] + dcOffset)) < dcThreshold) numEq++;
src+= stride;
}
return numEq > c->ppMode.flatnessThreshold;
}
static inline int isHorizMinMaxOk_C(uint8_t src[], int stride, int QP)
{
int i;
#if 1
for(i=0; i<2; i++){
if((unsigned)(src[0] - src[5] + 2*QP) > 4*QP) return 0;
src += stride;
if((unsigned)(src[2] - src[7] + 2*QP) > 4*QP) return 0;
src += stride;
if((unsigned)(src[4] - src[1] + 2*QP) > 4*QP) return 0;
src += stride;
if((unsigned)(src[6] - src[3] + 2*QP) > 4*QP) return 0;
src += stride;
}
#else
for(i=0; i<8; i++){
if((unsigned)(src[0] - src[7] + 2*QP) > 4*QP) return 0;
src += stride;
}
#endif
return 1;
}
static inline int isVertMinMaxOk_C(uint8_t src[], int stride, int QP)
{
#if 1
#if 1
int x;
src+= stride*4;
for(x=0; x<BLOCK_SIZE; x+=4){
if((unsigned)(src[ x + 0*stride] - src[ x + 5*stride] + 2*QP) > 4*QP) return 0;
if((unsigned)(src[1+x + 2*stride] - src[1+x + 7*stride] + 2*QP) > 4*QP) return 0;
if((unsigned)(src[2+x + 4*stride] - src[2+x + 1*stride] + 2*QP) > 4*QP) return 0;
if((unsigned)(src[3+x + 6*stride] - src[3+x + 3*stride] + 2*QP) > 4*QP) return 0;
}
#else
int x;
src+= stride*3;
for(x=0; x<BLOCK_SIZE; x++){
if((unsigned)(src[x + stride] - src[x + (stride<<3)] + 2*QP) > 4*QP) return 0;
}
#endif
return 1;
#else
int x;
src+= stride*4;
for(x=0; x<BLOCK_SIZE; x++){
int min=255;
int max=0;
int y;
for(y=0; y<8; y++){
int v= src[x + y*stride];
if(v>max) max=v;
if(v<min) min=v;
}
if(max-min > 2*QP) return 0;
}
return 1;
#endif
}
static inline int horizClassify_C(uint8_t src[], int stride, PPContext *c)
{
if( isHorizDC_C(src, stride, c) ){
if( isHorizMinMaxOk_C(src, stride, c->QP) )
return 1;
else
return 0;
}else{
return 2;
}
}
static inline int vertClassify_C(uint8_t src[], int stride, PPContext *c)
{
if( isVertDC_C(src, stride, c) ){
if( isVertMinMaxOk_C(src, stride, c->QP) )
return 1;
else
return 0;
}else{
return 2;
}
}
static inline void doHorizDefFilter_C(uint8_t dst[], int stride, PPContext *c)
{
int y;
for(y=0; y<BLOCK_SIZE; y++){
const int middleEnergy= 5*(dst[4] - dst[3]) + 2*(dst[2] - dst[5]);
if(FFABS(middleEnergy) < 8*c->QP){
const int q=(dst[3] - dst[4])/2;
const int leftEnergy= 5*(dst[2] - dst[1]) + 2*(dst[0] - dst[3]);
const int rightEnergy= 5*(dst[6] - dst[5]) + 2*(dst[4] - dst[7]);
int d= FFABS(middleEnergy) - FFMIN( FFABS(leftEnergy), FFABS(rightEnergy) );
d= FFMAX(d, 0);
d= (5*d + 32) >> 6;
d*= FFSIGN(-middleEnergy);
if(q>0)
{
d= d<0 ? 0 : d;
d= d>q ? q : d;
}
else
{
d= d>0 ? 0 : d;
d= d<q ? q : d;
}
dst[3]-= d;
dst[4]+= d;
}
dst+= stride;
}
}
/**
* Do a horizontal low pass filter on the 10x8 block (dst points to middle 8x8 Block)
* using the 9-Tap Filter (1,1,2,2,4,2,2,1,1)/16 (C version)
*/
static inline void doHorizLowPass_C(uint8_t dst[], int stride, PPContext *c)
{
int y;
for(y=0; y<BLOCK_SIZE; y++){
const int first= FFABS(dst[-1] - dst[0]) < c->QP ? dst[-1] : dst[0];
