blob: 5ce39bd03e7417bcf225f94ad421e001888ee88c [file] [log] [blame]
/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2000-2001 Qualcomm Incorporated
* Copyright (C) 2002-2003 Maxim Krasnyansky <maxk@qualcomm.com>
* Copyright (C) 2002-2010 Marcel Holtmann <marcel@holtmann.org>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <poll.h>
#include <sys/param.h>
#include <sys/uio.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include "bluetooth.h"
#include "hci.h"
#include "hci_lib.h"
#ifndef MIN
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#endif
typedef struct {
char *str;
unsigned int val;
} hci_map;
static char *hci_bit2str(hci_map *m, unsigned int val)
{
char *str = malloc(120);
char *ptr = str;
if (!str)
return NULL;
*ptr = 0;
while (m->str) {
if ((unsigned int) m->val & val)
ptr += sprintf(ptr, "%s ", m->str);
m++;
}
return str;
}
static int hci_str2bit(hci_map *map, char *str, unsigned int *val)
{
char *t, *ptr;
hci_map *m;
int set;
if (!str || !(str = ptr = strdup(str)))
return 0;
*val = set = 0;
while ((t = strsep(&ptr, ","))) {
for (m = map; m->str; m++) {
if (!strcasecmp(m->str, t)) {
*val |= (unsigned int) m->val;
set = 1;
}
}
}
free(str);
return set;
}
static char *hci_uint2str(hci_map *m, unsigned int val)
{
char *str = malloc(50);
char *ptr = str;
if (!str)
return NULL;
*ptr = 0;
while (m->str) {
if ((unsigned int) m->val == val) {
ptr += sprintf(ptr, "%s", m->str);
break;
}
m++;
}
return str;
}
static int hci_str2uint(hci_map *map, char *str, unsigned int *val)
{
char *t, *ptr;
hci_map *m;
int set = 0;
if (!str)
return 0;
str = ptr = strdup(str);
while ((t = strsep(&ptr, ","))) {
for (m = map; m->str; m++) {
if (!strcasecmp(m->str,t)) {
*val = (unsigned int) m->val;
set = 1;
break;
}
}
}
free(str);
return set;
}
char *hci_bustostr(int bus)
{
switch (bus) {
case HCI_VIRTUAL:
return "Virtual";
case HCI_USB:
return "USB";
case HCI_PCCARD:
return "PCCARD";
case HCI_UART:
return "UART";
case HCI_RS232:
return "RS232";
case HCI_PCI:
return "PCI";
case HCI_SDIO:
return "SDIO";
case HCI_SPI:
return "SPI";
case HCI_I2C:
return "I2C";
case HCI_SMD:
return "SMD";
default:
return "Unknown";
}
}
char *hci_dtypetostr(int type)
{
return hci_bustostr(type & 0x0f);
}
char *hci_typetostr(int type)
{
switch (type) {
case HCI_PRIMARY:
return "Primary";
case HCI_AMP:
return "AMP";
default:
return "Unknown";
}
}
/* HCI dev flags mapping */
static hci_map dev_flags_map[] = {
{ "UP", HCI_UP },
{ "INIT", HCI_INIT },
{ "RUNNING", HCI_RUNNING },
{ "RAW", HCI_RAW },
{ "PSCAN", HCI_PSCAN },
{ "ISCAN", HCI_ISCAN },
{ "INQUIRY", HCI_INQUIRY },
{ "AUTH", HCI_AUTH },
{ "ENCRYPT", HCI_ENCRYPT },
{ NULL }
};
char *hci_dflagstostr(uint32_t flags)
{
char *str = bt_malloc(50);
char *ptr = str;
hci_map *m = dev_flags_map;
if (!str)
return NULL;
*ptr = 0;
if (!hci_test_bit(HCI_UP, &flags))
ptr += sprintf(ptr, "DOWN ");
while (m->str) {
if (hci_test_bit(m->val, &flags))
ptr += sprintf(ptr, "%s ", m->str);
m++;
}
return str;
}
/* HCI packet type mapping */
static hci_map pkt_type_map[] = {
{ "DM1", HCI_DM1 },
{ "DM3", HCI_DM3 },
{ "DM5", HCI_DM5 },
{ "DH1", HCI_DH1 },
{ "DH3", HCI_DH3 },
{ "DH5", HCI_DH5 },
{ "HV1", HCI_HV1 },
{ "HV2", HCI_HV2 },
{ "HV3", HCI_HV3 },
{ "2-DH1", HCI_2DH1 },
{ "2-DH3", HCI_2DH3 },
{ "2-DH5", HCI_2DH5 },
{ "3-DH1", HCI_3DH1 },
{ "3-DH3", HCI_3DH3 },
{ "3-DH5", HCI_3DH5 },
{ NULL }
};
static hci_map sco_ptype_map[] = {
{ "HV1", 0x0001 },
{ "HV2", 0x0002 },
{ "HV3", 0x0004 },
{ "EV3", HCI_EV3 },
{ "EV4", HCI_EV4 },
{ "EV5", HCI_EV5 },
{ "2-EV3", HCI_2EV3 },
{ "2-EV5", HCI_2EV5 },
{ "3-EV3", HCI_3EV3 },
{ "3-EV5", HCI_3EV5 },
{ NULL }
};
char *hci_ptypetostr(unsigned int ptype)
{
return hci_bit2str(pkt_type_map, ptype);
}
int hci_strtoptype(char *str, unsigned int *val)
{
return hci_str2bit(pkt_type_map, str, val);
}
char *hci_scoptypetostr(unsigned int ptype)
{
return hci_bit2str(sco_ptype_map, ptype);
}
int hci_strtoscoptype(char *str, unsigned int *val)
{
return hci_str2bit(sco_ptype_map, str, val);
}
/* Link policy mapping */
static hci_map link_policy_map[] = {
{ "NONE", 0 },
{ "RSWITCH", HCI_LP_RSWITCH },
{ "HOLD", HCI_LP_HOLD },
{ "SNIFF", HCI_LP_SNIFF },
{ "PARK", HCI_LP_PARK },
{ NULL }
};
char *hci_lptostr(unsigned int lp)
{
return hci_bit2str(link_policy_map, lp);
}
int hci_strtolp(char *str, unsigned int *val)
{
return hci_str2bit(link_policy_map, str, val);
}
/* Link mode mapping */
static hci_map link_mode_map[] = {
{ "NONE", 0 },
{ "ACCEPT", HCI_LM_ACCEPT },
{ "MASTER", HCI_LM_MASTER },
{ "AUTH", HCI_LM_AUTH },
{ "ENCRYPT", HCI_LM_ENCRYPT },
{ "TRUSTED", HCI_LM_TRUSTED },
{ "RELIABLE", HCI_LM_RELIABLE },
{ "SECURE", HCI_LM_SECURE },
{ NULL }
};
char *hci_lmtostr(unsigned int lm)
{
char *s, *str = bt_malloc(50);
if (!str)
return NULL;
*str = 0;
if (!(lm & HCI_LM_MASTER))
strcpy(str, "SLAVE ");
s = hci_bit2str(link_mode_map, lm);
if (!s) {
bt_free(str);
return NULL;
}
strcat(str, s);
free(s);
return str;
}
int hci_strtolm(char *str, unsigned int *val)
{
return hci_str2bit(link_mode_map, str, val);
}
/* Command mapping */
static hci_map commands_map[] = {
{ "Inquiry", 0 },
{ "Inquiry Cancel", 1 },
{ "Periodic Inquiry Mode", 2 },
{ "Exit Periodic Inquiry Mode", 3 },
{ "Create Connection", 4 },
{ "Disconnect", 5 },
{ "Add SCO Connection", 6 },
{ "Cancel Create Connection", 7 },
{ "Accept Connection Request", 8 },
{ "Reject Connection Request", 9 },
{ "Link Key Request Reply", 10 },
{ "Link Key Request Negative Reply", 11 },
{ "PIN Code Request Reply", 12 },
{ "PIN Code Request Negative Reply", 13 },
{ "Change Connection Packet Type", 14 },
{ "Authentication Requested", 15 },
{ "Set Connection Encryption", 16 },
{ "Change Connection Link Key", 17 },
{ "Master Link Key", 18 },
{ "Remote Name Request", 19 },
{ "Cancel Remote Name Request", 20 },
{ "Read Remote Supported Features", 21 },
{ "Read Remote Extended Features", 22 },
{ "Read Remote Version Information", 23 },
{ "Read Clock Offset", 24 },
{ "Read LMP Handle", 25 },
{ "Reserved", 26 },
{ "Reserved", 27 },
{ "Reserved", 28 },
{ "Reserved", 29 },
{ "Reserved", 30 },
{ "Reserved", 31 },
{ "Reserved", 32 },
{ "Hold Mode", 33 },
{ "Sniff Mode", 34 },
{ "Exit Sniff Mode", 35 },
{ "Park State", 36 },
{ "Exit Park State", 37 },
{ "QoS Setup", 38 },
{ "Role Discovery", 39 },
{ "Switch Role", 40 },
{ "Read Link Policy Settings", 41 },
{ "Write Link Policy Settings", 42 },
{ "Read Default Link Policy Settings", 43 },
{ "Write Default Link Policy Settings", 44 },
{ "Flow Specification", 45 },
{ "Set Event Mask", 46 },
{ "Reset", 47 },
{ "Set Event Filter", 48 },
{ "Flush", 49 },
{ "Read PIN Type", 50 },
{ "Write PIN Type", 51 },
{ "Create New Unit Key", 52 },
{ "Read Stored Link Key", 53 },
{ "Write Stored Link Key", 54 },
{ "Delete Stored Link Key", 55 },
{ "Write Local Name", 56 },
{ "Read Local Name", 57 },
{ "Read Connection Accept Timeout", 58 },
{ "Write Connection Accept Timeout", 59 },
{ "Read Page Timeout", 60 },
{ "Write Page Timeout", 61 },
{ "Read Scan Enable", 62 },
{ "Write Scan Enable", 63 },
{ "Read Page Scan Activity", 64 },
{ "Write Page Scan Activity", 65 },
{ "Read Inquiry Scan Activity", 66 },
{ "Write Inquiry Scan Activity", 67 },
{ "Read Authentication Enable", 68 },
{ "Write Authentication Enable", 69 },
{ "Read Encryption Mode", 70 },
{ "Write Encryption Mode", 71 },
{ "Read Class Of Device", 72 },
{ "Write Class Of Device", 73 },
{ "Read Voice Setting", 74 },
{ "Write Voice Setting", 75 },
{ "Read Automatic Flush Timeout", 76 },
{ "Write Automatic Flush Timeout", 77 },
{ "Read Num Broadcast Retransmissions", 78 },
{ "Write Num Broadcast Retransmissions", 79 },
{ "Read Hold Mode Activity", 80 },
{ "Write Hold Mode Activity", 81 },
{ "Read Transmit Power Level", 82 },
{ "Read Synchronous Flow Control Enable", 83 },
{ "Write Synchronous Flow Control Enable", 84 },
{ "Set Host Controller To Host Flow Control", 85 },
{ "Host Buffer Size", 86 },
{ "Host Number Of Completed Packets", 87 },
{ "Read Link Supervision Timeout", 88 },
{ "Write Link Supervision Timeout", 89 },
{ "Read Number of Supported IAC", 90 },
{ "Read Current IAC LAP", 91 },
{ "Write Current IAC LAP", 92 },
{ "Read Page Scan Period Mode", 93 },
{ "Write Page Scan Period Mode", 94 },
{ "Read Page Scan Mode", 95 },
{ "Write Page Scan Mode", 96 },
{ "Set AFH Channel Classification", 97 },
{ "Reserved", 98 },
{ "Reserved", 99 },
{ "Read Inquiry Scan Type", 100 },
{ "Write Inquiry Scan Type", 101 },
{ "Read Inquiry Mode", 102 },
{ "Write Inquiry Mode", 103 },
{ "Read Page Scan Type", 104 },
{ "Write Page Scan Type", 105 },
{ "Read AFH Channel Assessment Mode", 106 },
{ "Write AFH Channel Assessment Mode", 107 },
{ "Reserved", 108 },
{ "Reserved", 109 },
{ "Reserved", 110 },
{ "Reserved", 111 },
{ "Reserved", 112 },
{ "Reserved", 113 },
{ "Reserved", 114 },
{ "Read Local Version Information", 115 },
{ "Read Local Supported Commands", 116 },
{ "Read Local Supported Features", 117 },
{ "Read Local Extended Features", 118 },
{ "Read Buffer Size", 119 },
{ "Read Country Code", 120 },
{ "Read BD ADDR", 121 },
{ "Read Failed Contact Counter", 122 },
{ "Reset Failed Contact Counter", 123 },
{ "Get Link Quality", 124 },
{ "Read RSSI", 125 },
{ "Read AFH Channel Map", 126 },
{ "Read BD Clock", 127 },
{ "Read Loopback Mode", 128 },
{ "Write Loopback Mode", 129 },
{ "Enable Device Under Test Mode", 130 },
{ "Setup Synchronous Connection", 131 },
{ "Accept Synchronous Connection", 132 },
{ "Reject Synchronous Connection", 133 },
{ "Reserved", 134 },
{ "Reserved", 135 },
{ "Read Extended Inquiry Response", 136 },
{ "Write Extended Inquiry Response", 137 },
{ "Refresh Encryption Key", 138 },
{ "Reserved", 139 },
{ "Sniff Subrating", 140 },
{ "Read Simple Pairing Mode", 141 },
{ "Write Simple Pairing Mode", 142 },
{ "Read Local OOB Data", 143 },
{ "Read Inquiry Response Transmit Power Level", 144 },
{ "Write Inquiry Transmit Power Level", 145 },
{ "Read Default Erroneous Data Reporting", 146 },
{ "Write Default Erroneous Data Reporting", 147 },
{ "Reserved", 148 },
{ "Reserved", 149 },
{ "Reserved", 150 },
{ "IO Capability Request Reply", 151 },
{ "User Confirmation Request Reply", 152 },
{ "User Confirmation Request Negative Reply", 153 },
{ "User Passkey Request Reply", 154 },
{ "User Passkey Request Negative Reply", 155 },
{ "Remote OOB Data Request Reply", 156 },
{ "Write Simple Pairing Debug Mode", 157 },
{ "Enhanced Flush", 158 },
{ "Remote OOB Data Request Negative Reply", 159 },
{ "Reserved", 160 },
{ "Reserved", 161 },
{ "Send Keypress Notification", 162 },
{ "IO Capability Request Negative Reply", 163 },
{ "Read Encryption Key Size", 164 },
{ "Reserved", 165 },
{ "Reserved", 166 },
{ "Reserved", 167 },
{ "Create Physical Link", 168 },
{ "Accept Physical Link", 169 },
{ "Disconnect Physical Link", 170 },
{ "Create Logical Link", 171 },
{ "Accept Logical Link", 172 },