const int last= FFABS(dst[8] - dst[7]) < c->QP ? dst[8] : dst[7];
int sums[10];
sums[0] = 4*first + dst[0] + dst[1] + dst[2] + 4;
sums[1] = sums[0] - first + dst[3];
sums[2] = sums[1] - first + dst[4];
sums[3] = sums[2] - first + dst[5];
sums[4] = sums[3] - first + dst[6];
sums[5] = sums[4] - dst[0] + dst[7];
sums[6] = sums[5] - dst[1] + last;
sums[7] = sums[6] - dst[2] + last;
sums[8] = sums[7] - dst[3] + last;
sums[9] = sums[8] - dst[4] + last;
dst[0]= (sums[0] + sums[2] + 2*dst[0])>>4;
dst[1]= (sums[1] + sums[3] + 2*dst[1])>>4;
dst[2]= (sums[2] + sums[4] + 2*dst[2])>>4;
dst[3]= (sums[3] + sums[5] + 2*dst[3])>>4;
dst[4]= (sums[4] + sums[6] + 2*dst[4])>>4;
dst[5]= (sums[5] + sums[7] + 2*dst[5])>>4;
dst[6]= (sums[6] + sums[8] + 2*dst[6])>>4;
dst[7]= (sums[7] + sums[9] + 2*dst[7])>>4;
dst+= stride;
}
}
/**
* Experimental Filter 1 (Horizontal)
* will not damage linear gradients
* Flat blocks should look like they were passed through the (1,1,2,2,4,2,2,1,1) 9-Tap filter
* can only smooth blocks at the expected locations (it cannot smooth them if they did move)
* MMX2 version does correct clipping C version does not
* not identical with the vertical one
*/
static inline void horizX1Filter(uint8_t *src, int stride, int QP)
{
int y;
static uint64_t *lut= NULL;
if(lut==NULL)
{
int i;
lut = av_malloc(256*8);
for(i=0; i<256; i++)
{
int v= i < 128 ? 2*i : 2*(i-256);
/*
//Simulate 112242211 9-Tap filter
uint64_t a= (v/16) & 0xFF;
uint64_t b= (v/8) & 0xFF;
uint64_t c= (v/4) & 0xFF;
uint64_t d= (3*v/8) & 0xFF;
*/
//Simulate piecewise linear interpolation
uint64_t a= (v/16) & 0xFF;
uint64_t b= (v*3/16) & 0xFF;
uint64_t c= (v*5/16) & 0xFF;
uint64_t d= (7*v/16) & 0xFF;
uint64_t A= (0x100 - a)&0xFF;
uint64_t B= (0x100 - b)&0xFF;
uint64_t C= (0x100 - c)&0xFF;
uint64_t D= (0x100 - c)&0xFF;
lut[i] = (a<<56) | (b<<48) | (c<<40) | (d<<32) |
(D<<24) | (C<<16) | (B<<8) | (A);
//lut[i] = (v<<32) | (v<<24);
}
}
for(y=0; y<BLOCK_SIZE; y++){
int a= src[1] - src[2];
int b= src[3] - src[4];
int c= src[5] - src[6];
int d= FFMAX(FFABS(b) - (FFABS(a) + FFABS(c))/2, 0);
if(d < QP){
int v = d * FFSIGN(-b);
src[1] +=v/8;
src[2] +=v/4;
src[3] +=3*v/8;
src[4] -=3*v/8;
src[5] -=v/4;
src[6] -=v/8;
}
src+=stride;
}
}
/**
* accurate deblock filter
*/
static av_always_inline void do_a_deblock_C(uint8_t *src, int step, int stride, PPContext *c){
int y;
const int QP= c->QP;
const int dcOffset= ((c->nonBQP*c->ppMode.baseDcDiff)>>8) + 1;
const int dcThreshold= dcOffset*2 + 1;
//START_TIMER
src+= step*4; // src points to begin of the 8x8 Block
for(y=0; y<8; y++){
int numEq= 0;
if(((unsigned)(src[-1*step] - src[0*step] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[ 0*step] - src[1*step] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[ 1*step] - src[2*step] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[ 2*step] - src[3*step] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[ 3*step] - src[4*step] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[ 4*step] - src[5*step] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[ 5*step] - src[6*step] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[ 6*step] - src[7*step] + dcOffset)) < dcThreshold) numEq++;