{ "Disconnect Logical Link", 173 },
{ "Logical Link Cancel", 174 },
{ "Flow Specification Modify", 175 },
{ "Read Logical Link Accept Timeout", 176 },
{ "Write Logical Link Accept Timeout", 177 },
{ "Set Event Mask Page 2", 178 },
{ "Read Location Data", 179 },
{ "Write Location Data", 180 },
{ "Read Local AMP Info", 181 },
{ "Read Local AMP_ASSOC", 182 },
{ "Write Remote AMP_ASSOC", 183 },
{ "Read Flow Control Mode", 184 },
{ "Write Flow Control Mode", 185 },
{ "Read Data Block Size", 186 },
{ "Reserved", 187 },
{ "Reserved", 188 },
{ "Enable AMP Receiver Reports", 189 },
{ "AMP Test End", 190 },
{ "AMP Test Command", 191 },
{ "Read Enhanced Transmit Power Level", 192 },
{ "Reserved", 193 },
{ "Read Best Effort Flush Timeout", 194 },
{ "Write Best Effort Flush Timeout", 195 },
{ "Short Range Mode", 196 },
{ "Read LE Host Support", 197 },
{ "Write LE Host Support", 198 },
{ "Reserved", 199 },
{ "LE Set Event Mask", 200 },
{ "LE Read Buffer Size", 201 },
{ "LE Read Local Supported Features", 202 },
{ "Reserved", 203 },
{ "LE Set Random Address", 204 },
{ "LE Set Advertising Parameters", 205 },
{ "LE Read Advertising Channel TX Power", 206 },
{ "LE Set Advertising Data", 207 },
{ "LE Set Scan Response Data", 208 },
{ "LE Set Advertise Enable", 209 },
{ "LE Set Scan Parameters", 210 },
{ "LE Set Scan Enable", 211 },
{ "LE Create Connection", 212 },
{ "LE Create Connection Cancel", 213 },
{ "LE Read White List Size", 214 },
{ "LE Clear White List", 215 },
{ "LE Add Device To White List", 216 },
{ "LE Remove Device From White List", 217 },
{ "LE Connection Update", 218 },
{ "LE Set Host Channel Classification", 219 },
{ "LE Read Channel Map", 220 },
{ "LE Read Remote Used Features", 221 },
{ "LE Encrypt", 222 },
{ "LE Rand", 223 },
{ "LE Start Encryption", 224 },
{ "LE Long Term Key Request Reply", 225 },
{ "LE Long Term Key Request Negative Reply", 226 },
{ "LE Read Supported States", 227 },
{ "LE Receiver Test", 228 },
{ "LE Transmitter Test", 229 },
{ "LE Test End", 230 },
{ "Reserved", 231 },
{ NULL }
};
char *hci_cmdtostr(unsigned int cmd)
{
return hci_uint2str(commands_map, cmd);
}
char *hci_commandstostr(uint8_t *commands, char *pref, int width)
{
unsigned int maxwidth = width - 3;
hci_map *m;
char *off, *ptr, *str;
int size = 10;
m = commands_map;
while (m->str) {
if (commands[m->val / 8] & (1 << (m->val % 8)))
size += strlen(m->str) + (pref ? strlen(pref) : 0) + 3;
m++;
}
str = bt_malloc(size);
if (!str)
return NULL;
ptr = str; *ptr = '\0';
if (pref)
ptr += sprintf(ptr, "%s", pref);
off = ptr;
m = commands_map;
while (m->str) {
if (commands[m->val / 8] & (1 << (m->val % 8))) {
if (strlen(off) + strlen(m->str) > maxwidth) {
ptr += sprintf(ptr, "\n%s", pref ? pref : "");
off = ptr;
}
ptr += sprintf(ptr, "'%s' ", m->str);
}
m++;
}
return str;
}
/* Version mapping */
static hci_map ver_map[] = {
{ "1.0b", 0x00 },
{ "1.1", 0x01 },
{ "1.2", 0x02 },
{ "2.0", 0x03 },
{ "2.1", 0x04 },
{ "3.0", 0x05 },
{ "4.0", 0x06 },
{ "4.1", 0x07 },
{ "4.2", 0x08 },
{ NULL }
};
char *hci_vertostr(unsigned int ver)
{
return hci_uint2str(ver_map, ver);
}
int hci_strtover(char *str, unsigned int *ver)
{
return hci_str2uint(ver_map, str, ver);
}
char *lmp_vertostr(unsigned int ver)
{
return hci_uint2str(ver_map, ver);
}
int lmp_strtover(char *str, unsigned int *ver)
{
return hci_str2uint(ver_map, str, ver);
}
static hci_map pal_map[] = {
{ "3.0", 0x01 },
{ NULL }
};
char *pal_vertostr(unsigned int ver)
{
return hci_uint2str(pal_map, ver);
}
int pal_strtover(char *str, unsigned int *ver)
{
return hci_str2uint(pal_map, str, ver);
}
/* LMP features mapping */
static hci_map lmp_features_map[8][9] = {
{ /* Byte 0 */
{ "<3-slot packets>", LMP_3SLOT }, /* Bit 0 */
{ "<5-slot packets>", LMP_5SLOT }, /* Bit 1 */
{ "<encryption>", LMP_ENCRYPT }, /* Bit 2 */
{ "<slot offset>", LMP_SOFFSET }, /* Bit 3 */
{ "<timing accuracy>", LMP_TACCURACY }, /* Bit 4 */
{ "<role switch>", LMP_RSWITCH }, /* Bit 5 */
{ "<hold mode>", LMP_HOLD }, /* Bit 6 */
{ "<sniff mode>", LMP_SNIFF }, /* Bit 7 */
{ NULL }
},
{ /* Byte 1 */
{ "<park state>", LMP_PARK }, /* Bit 0 */
{ "<RSSI>", LMP_RSSI }, /* Bit 1 */
{ "<channel quality>", LMP_QUALITY }, /* Bit 2 */
{ "<SCO link>", LMP_SCO }, /* Bit 3 */
{ "<HV2 packets>", LMP_HV2 }, /* Bit 4 */
{ "<HV3 packets>", LMP_HV3 }, /* Bit 5 */
{ "<u-law log>", LMP_ULAW }, /* Bit 6 */
{ "<A-law log>", LMP_ALAW }, /* Bit 7 */
{ NULL }
},
{ /* Byte 2 */
{ "<CVSD>", LMP_CVSD }, /* Bit 0 */
{ "<paging scheme>", LMP_PSCHEME }, /* Bit 1 */
{ "<power control>", LMP_PCONTROL }, /* Bit 2 */
{ "<transparent SCO>", LMP_TRSP_SCO }, /* Bit 3 */
{ "<broadcast encrypt>",LMP_BCAST_ENC }, /* Bit 7 */
{ NULL }
},
{ /* Byte 3 */
{ "<no. 24>", 0x01 }, /* Bit 0 */
{ "<EDR ACL 2 Mbps>", LMP_EDR_ACL_2M }, /* Bit 1 */
{ "<EDR ACL 3 Mbps>", LMP_EDR_ACL_3M }, /* Bit 2 */
{ "<enhanced iscan>", LMP_ENH_ISCAN }, /* Bit 3 */
{ "<interlaced iscan>", LMP_ILACE_ISCAN }, /* Bit 4 */
{ "<interlaced pscan>", LMP_ILACE_PSCAN }, /* Bit 5 */
{ "<inquiry with RSSI>",LMP_RSSI_INQ }, /* Bit 6 */
{ "<extended SCO>", LMP_ESCO }, /* Bit 7 */
{ NULL }
},
{ /* Byte 4 */
{ "<EV4 packets>", LMP_EV4 }, /* Bit 0 */
{ "<EV5 packets>", LMP_EV5 }, /* Bit 1 */
{ "<no. 34>", 0x04 }, /* Bit 2 */
{ "<AFH cap. slave>", LMP_AFH_CAP_SLV }, /* Bit 3 */
{ "<AFH class. slave>", LMP_AFH_CLS_SLV }, /* Bit 4 */
{ "<BR/EDR not supp.>", LMP_NO_BREDR }, /* Bit 5 */
{ "<LE support>", LMP_LE }, /* Bit 6 */
{ "<3-slot EDR ACL>", LMP_EDR_3SLOT }, /* Bit 7 */
{ NULL }
},
{ /* Byte 5 */
{ "<5-slot EDR ACL>", LMP_EDR_5SLOT }, /* Bit 0 */
{ "<sniff subrating>", LMP_SNIFF_SUBR }, /* Bit 1 */
{ "<pause encryption>", LMP_PAUSE_ENC }, /* Bit 2 */
{ "<AFH cap. master>", LMP_AFH_CAP_MST }, /* Bit 3 */
{ "<AFH class. master>",LMP_AFH_CLS_MST }, /* Bit 4 */
{ "<EDR eSCO 2 Mbps>", LMP_EDR_ESCO_2M }, /* Bit 5 */
{ "<EDR eSCO 3 Mbps>", LMP_EDR_ESCO_3M }, /* Bit 6 */
{ "<3-slot EDR eSCO>", LMP_EDR_3S_ESCO }, /* Bit 7 */
{ NULL }
},
{ /* Byte 6 */
{ "<extended inquiry>", LMP_EXT_INQ }, /* Bit 0 */
{ "<LE and BR/EDR>", LMP_LE_BREDR }, /* Bit 1 */
{ "<no. 50>", 0x04 }, /* Bit 2 */
{ "<simple pairing>", LMP_SIMPLE_PAIR }, /* Bit 3 */
{ "<encapsulated PDU>", LMP_ENCAPS_PDU }, /* Bit 4 */
{ "<err. data report>", LMP_ERR_DAT_REP }, /* Bit 5 */
{ "<non-flush flag>", LMP_NFLUSH_PKTS }, /* Bit 6 */
{ "<no. 55>", 0x80 }, /* Bit 7 */
{ NULL }
},
{ /* Byte 7 */
{ "<LSTO>", LMP_LSTO }, /* Bit 1 */
{ "<inquiry TX power>", LMP_INQ_TX_PWR }, /* Bit 1 */
{ "<EPC>", LMP_EPC }, /* Bit 2 */
{ "<no. 59>", 0x08 }, /* Bit 3 */
{ "<no. 60>", 0x10 }, /* Bit 4 */
{ "<no. 61>", 0x20 }, /* Bit 5 */
{ "<no. 62>", 0x40 }, /* Bit 6 */
{ "<extended features>",LMP_EXT_FEAT }, /* Bit 7 */
{ NULL }
},
};
char *lmp_featurestostr(uint8_t *features, char *pref, int width)
{
unsigned int maxwidth = width - 1;
char *off, *ptr, *str;
int i, size = 10;
for (i = 0; i < 8; i++) {
hci_map *m = lmp_features_map[i];
while (m->str) {
if (m->val & features[i])
size += strlen(m->str) +
(pref ? strlen(pref) : 0) + 1;
m++;
}
}
str = bt_malloc(size);
if (!str)
return NULL;
ptr = str; *ptr = '\0';
if (pref)
ptr += sprintf(ptr, "%s", pref);
off = ptr;
for (i = 0; i < 8; i++) {
hci_map *m = lmp_features_map[i];
while (m->str) {
if (m->val & features[i]) {
if (strlen(off) + strlen(m->str) > maxwidth) {
ptr += sprintf(ptr, "\n%s",
pref ? pref : "");
off = ptr;
}
ptr += sprintf(ptr, "%s ", m->str);
}
m++;
}
}
return str;
}
/* HCI functions that do not require open device */
int hci_for_each_dev(int flag, int (*func)(int dd, int dev_id, long arg),
long arg)
{
struct hci_dev_list_req *dl;
struct hci_dev_req *dr;
int dev_id = -1;
int i, sk, err = 0;
sk = socket(AF_BLUETOOTH, SOCK_RAW | SOCK_CLOEXEC, BTPROTO_HCI);
if (sk < 0)
return -1;
dl = malloc(HCI_MAX_DEV * sizeof(*dr) + sizeof(*dl));
if (!dl) {
err = errno;
goto done;
}
memset(dl, 0, HCI_MAX_DEV * sizeof(*dr) + sizeof(*dl));
dl->dev_num = HCI_MAX_DEV;
dr = dl->dev_req;
if (ioctl(sk, HCIGETDEVLIST, (void *) dl) < 0) {
err = errno;
goto free;
}
for (i = 0; i < dl->dev_num; i++, dr++) {
if (hci_test_bit(flag, &dr->dev_opt))
if (!func || func(sk, dr->dev_id, arg)) {
dev_id = dr->dev_id;
break;
}
}
if (dev_id < 0)
err = ENODEV;
free:
free(dl);
done:
close(sk);
errno = err;
return dev_id;
}
static int __other_bdaddr(int dd, int dev_id, long arg)
{
struct hci_dev_info di = { .dev_id = dev_id };
if (ioctl(dd, HCIGETDEVINFO, (void *) &di))
return 0;
if (hci_test_bit(HCI_RAW, &di.flags))
return 0;
return bacmp((bdaddr_t *) arg, &di.bdaddr);
}
static int __same_bdaddr(int dd, int dev_id, long arg)
{
struct hci_dev_info di = { .dev_id = dev_id };
if (ioctl(dd, HCIGETDEVINFO, (void *) &di))
return 0;
return !bacmp((bdaddr_t *) arg, &di.bdaddr);
}
int hci_get_route(bdaddr_t *bdaddr)
{
int dev_id;
dev_id = hci_for_each_dev(HCI_UP, __other_bdaddr,
(long) (bdaddr ? bdaddr : BDADDR_ANY));
if (dev_id < 0)
dev_id = hci_for_each_dev(HCI_UP, __same_bdaddr,
(long) (bdaddr ? bdaddr : BDADDR_ANY));
return dev_id;
}
int hci_devid(const char *str)
{
bdaddr_t ba;
int id = -1;
if (!strncmp(str, "hci", 3) && strlen(str) >= 4) {
id = atoi(str + 3);
if (hci_devba(id, &ba) < 0)
return -1;
} else {
errno = ENODEV;
str2ba(str, &ba);
id = hci_for_each_dev(HCI_UP, __same_bdaddr, (long) &ba);
}
return id;
}
int hci_devinfo(int dev_id, struct hci_dev_info *di)
{
int dd, err, ret;
dd = socket(AF_BLUETOOTH, SOCK_RAW | SOCK_CLOEXEC, BTPROTO_HCI);
if (dd < 0)
return dd;
memset(di, 0, sizeof(struct hci_dev_info));
di->dev_id = dev_id;
ret = ioctl(dd, HCIGETDEVINFO, (void *) di);
err = errno;
close(dd);
errno = err;
return ret;
}
int hci_devba(int dev_id, bdaddr_t *bdaddr)
{
struct hci_dev_info di;
memset(&di, 0, sizeof(di));
if (hci_devinfo(dev_id, &di))
return -1;
if (!hci_test_bit(HCI_UP, &di.flags)) {
errno = ENETDOWN;
return -1;
}
bacpy(bdaddr, &di.bdaddr);
return 0;
}
int hci_inquiry(int dev_id, int len, int nrsp, const uint8_t *lap,
inquiry_info **ii, long flags)
{
struct hci_inquiry_req *ir;
uint8_t num_rsp = nrsp;
void *buf;
int dd, size, err, ret = -1;
if (nrsp <= 0) {
num_rsp = 0;
nrsp = 255;
}
if (dev_id < 0) {
dev_id = hci_get_route(NULL);
if (dev_id < 0) {
errno = ENODEV;
return -1;
}
}
dd = socket(AF_BLUETOOTH, SOCK_RAW | SOCK_CLOEXEC, BTPROTO_HCI);
if (dd < 0)
return dd;
buf = malloc(sizeof(*ir) + (sizeof(inquiry_info) * (nrsp)));
if (!buf)
goto done;
ir = buf;
ir->dev_id = dev_id;
ir->num_rsp = num_rsp;
ir->length = len;
ir->flags = flags;
if (lap) {
memcpy(ir->lap, lap, 3);
} else {
ir->lap[0] = 0x33;
ir->lap[1] = 0x8b;
ir->lap[2] = 0x9e;
}
ret = ioctl(dd, HCIINQUIRY, (unsigned long) buf);
if (ret < 0)
goto free;
size = sizeof(inquiry_info) * ir->num_rsp;
if (!*ii)
*ii = malloc(size);
if (*ii) {
memcpy((void *) *ii, buf + sizeof(*ir), size);
ret = ir->num_rsp;
} else
ret = -1;
free:
free(buf);
done:
err = errno;
close(dd);
errno = err;
return ret;
}
/* Open HCI device.