if(((unsigned)(src[ 7*step] - src[8*step] + dcOffset)) < dcThreshold) numEq++;
if(numEq > c->ppMode.flatnessThreshold){
int min, max, x;
if(src[0] > src[step]){
max= src[0];
min= src[step];
}else{
max= src[step];
min= src[0];
}
for(x=2; x<8; x+=2){
if(src[x*step] > src[(x+1)*step]){
if(src[x *step] > max) max= src[ x *step];
if(src[(x+1)*step] < min) min= src[(x+1)*step];
}else{
if(src[(x+1)*step] > max) max= src[(x+1)*step];
if(src[ x *step] < min) min= src[ x *step];
}
}
if(max-min < 2*QP){
const int first= FFABS(src[-1*step] - src[0]) < QP ? src[-1*step] : src[0];
const int last= FFABS(src[8*step] - src[7*step]) < QP ? src[8*step] : src[7*step];
int sums[10];
sums[0] = 4*first + src[0*step] + src[1*step] + src[2*step] + 4;
sums[1] = sums[0] - first + src[3*step];
sums[2] = sums[1] - first + src[4*step];
sums[3] = sums[2] - first + src[5*step];
sums[4] = sums[3] - first + src[6*step];
sums[5] = sums[4] - src[0*step] + src[7*step];
sums[6] = sums[5] - src[1*step] + last;
sums[7] = sums[6] - src[2*step] + last;
sums[8] = sums[7] - src[3*step] + last;
sums[9] = sums[8] - src[4*step] + last;
src[0*step]= (sums[0] + sums[2] + 2*src[0*step])>>4;
src[1*step]= (sums[1] + sums[3] + 2*src[1*step])>>4;
src[2*step]= (sums[2] + sums[4] + 2*src[2*step])>>4;
src[3*step]= (sums[3] + sums[5] + 2*src[3*step])>>4;
src[4*step]= (sums[4] + sums[6] + 2*src[4*step])>>4;
src[5*step]= (sums[5] + sums[7] + 2*src[5*step])>>4;
src[6*step]= (sums[6] + sums[8] + 2*src[6*step])>>4;
src[7*step]= (sums[7] + sums[9] + 2*src[7*step])>>4;
}
}else{
const int middleEnergy= 5*(src[4*step] - src[3*step]) + 2*(src[2*step] - src[5*step]);
if(FFABS(middleEnergy) < 8*QP){
const int q=(src[3*step] - src[4*step])/2;
const int leftEnergy= 5*(src[2*step] - src[1*step]) + 2*(src[0*step] - src[3*step]);
const int rightEnergy= 5*(src[6*step] - src[5*step]) + 2*(src[4*step] - src[7*step]);
int d= FFABS(middleEnergy) - FFMIN( FFABS(leftEnergy), FFABS(rightEnergy) );
d= FFMAX(d, 0);
d= (5*d + 32) >> 6;
d*= FFSIGN(-middleEnergy);
if(q>0){
d= d<0 ? 0 : d;
d= d>q ? q : d;
}else{
d= d>0 ? 0 : d;
d= d<q ? q : d;
}
src[3*step]-= d;
src[4*step]+= d;
}
}
src += stride;
}
/*if(step==16){
STOP_TIMER("step16")
}else{
STOP_TIMER("stepX")
}*/
}
//Note: we have C, MMX, MMX2, 3DNOW version there is no 3DNOW+MMX2 one
//Plain C versions
#if !(HAVE_MMX || HAVE_ALTIVEC) || CONFIG_RUNTIME_CPUDETECT
#define COMPILE_C
#endif
#if HAVE_ALTIVEC
#define COMPILE_ALTIVEC
#endif //HAVE_ALTIVEC
#if ARCH_X86
#if (HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT
#define COMPILE_MMX
#endif