* Returns device descriptor (dd). */
int hci_open_dev(int dev_id)
{
struct sockaddr_hci a;
int dd, err;
/* Check for valid device id */
if (dev_id < 0) {
errno = ENODEV;
return -1;
}
/* Create HCI socket */
dd = socket(AF_BLUETOOTH, SOCK_RAW | SOCK_CLOEXEC, BTPROTO_HCI);
if (dd < 0)
return dd;
/* Bind socket to the HCI device */
memset(&a, 0, sizeof(a));
a.hci_family = AF_BLUETOOTH;
a.hci_dev = dev_id;
if (bind(dd, (struct sockaddr *) &a, sizeof(a)) < 0)
goto failed;
return dd;
failed:
err = errno;
close(dd);
errno = err;
return -1;
}
int hci_close_dev(int dd)
{
return close(dd);
}
/* HCI functions that require open device
* dd - Device descriptor returned by hci_open_dev. */
int hci_send_cmd(int dd, uint16_t ogf, uint16_t ocf, uint8_t plen, void *param)
{
uint8_t type = HCI_COMMAND_PKT;
hci_command_hdr hc;
struct iovec iv[3];
int ivn;
hc.opcode = htobs(cmd_opcode_pack(ogf, ocf));
hc.plen= plen;
iv[0].iov_base = &type;
iv[0].iov_len = 1;
iv[1].iov_base = &hc;
iv[1].iov_len = HCI_COMMAND_HDR_SIZE;
ivn = 2;
if (plen) {
iv[2].iov_base = param;
iv[2].iov_len = plen;
ivn = 3;
}
while (writev(dd, iv, ivn) < 0) {
if (errno == EAGAIN || errno == EINTR)
continue;
return -1;
}
return 0;
}
int hci_send_req(int dd, struct hci_request *r, int to)
{
unsigned char buf[HCI_MAX_EVENT_SIZE], *ptr;
uint16_t opcode = htobs(cmd_opcode_pack(r->ogf, r->ocf));
struct hci_filter nf, of;
socklen_t olen;
hci_event_hdr *hdr;
int err, try;
olen = sizeof(of);
if (getsockopt(dd, SOL_HCI, HCI_FILTER, &of, &olen) < 0)
return -1;
hci_filter_clear(&nf);
hci_filter_set_ptype(HCI_EVENT_PKT, &nf);
hci_filter_set_event(EVT_CMD_STATUS, &nf);
hci_filter_set_event(EVT_CMD_COMPLETE, &nf);
hci_filter_set_event(EVT_LE_META_EVENT, &nf);
hci_filter_set_event(r->event, &nf);
hci_filter_set_opcode(opcode, &nf);
if (setsockopt(dd, SOL_HCI, HCI_FILTER, &nf, sizeof(nf)) < 0)
return -1;
if (hci_send_cmd(dd, r->ogf, r->ocf, r->clen, r->cparam) < 0)
goto failed;
try = 10;
while (try--) {
evt_cmd_complete *cc;
evt_cmd_status *cs;
evt_remote_name_req_complete *rn;
evt_le_meta_event *me;
remote_name_req_cp *cp;
int len;
if (to) {
struct pollfd p;
int n;
p.fd = dd; p.events = POLLIN;
while ((n = poll(&p, 1, to)) < 0) {
if (errno == EAGAIN || errno == EINTR)
continue;
goto failed;
}
if (!n) {
errno = ETIMEDOUT;
goto failed;
}
to -= 10;
if (to < 0)
to = 0;
}
while ((len = read(dd, buf, sizeof(buf))) < 0) {
if (errno == EAGAIN || errno == EINTR)
continue;
goto failed;
}
hdr = (void *) (buf + 1);
ptr = buf + (1 + HCI_EVENT_HDR_SIZE);
len -= (1 + HCI_EVENT_HDR_SIZE);
switch (hdr->evt) {
case EVT_CMD_STATUS:
cs = (void *) ptr;
if (cs->opcode != opcode)
continue;
if (r->event != EVT_CMD_STATUS) {
if (cs->status) {
errno = EIO;
goto failed;
}
break;
}
r->rlen = MIN(len, r->rlen);
memcpy(r->rparam, ptr, r->rlen);
goto done;
case EVT_CMD_COMPLETE:
cc = (void *) ptr;
if (cc->opcode != opcode)
continue;
ptr += EVT_CMD_COMPLETE_SIZE;
len -= EVT_CMD_COMPLETE_SIZE;
r->rlen = MIN(len, r->rlen);
memcpy(r->rparam, ptr, r->rlen);
goto done;
case EVT_REMOTE_NAME_REQ_COMPLETE:
if (hdr->evt != r->event)
break;
rn = (void *) ptr;
cp = r->cparam;
if (bacmp(&rn->bdaddr, &cp->bdaddr))
continue;
r->rlen = MIN(len, r->rlen);
memcpy(r->rparam, ptr, r->rlen);
goto done;
case EVT_LE_META_EVENT:
me = (void *) ptr;
if (me->subevent != r->event)
continue;
len -= 1;
r->rlen = MIN(len, r->rlen);
memcpy(r->rparam, me->data, r->rlen);
goto done;
default:
if (hdr->evt != r->event)
break;
r->rlen = MIN(len, r->rlen);
memcpy(r->rparam, ptr, r->rlen);
goto done;
}
}
errno = ETIMEDOUT;
failed:
err = errno;
setsockopt(dd, SOL_HCI, HCI_FILTER, &of, sizeof(of));
errno = err;
return -1;
done:
setsockopt(dd, SOL_HCI, HCI_FILTER, &of, sizeof(of));
return 0;
}
int hci_create_connection(int dd, const bdaddr_t *bdaddr, uint16_t ptype,
uint16_t clkoffset, uint8_t rswitch,
uint16_t *handle, int to)
{
evt_conn_complete rp;
create_conn_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, bdaddr);
cp.pkt_type = ptype;
cp.pscan_rep_mode = 0x02;
cp.clock_offset = clkoffset;
cp.role_switch = rswitch;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_CREATE_CONN;
rq.event = EVT_CONN_COMPLETE;
rq.cparam = &cp;
rq.clen = CREATE_CONN_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_CONN_COMPLETE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*handle = rp.handle;
return 0;
}
int hci_disconnect(int dd, uint16_t handle, uint8_t reason, int to)
{
evt_disconn_complete rp;
disconnect_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.handle = handle;
cp.reason = reason;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_DISCONNECT;
rq.event = EVT_DISCONN_COMPLETE;
rq.cparam = &cp;
rq.clen = DISCONNECT_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_DISCONN_COMPLETE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_le_add_white_list(int dd, const bdaddr_t *bdaddr, uint8_t type, int to)
{
struct hci_request rq;
le_add_device_to_white_list_cp cp;
uint8_t status;
memset(&cp, 0, sizeof(cp));
cp.bdaddr_type = type;
bacpy(&cp.bdaddr, bdaddr);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_ADD_DEVICE_TO_WHITE_LIST;
rq.cparam = &cp;
rq.clen = LE_ADD_DEVICE_TO_WHITE_LIST_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_le_rm_white_list(int dd, const bdaddr_t *bdaddr, uint8_t type, int to)
{
struct hci_request rq;
le_remove_device_from_white_list_cp cp;
uint8_t status;
memset(&cp, 0, sizeof(cp));
cp.bdaddr_type = type;
bacpy(&cp.bdaddr, bdaddr);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_REMOVE_DEVICE_FROM_WHITE_LIST;
rq.cparam = &cp;
rq.clen = LE_REMOVE_DEVICE_FROM_WHITE_LIST_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_le_read_white_list_size(int dd, uint8_t *size, int to)
{
struct hci_request rq;
le_read_white_list_size_rp rp;
memset(&rp, 0, sizeof(rp));
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_READ_WHITE_LIST_SIZE;
rq.rparam = &rp;
rq.rlen = LE_READ_WHITE_LIST_SIZE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
if (size)
*size = rp.size;
return 0;
}
int hci_le_clear_white_list(int dd, int to)
{
struct hci_request rq;
uint8_t status;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_CLEAR_WHITE_LIST;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_le_add_resolving_list(int dd, const bdaddr_t *bdaddr, uint8_t type,
uint8_t *peer_irk, uint8_t *local_irk, int to)
{
struct hci_request rq;
le_add_device_to_resolv_list_cp cp;
uint8_t status;
memset(&cp, 0, sizeof(cp));
cp.bdaddr_type = type;
bacpy(&cp.bdaddr, bdaddr);
if (peer_irk)
memcpy(cp.peer_irk, peer_irk, 16);
if (local_irk)
memcpy(cp.local_irk, local_irk, 16);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_ADD_DEVICE_TO_RESOLV_LIST;
rq.cparam = &cp;
rq.clen = LE_ADD_DEVICE_TO_RESOLV_LIST_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_le_rm_resolving_list(int dd, const bdaddr_t *bdaddr, uint8_t type, int to)
{
struct hci_request rq;
le_remove_device_from_resolv_list_cp cp;
uint8_t status;
memset(&cp, 0, sizeof(cp));
cp.bdaddr_type = type;
bacpy(&cp.bdaddr, bdaddr);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_REMOVE_DEVICE_FROM_RESOLV_LIST;
rq.cparam = &cp;
rq.clen = LE_REMOVE_DEVICE_FROM_RESOLV_LIST_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_le_clear_resolving_list(int dd, int to)
{
struct hci_request rq;
uint8_t status;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_CLEAR_RESOLV_LIST;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_le_read_resolving_list_size(int dd, uint8_t *size, int to)
{
struct hci_request rq;
le_read_resolv_list_size_rp rp;
memset(&rp, 0, sizeof(rp));
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_READ_RESOLV_LIST_SIZE;
rq.rparam = &rp;
rq.rlen = LE_READ_RESOLV_LIST_SIZE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
if (size)
*size = rp.size;
return 0;
}
int hci_le_set_address_resolution_enable(int dd, uint8_t enable, int to)
{
struct hci_request rq;
le_set_address_resolution_enable_cp cp;
uint8_t status;
memset(&cp, 0, sizeof(cp));
cp.enable = enable;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_SET_ADDRESS_RESOLUTION_ENABLE;
rq.cparam = &cp;
rq.clen = LE_SET_ADDRESS_RESOLUTION_ENABLE_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_read_local_name(int dd, int len, char *name, int to)
{
read_local_name_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_LOCAL_NAME;
rq.rparam = &rp;
rq.rlen = READ_LOCAL_NAME_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
rp.name[247] = '\0';
strncpy(name, (char *) rp.name, len);
return 0;
}
int hci_write_local_name(int dd, const char *name, int to)
{
change_local_name_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
strncpy((char *) cp.name, name, sizeof(cp.name));
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_CHANGE_LOCAL_NAME;
rq.cparam = &cp;
rq.clen = CHANGE_LOCAL_NAME_CP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
return 0;
}
int hci_read_remote_name_with_clock_offset(int dd, const bdaddr_t *bdaddr,
uint8_t pscan_rep_mode,
uint16_t clkoffset,
int len, char *name, int to)
{
evt_remote_name_req_complete rn;
remote_name_req_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, bdaddr);
cp.pscan_rep_mode = pscan_rep_mode;
cp.clock_offset = clkoffset;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_REMOTE_NAME_REQ;
rq.cparam = &cp;
rq.clen = REMOTE_NAME_REQ_CP_SIZE;
rq.event = EVT_REMOTE_NAME_REQ_COMPLETE;
rq.rparam = &rn;
rq.rlen = EVT_REMOTE_NAME_REQ_COMPLETE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rn.status) {
errno = EIO;
return -1;
}
rn.name[247] = '\0';
strncpy(name, (char *) rn.name, len);
return 0;
}
int hci_read_remote_name(int dd, const bdaddr_t *bdaddr, int len, char *name,
int to)
{
return hci_read_remote_name_with_clock_offset(dd, bdaddr, 0x02, 0x0000,
len, name, to);
}
int hci_read_remote_name_cancel(int dd, const bdaddr_t *bdaddr, int to)
{
remote_name_req_cancel_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, bdaddr);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_REMOTE_NAME_REQ_CANCEL;
rq.cparam = &cp;
rq.clen = REMOTE_NAME_REQ_CANCEL_CP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
return 0;
}
int hci_read_remote_version(int dd, uint16_t handle, struct hci_version *ver,
int to)
{
evt_read_remote_version_complete rp;
read_remote_version_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.handle = handle;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_READ_REMOTE_VERSION;
rq.event = EVT_READ_REMOTE_VERSION_COMPLETE;
rq.cparam = &cp;
rq.clen = READ_REMOTE_VERSION_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_READ_REMOTE_VERSION_COMPLETE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
ver->manufacturer = btohs(rp.manufacturer);
ver->lmp_ver = rp.lmp_ver;
ver->lmp_subver = btohs(rp.lmp_subver);
return 0;
}
int hci_read_remote_features(int dd, uint16_t handle, uint8_t *features, int to)
{
evt_read_remote_features_complete rp;
read_remote_features_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.handle = handle;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_READ_REMOTE_FEATURES;
rq.event = EVT_READ_REMOTE_FEATURES_COMPLETE;
rq.cparam = &cp;
rq.clen = READ_REMOTE_FEATURES_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_READ_REMOTE_FEATURES_COMPLETE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
if (features)
memcpy(features, rp.features, 8);
return 0;
}
int hci_read_remote_ext_features(int dd, uint16_t handle, uint8_t page,
uint8_t *max_page, uint8_t *features,
int to)
{
evt_read_remote_ext_features_complete rp;
read_remote_ext_features_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.handle = handle;
cp.page_num = page;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_READ_REMOTE_EXT_FEATURES;
rq.event = EVT_READ_REMOTE_EXT_FEATURES_COMPLETE;
rq.cparam = &cp;
rq.clen = READ_REMOTE_EXT_FEATURES_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_READ_REMOTE_EXT_FEATURES_COMPLETE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
if (max_page)
*max_page = rp.max_page_num;
if (features)
memcpy(features, rp.features, 8);
return 0;
}
int hci_read_clock_offset(int dd, uint16_t handle, uint16_t *clkoffset, int to)
{
evt_read_clock_offset_complete rp;
read_clock_offset_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.handle = handle;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_READ_CLOCK_OFFSET;
rq.event = EVT_READ_CLOCK_OFFSET_COMPLETE;
rq.cparam = &cp;
rq.clen = READ_CLOCK_OFFSET_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_READ_CLOCK_OFFSET_COMPLETE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*clkoffset = rp.clock_offset;
return 0;
}
int hci_read_local_version(int dd, struct hci_version *ver, int to)
{
read_local_version_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_INFO_PARAM;
rq.ocf = OCF_READ_LOCAL_VERSION;
rq.rparam = &rp;
rq.rlen = READ_LOCAL_VERSION_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
ver->manufacturer = btohs(rp.manufacturer);