#if HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT
#define COMPILE_MMX2
#endif
#if (HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT
#define COMPILE_3DNOW
#endif
#endif /* ARCH_X86 */
#undef HAVE_MMX
#define HAVE_MMX 0
#undef HAVE_MMX2
#define HAVE_MMX2 0
#undef HAVE_AMD3DNOW
#define HAVE_AMD3DNOW 0
#undef HAVE_ALTIVEC
#define HAVE_ALTIVEC 0
#ifdef COMPILE_C
#define RENAME(a) a ## _C
#include "postprocess_template.c"
#endif
#ifdef COMPILE_ALTIVEC
#undef RENAME
#undef HAVE_ALTIVEC
#define HAVE_ALTIVEC 1
#define RENAME(a) a ## _altivec
#include "postprocess_altivec_template.c"
#include "postprocess_template.c"
#endif
//MMX versions
#ifdef COMPILE_MMX
#undef RENAME
#undef HAVE_MMX
#define HAVE_MMX 1
#define RENAME(a) a ## _MMX
#include "postprocess_template.c"
#endif
//MMX2 versions
#ifdef COMPILE_MMX2
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#define HAVE_MMX 1
#define HAVE_MMX2 1
#define RENAME(a) a ## _MMX2
#include "postprocess_template.c"
#endif
//3DNOW versions
#ifdef COMPILE_3DNOW
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_AMD3DNOW
#define HAVE_MMX 1
#define HAVE_MMX2 0
#define HAVE_AMD3DNOW 1
#define RENAME(a) a ## _3DNow
#include "postprocess_template.c"
#endif
// minor note: the HAVE_xyz is messed up after that line so do not use it.
static inline void postProcess(const uint8_t src[], int srcStride, uint8_t dst[], int dstStride, int width, int height,
const QP_STORE_T QPs[], int QPStride, int isColor, pp_mode *vm, pp_context *vc)
{
PPContext *c= (PPContext *)vc;
PPMode *ppMode= (PPMode *)vm;
c->ppMode= *ppMode; //FIXME
// Using ifs here as they are faster than function pointers although the
// difference would not be measurable here but it is much better because
// someone might exchange the CPU whithout restarting MPlayer ;)
#if CONFIG_RUNTIME_CPUDETECT
#if ARCH_X86
// ordered per speed fastest first
if(c->cpuCaps & PP_CPU_CAPS_MMX2)
postProcess_MMX2(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
else if(c->cpuCaps & PP_CPU_CAPS_3DNOW)
postProcess_3DNow(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
else if(c->cpuCaps & PP_CPU_CAPS_MMX)
postProcess_MMX(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
else
postProcess_C(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
#else
#if HAVE_ALTIVEC
if(c->cpuCaps & PP_CPU_CAPS_ALTIVEC)
postProcess_altivec(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
else
#endif
postProcess_C(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
#endif
#else //CONFIG_RUNTIME_CPUDETECT
#if HAVE_MMX2
postProcess_MMX2(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
#elif HAVE_AMD3DNOW
postProcess_3DNow(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
#elif HAVE_MMX
postProcess_MMX(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
#elif HAVE_ALTIVEC
postProcess_altivec(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
#else
postProcess_C(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c);
#endif
#endif //!CONFIG_RUNTIME_CPUDETECT
}
//static void postProcess(uint8_t src[], int srcStride, uint8_t dst[], int dstStride, int width, int height,
// QP_STORE_T QPs[], int QPStride, int isColor, struct PPMode *ppMode);
/* -pp Command line Help
*/
#if LIBPOSTPROC_VERSION_INT < (52<<16)
const char *const pp_help=
#else
const char pp_help[] =
#endif
"Available postprocessing filters:\n"
"Filters Options\n"
"short long name short long option Description\n"
"* * a autoq CPU power dependent enabler\n"
" c chrom chrominance filtering enabled\n"
" y nochrom chrominance filtering disabled\n"
" n noluma luma filtering disabled\n"
"hb hdeblock (2 threshold) horizontal deblocking filter\n"
" 1. difference factor: default=32, higher -> more deblocking\n"
" 2. flatness threshold: default=39, lower -> more deblocking\n"
" the h & v deblocking filters share these\n"
" so you can't set different thresholds for h / v\n"
"vb vdeblock (2 threshold) vertical deblocking filter\n"
"ha hadeblock (2 threshold) horizontal deblocking filter\n"
"va vadeblock (2 threshold) vertical deblocking filter\n"
"h1 x1hdeblock experimental h deblock filter 1\n"
"v1 x1vdeblock experimental v deblock filter 1\n"
"dr dering deringing filter\n"
"al autolevels automatic brightness / contrast\n"
" f fullyrange stretch luminance to (0..255)\n"
"lb linblenddeint linear blend deinterlacer\n"
"li linipoldeint linear interpolating deinterlace\n"
"ci cubicipoldeint cubic interpolating deinterlacer\n"
"md mediandeint median deinterlacer\n"
"fd ffmpegdeint ffmpeg deinterlacer\n"
"l5 lowpass5 FIR lowpass deinterlacer\n"
"de default hb:a,vb:a,dr:a\n"
"fa fast h1:a,v1:a,dr:a\n"
"ac ha:a:128:7,va:a,dr:a\n"
"tn tmpnoise (3 threshold) temporal noise reducer\n"
" 1. <= 2. <= 3. larger -> stronger filtering\n"
"fq forceQuant <quantizer> force quantizer\n"
"Usage:\n"
"<filterName>[:<option>[:<option>...]][[,|/][-]<filterName>[:<option>...]]...\n"
"long form example:\n"
"vdeblock:autoq/hdeblock:autoq/linblenddeint default,-vdeblock\n"
"short form example:\n"
"vb:a/hb:a/lb de,-vb\n"
"more examples:\n"
"tn:64:128:256\n"
"\n"
;
pp_mode *pp_get_mode_by_name_and_quality(const char *name, int quality)
{
char temp[GET_MODE_BUFFER_SIZE];
char *p= temp;
static const char filterDelimiters[] = ",/";
static const char optionDelimiters[] = ":";
struct PPMode *ppMode;
char *filterToken;
ppMode= av_malloc(sizeof(PPMode));
ppMode->lumMode= 0;
ppMode->chromMode= 0;
ppMode->maxTmpNoise[0]= 700;
ppMode->maxTmpNoise[1]= 1500;
ppMode->maxTmpNoise[2]= 3000;
ppMode->maxAllowedY= 234;
ppMode->minAllowedY= 16;
ppMode->baseDcDiff= 256/8;
ppMode->flatnessThreshold= 56-16-1;
ppMode->maxClippedThreshold= 0.01;
ppMode->error=0;
strncpy(temp, name, GET_MODE_BUFFER_SIZE);
av_log(NULL, AV_LOG_DEBUG, "pp: %s\n", name);