ver->hci_ver = rp.hci_ver;
ver->hci_rev = btohs(rp.hci_rev);
ver->lmp_ver = rp.lmp_ver;
ver->lmp_subver = btohs(rp.lmp_subver);
return 0;
}
int hci_read_local_commands(int dd, uint8_t *commands, int to)
{
read_local_commands_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_INFO_PARAM;
rq.ocf = OCF_READ_LOCAL_COMMANDS;
rq.rparam = &rp;
rq.rlen = READ_LOCAL_COMMANDS_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
if (commands)
memcpy(commands, rp.commands, 64);
return 0;
}
int hci_read_local_features(int dd, uint8_t *features, int to)
{
read_local_features_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_INFO_PARAM;
rq.ocf = OCF_READ_LOCAL_FEATURES;
rq.rparam = &rp;
rq.rlen = READ_LOCAL_FEATURES_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
if (features)
memcpy(features, rp.features, 8);
return 0;
}
int hci_read_local_ext_features(int dd, uint8_t page, uint8_t *max_page,
uint8_t *features, int to)
{
read_local_ext_features_cp cp;
read_local_ext_features_rp rp;
struct hci_request rq;
cp.page_num = page;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_INFO_PARAM;
rq.ocf = OCF_READ_LOCAL_EXT_FEATURES;
rq.cparam = &cp;
rq.clen = READ_LOCAL_EXT_FEATURES_CP_SIZE;
rq.rparam = &rp;
rq.rlen = READ_LOCAL_EXT_FEATURES_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
if (max_page)
*max_page = rp.max_page_num;
if (features)
memcpy(features, rp.features, 8);
return 0;
}
int hci_read_bd_addr(int dd, bdaddr_t *bdaddr, int to)
{
read_bd_addr_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_INFO_PARAM;
rq.ocf = OCF_READ_BD_ADDR;
rq.rparam = &rp;
rq.rlen = READ_BD_ADDR_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
if (bdaddr)
bacpy(bdaddr, &rp.bdaddr);
return 0;
}
int hci_read_class_of_dev(int dd, uint8_t *cls, int to)
{
read_class_of_dev_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_CLASS_OF_DEV;
rq.rparam = &rp;
rq.rlen = READ_CLASS_OF_DEV_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
memcpy(cls, rp.dev_class, 3);
return 0;
}
int hci_write_class_of_dev(int dd, uint32_t cls, int to)
{
write_class_of_dev_cp cp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
cp.dev_class[0] = cls & 0xff;
cp.dev_class[1] = (cls >> 8) & 0xff;
cp.dev_class[2] = (cls >> 16) & 0xff;
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_WRITE_CLASS_OF_DEV;
rq.cparam = &cp;
rq.clen = WRITE_CLASS_OF_DEV_CP_SIZE;
return hci_send_req(dd, &rq, to);
}
int hci_read_voice_setting(int dd, uint16_t *vs, int to)
{
read_voice_setting_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_VOICE_SETTING;
rq.rparam = &rp;
rq.rlen = READ_VOICE_SETTING_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*vs = rp.voice_setting;
return 0;
}
int hci_write_voice_setting(int dd, uint16_t vs, int to)
{
write_voice_setting_cp cp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
cp.voice_setting = vs;
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_WRITE_VOICE_SETTING;
rq.cparam = &cp;
rq.clen = WRITE_VOICE_SETTING_CP_SIZE;
return hci_send_req(dd, &rq, to);
}
int hci_read_current_iac_lap(int dd, uint8_t *num_iac, uint8_t *lap, int to)
{
read_current_iac_lap_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_CURRENT_IAC_LAP;
rq.rparam = &rp;
rq.rlen = READ_CURRENT_IAC_LAP_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*num_iac = rp.num_current_iac;
memcpy(lap, rp.lap, rp.num_current_iac * 3);
return 0;
}
int hci_write_current_iac_lap(int dd, uint8_t num_iac, uint8_t *lap, int to)
{
write_current_iac_lap_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.num_current_iac = num_iac;
memcpy(&cp.lap, lap, num_iac * 3);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_WRITE_CURRENT_IAC_LAP;
rq.cparam = &cp;
rq.clen = num_iac * 3 + 1;
return hci_send_req(dd, &rq, to);
}
int hci_read_stored_link_key(int dd, bdaddr_t *bdaddr, uint8_t all, int to)
{
read_stored_link_key_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, bdaddr);
cp.read_all = all;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_STORED_LINK_KEY;
rq.cparam = &cp;
rq.clen = READ_STORED_LINK_KEY_CP_SIZE;
return hci_send_req(dd, &rq, to);
}
int hci_write_stored_link_key(int dd, bdaddr_t *bdaddr, uint8_t *key, int to)
{
unsigned char cp[WRITE_STORED_LINK_KEY_CP_SIZE + 6 + 16];
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp[0] = 1;
bacpy((bdaddr_t *) (cp + 1), bdaddr);
memcpy(cp + 7, key, 16);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_WRITE_STORED_LINK_KEY;
rq.cparam = &cp;
rq.clen = WRITE_STORED_LINK_KEY_CP_SIZE + 6 + 16;
return hci_send_req(dd, &rq, to);
}
int hci_delete_stored_link_key(int dd, bdaddr_t *bdaddr, uint8_t all, int to)
{
delete_stored_link_key_cp cp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, bdaddr);
cp.delete_all = all;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_DELETE_STORED_LINK_KEY;
rq.cparam = &cp;
rq.clen = DELETE_STORED_LINK_KEY_CP_SIZE;
return hci_send_req(dd, &rq, to);
}
int hci_authenticate_link(int dd, uint16_t handle, int to)
{
auth_requested_cp cp;
evt_auth_complete rp;
struct hci_request rq;
cp.handle = handle;
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_AUTH_REQUESTED;
rq.event = EVT_AUTH_COMPLETE;
rq.cparam = &cp;
rq.clen = AUTH_REQUESTED_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_AUTH_COMPLETE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_encrypt_link(int dd, uint16_t handle, uint8_t encrypt, int to)
{
set_conn_encrypt_cp cp;
evt_encrypt_change rp;
struct hci_request rq;
cp.handle = handle;
cp.encrypt = encrypt;
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_SET_CONN_ENCRYPT;
rq.event = EVT_ENCRYPT_CHANGE;
rq.cparam = &cp;
rq.clen = SET_CONN_ENCRYPT_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_ENCRYPT_CHANGE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_change_link_key(int dd, uint16_t handle, int to)
{
change_conn_link_key_cp cp;
evt_change_conn_link_key_complete rp;
struct hci_request rq;
cp.handle = handle;
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_CHANGE_CONN_LINK_KEY;
rq.event = EVT_CHANGE_CONN_LINK_KEY_COMPLETE;
rq.cparam = &cp;
rq.clen = CHANGE_CONN_LINK_KEY_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_CHANGE_CONN_LINK_KEY_COMPLETE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_switch_role(int dd, bdaddr_t *bdaddr, uint8_t role, int to)
{
switch_role_cp cp;
evt_role_change rp;
struct hci_request rq;
bacpy(&cp.bdaddr, bdaddr);
cp.role = role;
rq.ogf = OGF_LINK_POLICY;