for(;;){
char *filterName;
int q= 1000000; //PP_QUALITY_MAX;
int chrom=-1;
int luma=-1;
char *option;
char *options[OPTIONS_ARRAY_SIZE];
int i;
int filterNameOk=0;
int numOfUnknownOptions=0;
int enable=1; //does the user want us to enabled or disabled the filter
filterToken= strtok(p, filterDelimiters);
if(filterToken == NULL) break;
p+= strlen(filterToken) + 1; // p points to next filterToken
filterName= strtok(filterToken, optionDelimiters);
av_log(NULL, AV_LOG_DEBUG, "pp: %s::%s\n", filterToken, filterName);
if(*filterName == '-'){
enable=0;
filterName++;
}
for(;;){ //for all options
option= strtok(NULL, optionDelimiters);
if(option == NULL) break;
av_log(NULL, AV_LOG_DEBUG, "pp: option: %s\n", option);
if(!strcmp("autoq", option) || !strcmp("a", option)) q= quality;
else if(!strcmp("nochrom", option) || !strcmp("y", option)) chrom=0;
else if(!strcmp("chrom", option) || !strcmp("c", option)) chrom=1;
else if(!strcmp("noluma", option) || !strcmp("n", option)) luma=0;
else{
options[numOfUnknownOptions] = option;
numOfUnknownOptions++;
}
if(numOfUnknownOptions >= OPTIONS_ARRAY_SIZE-1) break;
}
options[numOfUnknownOptions] = NULL;
/* replace stuff from the replace Table */
for(i=0; replaceTable[2*i]!=NULL; i++){
if(!strcmp(replaceTable[2*i], filterName)){
int newlen= strlen(replaceTable[2*i + 1]);
int plen;
int spaceLeft;
if(p==NULL) p= temp, *p=0; //last filter
else p--, *p=','; //not last filter
plen= strlen(p);
spaceLeft= p - temp + plen;
if(spaceLeft + newlen >= GET_MODE_BUFFER_SIZE){
ppMode->error++;
break;
}
memmove(p + newlen, p, plen+1);
memcpy(p, replaceTable[2*i + 1], newlen);
filterNameOk=1;
}
}
for(i=0; filters[i].shortName!=NULL; i++){
if( !strcmp(filters[i].longName, filterName)
|| !strcmp(filters[i].shortName, filterName)){
ppMode->lumMode &= ~filters[i].mask;
ppMode->chromMode &= ~filters[i].mask;
filterNameOk=1;
if(!enable) break; // user wants to disable it
if(q >= filters[i].minLumQuality && luma)
ppMode->lumMode|= filters[i].mask;
if(chrom==1 || (chrom==-1 && filters[i].chromDefault))
if(q >= filters[i].minChromQuality)
ppMode->chromMode|= filters[i].mask;
if(filters[i].mask == LEVEL_FIX){
int o;
ppMode->minAllowedY= 16;
ppMode->maxAllowedY= 234;
for(o=0; options[o]!=NULL; o++){
if( !strcmp(options[o],"fullyrange")
||!strcmp(options[o],"f")){
ppMode->minAllowedY= 0;
ppMode->maxAllowedY= 255;
numOfUnknownOptions--;
}
}
}
else if(filters[i].mask == TEMP_NOISE_FILTER)
{
int o;
int numOfNoises=0;
for(o=0; options[o]!=NULL; o++){
char *tail;
ppMode->maxTmpNoise[numOfNoises]=
strtol(options[o], &tail, 0);
if(tail!=options[o]){
numOfNoises++;
numOfUnknownOptions--;
if(numOfNoises >= 3) break;
}
}
}
else if(filters[i].mask == V_DEBLOCK || filters[i].mask == H_DEBLOCK
|| filters[i].mask == V_A_DEBLOCK || filters[i].mask == H_A_DEBLOCK){
int o;
for(o=0; options[o]!=NULL && o<2; o++){
char *tail;
int val= strtol(options[o], &tail, 0);
if(tail==options[o]) break;
numOfUnknownOptions--;
if(o==0) ppMode->baseDcDiff= val;
else ppMode->flatnessThreshold= val;
}
}
else if(filters[i].mask == FORCE_QUANT){
int o;
ppMode->forcedQuant= 15;
for(o=0; options[o]!=NULL && o<1; o++){
char *tail;
int val= strtol(options[o], &tail, 0);
if(tail==options[o]) break;
numOfUnknownOptions--;
ppMode->forcedQuant= val;
}
}
}
}
if(!filterNameOk) ppMode->error++;
ppMode->error += numOfUnknownOptions;
}
av_log(NULL, AV_LOG_DEBUG, "pp: lumMode=%X, chromMode=%X\n", ppMode->lumMode, ppMode->chromMode);
if(ppMode->error){
av_log(NULL, AV_LOG_ERROR, "%d errors in postprocess string \"%s\"\n", ppMode->error, name);
av_free(ppMode);
return NULL;
}
return ppMode;
}
void pp_free_mode(pp_mode *mode){
av_free(mode);
}
static void reallocAlign(void **p, int alignment, int size){
av_free(*p);
*p= av_mallocz(size);
}
static void reallocBuffers(PPContext *c, int width, int height, int stride, int qpStride){
int mbWidth = (width+15)>>4;
int mbHeight= (height+15)>>4;
int i;
c->stride= stride;
c->qpStride= qpStride;
reallocAlign((void **)&c->tempDst, 8, stride*24);
reallocAlign((void **)&c->tempSrc, 8, stride*24);
reallocAlign((void **)&c->tempBlocks, 8, 2*16*8);
reallocAlign((void **)&c->yHistogram, 8, 256*sizeof(uint64_t));
for(i=0; i<256; i++)
c->yHistogram[i]= width*height/64*15/256;
for(i=0; i<3; i++){
//Note: The +17*1024 is just there so i do not have to worry about r/w over the end.
reallocAlign((void **)&c->tempBlurred[i], 8, stride*mbHeight*16 + 17*1024);
reallocAlign((void **)&c->tempBlurredPast[i], 8, 256*((height+7)&(~7))/2 + 17*1024);//FIXME size
}
reallocAlign((void **)&c->deintTemp, 8, 2*width+32);
reallocAlign((void **)&c->nonBQPTable, 8, qpStride*mbHeight*sizeof(QP_STORE_T));
reallocAlign((void **)&c->stdQPTable, 8, qpStride*mbHeight*sizeof(QP_STORE_T));
reallocAlign((void **)&c->forcedQPTable, 8, mbWidth*sizeof(QP_STORE_T));
}
static const char * context_to_name(void * ptr) {
return "postproc";
}
static const AVClass av_codec_context_class = { "Postproc", context_to_name, NULL };
pp_context *pp_get_context(int width, int height, int cpuCaps){
PPContext *c= av_malloc(sizeof(PPContext));
int stride= (width+15)&(~15); //assumed / will realloc if needed
int qpStride= (width+15)/16 + 2; //assumed / will realloc if needed
memset(c, 0, sizeof(PPContext));
c->av_class = &av_codec_context_class;
c->cpuCaps= cpuCaps;
if(cpuCaps&PP_FORMAT){
c->hChromaSubSample= cpuCaps&0x3;
c->vChromaSubSample= (cpuCaps>>4)&0x3;
}else{
c->hChromaSubSample= 1;
c->vChromaSubSample= 1;
}
reallocBuffers(c, width, height, stride, qpStride);
c->frameNum=-1;
return c;
}
void pp_free_context(void *vc){
PPContext *c = (PPContext*)vc;
int i;
for(i=0; i<3; i++) av_free(c->tempBlurred[i]);
for(i=0; i<3; i++) av_free(c->tempBlurredPast[i]);
av_free(c->tempBlocks);
av_free(c->yHistogram);