rq.ocf = OCF_SWITCH_ROLE;
rq.cparam = &cp;
rq.clen = SWITCH_ROLE_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_ROLE_CHANGE_SIZE;
rq.event = EVT_ROLE_CHANGE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_park_mode(int dd, uint16_t handle, uint16_t max_interval,
uint16_t min_interval, int to)
{
park_mode_cp cp;
evt_mode_change rp;
struct hci_request rq;
memset(&cp, 0, sizeof (cp));
cp.handle = handle;
cp.max_interval = max_interval;
cp.min_interval = min_interval;
memset(&rq, 0, sizeof (rq));
rq.ogf = OGF_LINK_POLICY;
rq.ocf = OCF_PARK_MODE;
rq.event = EVT_MODE_CHANGE;
rq.cparam = &cp;
rq.clen = PARK_MODE_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_MODE_CHANGE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_exit_park_mode(int dd, uint16_t handle, int to)
{
exit_park_mode_cp cp;
evt_mode_change rp;
struct hci_request rq;
memset(&cp, 0, sizeof (cp));
cp.handle = handle;
memset (&rq, 0, sizeof (rq));
rq.ogf = OGF_LINK_POLICY;
rq.ocf = OCF_EXIT_PARK_MODE;
rq.event = EVT_MODE_CHANGE;
rq.cparam = &cp;
rq.clen = EXIT_PARK_MODE_CP_SIZE;
rq.rparam = &rp;
rq.rlen = EVT_MODE_CHANGE_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_read_inquiry_scan_type(int dd, uint8_t *type, int to)
{
read_inquiry_scan_type_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_INQUIRY_SCAN_TYPE;
rq.rparam = &rp;
rq.rlen = READ_INQUIRY_SCAN_TYPE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*type = rp.type;
return 0;
}
int hci_write_inquiry_scan_type(int dd, uint8_t type, int to)
{
write_inquiry_scan_type_cp cp;
write_inquiry_scan_type_rp rp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.type = type;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_WRITE_INQUIRY_SCAN_TYPE;
rq.cparam = &cp;
rq.clen = WRITE_INQUIRY_SCAN_TYPE_CP_SIZE;
rq.rparam = &rp;
rq.rlen = WRITE_INQUIRY_SCAN_TYPE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_read_page_scan_type(int dd, uint8_t *type, int to)
{
read_page_scan_type_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_PAGE_SCAN_TYPE;
rq.rparam = &rp;
rq.rlen = READ_PAGE_SCAN_TYPE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*type = rp.type;
return 0;
}
int hci_write_page_scan_type(int dd, uint8_t type, int to)
{
write_page_scan_type_cp cp;
write_page_scan_type_rp rp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.type = type;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_WRITE_PAGE_SCAN_TYPE;
rq.cparam = &cp;
rq.clen = WRITE_PAGE_SCAN_TYPE_CP_SIZE;
rq.rparam = &rp;
rq.rlen = WRITE_PAGE_SCAN_TYPE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_read_inquiry_mode(int dd, uint8_t *mode, int to)
{
read_inquiry_mode_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_INQUIRY_MODE;
rq.rparam = &rp;
rq.rlen = READ_INQUIRY_MODE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*mode = rp.mode;
return 0;
}
int hci_write_inquiry_mode(int dd, uint8_t mode, int to)
{
write_inquiry_mode_cp cp;
write_inquiry_mode_rp rp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.mode = mode;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_WRITE_INQUIRY_MODE;
rq.cparam = &cp;
rq.clen = WRITE_INQUIRY_MODE_CP_SIZE;
rq.rparam = &rp;
rq.rlen = WRITE_INQUIRY_MODE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_read_afh_mode(int dd, uint8_t *mode, int to)
{
read_afh_mode_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_AFH_MODE;
rq.rparam = &rp;
rq.rlen = READ_AFH_MODE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*mode = rp.mode;
return 0;
}
int hci_write_afh_mode(int dd, uint8_t mode, int to)
{
write_afh_mode_cp cp;
write_afh_mode_rp rp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.mode = mode;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_WRITE_AFH_MODE;
rq.cparam = &cp;
rq.clen = WRITE_AFH_MODE_CP_SIZE;
rq.rparam = &rp;
rq.rlen = WRITE_AFH_MODE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_read_ext_inquiry_response(int dd, uint8_t *fec, uint8_t *data, int to)
{
read_ext_inquiry_response_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_EXT_INQUIRY_RESPONSE;
rq.rparam = &rp;
rq.rlen = READ_EXT_INQUIRY_RESPONSE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*fec = rp.fec;
memcpy(data, rp.data, HCI_MAX_EIR_LENGTH);
return 0;
}
int hci_write_ext_inquiry_response(int dd, uint8_t fec, uint8_t *data, int to)
{
write_ext_inquiry_response_cp cp;
write_ext_inquiry_response_rp rp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.fec = fec;
memcpy(cp.data, data, HCI_MAX_EIR_LENGTH);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_WRITE_EXT_INQUIRY_RESPONSE;
rq.cparam = &cp;
rq.clen = WRITE_EXT_INQUIRY_RESPONSE_CP_SIZE;
rq.rparam = &rp;
rq.rlen = WRITE_EXT_INQUIRY_RESPONSE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_read_simple_pairing_mode(int dd, uint8_t *mode, int to)
{
read_simple_pairing_mode_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_SIMPLE_PAIRING_MODE;
rq.rparam = &rp;
rq.rlen = READ_SIMPLE_PAIRING_MODE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*mode = rp.mode;
return 0;
}
int hci_write_simple_pairing_mode(int dd, uint8_t mode, int to)
{
write_simple_pairing_mode_cp cp;
write_simple_pairing_mode_rp rp;
struct hci_request rq;
memset(&cp, 0, sizeof(cp));
cp.mode = mode;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_WRITE_SIMPLE_PAIRING_MODE;
rq.cparam = &cp;
rq.clen = WRITE_SIMPLE_PAIRING_MODE_CP_SIZE;
rq.rparam = &rp;
rq.rlen = WRITE_SIMPLE_PAIRING_MODE_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
return 0;
}
int hci_read_local_oob_data(int dd, uint8_t *hash, uint8_t *randomizer, int to)
{
read_local_oob_data_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_LOCAL_OOB_DATA;
rq.rparam = &rp;
rq.rlen = READ_LOCAL_OOB_DATA_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
memcpy(hash, rp.hash, 16);
memcpy(randomizer, rp.randomizer, 16);
return 0;
}
int hci_read_inq_response_tx_power_level(int dd, int8_t *level, int to)
{
read_inq_response_tx_power_level_rp rp;
struct hci_request rq;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_INQ_RESPONSE_TX_POWER_LEVEL;
rq.rparam = &rp;
rq.rlen = READ_INQ_RESPONSE_TX_POWER_LEVEL_RP_SIZE;
if (hci_send_req(dd, &rq, to) < 0)
return -1;
if (rp.status) {
errno = EIO;
return -1;
}
*level = rp.level;
return 0;
}
int hci_read_inquiry_transmit_power_level(int dd, int8_t *level, int to)
{
return hci_read_inq_response_tx_power_level(dd, level, to);
}
int hci_write_inquiry_transmit_power_level(int dd, int8_t level, int to)