av_free(c->tempDst);
av_free(c->tempSrc);
av_free(c->deintTemp);
av_free(c->stdQPTable);
av_free(c->nonBQPTable);
av_free(c->forcedQPTable);
memset(c, 0, sizeof(PPContext));
av_free(c);
}
void pp_postprocess(const uint8_t * src[3], const int srcStride[3],
uint8_t * dst[3], const int dstStride[3],
int width, int height,
const QP_STORE_T *QP_store, int QPStride,
pp_mode *vm, void *vc, int pict_type)
{
int mbWidth = (width+15)>>4;
int mbHeight= (height+15)>>4;
PPMode *mode = (PPMode*)vm;
PPContext *c = (PPContext*)vc;
int minStride= FFMAX(FFABS(srcStride[0]), FFABS(dstStride[0]));
int absQPStride = FFABS(QPStride);
// c->stride and c->QPStride are always positive
if(c->stride < minStride || c->qpStride < absQPStride)
reallocBuffers(c, width, height,
FFMAX(minStride, c->stride),
FFMAX(c->qpStride, absQPStride));
if(QP_store==NULL || (mode->lumMode & FORCE_QUANT)){
int i;
QP_store= c->forcedQPTable;
absQPStride = QPStride = 0;
if(mode->lumMode & FORCE_QUANT)
for(i=0; i<mbWidth; i++) c->forcedQPTable[i]= mode->forcedQuant;
else
for(i=0; i<mbWidth; i++) c->forcedQPTable[i]= 1;
}
if(pict_type & PP_PICT_TYPE_QP2){
int i;
const int count= mbHeight * absQPStride;
for(i=0; i<(count>>2); i++){
((uint32_t*)c->stdQPTable)[i] = (((const uint32_t*)QP_store)[i]>>1) & 0x7F7F7F7F;
}
for(i<<=2; i<count; i++){
c->stdQPTable[i] = QP_store[i]>>1;
}
QP_store= c->stdQPTable;
QPStride= absQPStride;
}
if(0){
int x,y;
for(y=0; y<mbHeight; y++){
for(x=0; x<mbWidth; x++){
av_log(c, AV_LOG_INFO, "%2d ", QP_store[x + y*QPStride]);
}
av_log(c, AV_LOG_INFO, "\n");
}
av_log(c, AV_LOG_INFO, "\n");
}
if((pict_type&7)!=3){
if (QPStride >= 0){
int i;
const int count= mbHeight * QPStride;
for(i=0; i<(count>>2); i++){
((uint32_t*)c->nonBQPTable)[i] = ((const uint32_t*)QP_store)[i] & 0x3F3F3F3F;
}
for(i<<=2; i<count; i++){
c->nonBQPTable[i] = QP_store[i] & 0x3F;
}
} else {
int i,j;
for(i=0; i<mbHeight; i++) {
for(j=0; j<absQPStride; j++) {
c->nonBQPTable[i*absQPStride+j] = QP_store[i*QPStride+j] & 0x3F;
}
}
}
}
av_log(c, AV_LOG_DEBUG, "using npp filters 0x%X/0x%X\n",
mode->lumMode, mode->chromMode);
postProcess(src[0], srcStride[0], dst[0], dstStride[0],
width, height, QP_store, QPStride, 0, mode, c);
width = (width )>>c->hChromaSubSample;
height = (height)>>c->vChromaSubSample;
if(mode->chromMode){
postProcess(src[1], srcStride[1], dst[1], dstStride[1],
width, height, QP_store, QPStride, 1, mode, c);
postProcess(src[2], srcStride[2], dst[2], dstStride[2],
width, height, QP_store, QPStride, 2, mode, c);
}
else if(srcStride[1] == dstStride[1] && srcStride[2] == dstStride[2]){
linecpy(dst[1], src[1], height, srcStride[1]);
linecpy(dst[2], src[2], height, srcStride[2]);
}else{
int y;
for(y=0; y<height; y++){
memcpy(&(dst[1][y*dstStride[1]]), &(src[1][y*srcStride[1]]), width);
memcpy(&(dst[2][y*dstStride[2]]), &(src[2][y*srcStride[2]]), width);
}
}
}