blob: a21e6ccc21140691d3bc03d473e4e630cd640d0f [file] [log] [blame]
#ifndef __BACKPORT_SKBUFF_H
#define __BACKPORT_SKBUFF_H
#include_next <linux/skbuff.h>
#include <linux/version.h>
#include <generated/utsrelease.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0)) && \
(RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(6,4)) && \
!(defined(CONFIG_SUSE_KERNEL) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3,0,0)))
#define skb_add_rx_frag(skb, i, page, off, size, truesize) \
skb_add_rx_frag(skb, i, page, off, size)
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,3,0)
#define __pskb_copy LINUX_BACKPORT(__pskb_copy)
extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
int headroom, gfp_t gfp_mask);
#define skb_complete_wifi_ack LINUX_BACKPORT(skb_complete_wifi_ack)
static inline void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
{
WARN_ON(1);
}
/* define to 0 so checks for it are always false */
#define SKBTX_WIFI_STATUS 0
#elif LINUX_VERSION_CODE < KERNEL_VERSION(3,18,0)
#define skb_complete_wifi_ack LINUX_BACKPORT(skb_complete_wifi_ack)
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,2,0)
#include <linux/dma-mapping.h>
/* mask skb_frag_page as RHEL6 backports this */
#define skb_frag_page LINUX_BACKPORT(skb_frag_page)
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
return frag->page;
}
#define skb_frag_size LINUX_BACKPORT(skb_frag_size)
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
return frag->size;
}
/* mask skb_frag_dma_map as RHEL6 backports this */
#define skb_frag_dma_map LINUX_BACKPORT(skb_frag_dma_map)
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
const skb_frag_t *frag,
size_t offset, size_t size,
enum dma_data_direction dir)
{
return dma_map_page(dev, skb_frag_page(frag),
frag->page_offset + offset, size, dir);
}
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,1,0)
/* mask __netdev_alloc_skb_ip_align as RHEL6 backports this */
#define __netdev_alloc_skb_ip_align(a,b,c) compat__netdev_alloc_skb_ip_align(a,b,c)
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
unsigned int length, gfp_t gfp)
{
struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
if (NET_IP_ALIGN && skb)
skb_reserve(skb, NET_IP_ALIGN);
return skb;
}
#endif
#ifndef skb_walk_frags
#define skb_walk_frags(skb, iter) \
for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,2,0)
#define skb_frag_size_sub LINUX_BACKPORT(skb_frag_size_sub)
static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
frag->size -= delta;
}
/**
* skb_frag_address - gets the address of the data contained in a paged fragment
* @frag: the paged fragment buffer
*
* Returns the address of the data within @frag. The page must already
* be mapped.
*/
#define skb_frag_address LINUX_BACKPORT(skb_frag_address)
static inline void *skb_frag_address(const skb_frag_t *frag)
{
return page_address(skb_frag_page(frag)) + frag->page_offset;
}
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(3,2,0) */
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,9,0)
#ifndef NETDEV_FRAG_PAGE_MAX_ORDER
#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
#endif
#ifndef NETDEV_FRAG_PAGE_MAX_SIZE
#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
#endif
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(3,9,0) */
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,9,0)
#define skb_unclone LINUX_BACKPORT(skb_unclone)
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
might_sleep_if(pri & __GFP_WAIT);
if (skb_cloned(skb))
return pskb_expand_head(skb, 0, 0, pri);
return 0;
}
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,2,0)
#define skb_frag_address_safe LINUX_BACKPORT(skb_frag_address_safe)
/**
* skb_frag_address_safe - gets the address of the data contained in a paged fragment
* @frag: the paged fragment buffer
*
* Returns the address of the data within @frag. Checks that the page
* is mapped and returns %NULL otherwise.
*/
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
void *ptr = page_address(skb_frag_page(frag));
if (unlikely(!ptr))
return NULL;
return ptr + frag->page_offset;
}
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(3,2,0) */
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,14,0) && \
RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7,0) && \
!(LINUX_VERSION_CODE == KERNEL_VERSION(3,13,11) && UTS_UBUNTU_RELEASE_ABI > 30)
/*
* Packet hash types specify the type of hash in skb_set_hash.
*
* Hash types refer to the protocol layer addresses which are used to
* construct a packet's hash. The hashes are used to differentiate or identify
* flows of the protocol layer for the hash type. Hash types are either
* layer-2 (L2), layer-3 (L3), or layer-4 (L4).
*
* Properties of hashes:
*
* 1) Two packets in different flows have different hash values
* 2) Two packets in the same flow should have the same hash value
*
* A hash at a higher layer is considered to be more specific. A driver should
* set the most specific hash possible.
*
* A driver cannot indicate a more specific hash than the layer at which a hash
* was computed. For instance an L3 hash cannot be set as an L4 hash.
*
* A driver may indicate a hash level which is less specific than the
* actual layer the hash was computed on. For instance, a hash computed
* at L4 may be considered an L3 hash. This should only be done if the
* driver can't unambiguously determine that the HW computed the hash at
* the higher layer. Note that the "should" in the second property above
* permits this.
*/
enum pkt_hash_types {
PKT_HASH_TYPE_NONE, /* Undefined type */
PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
};
static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,2,0) /* 4031ae6edb */
skb->l4_rxhash = (type == PKT_HASH_TYPE_L4);
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,4,0) /* bdeab99191 */
skb->rxhash = hash;
#endif
}
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(3,14,0) */
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,16,0)
#define __pskb_copy_fclone LINUX_BACKPORT(__pskb_copy_fclone)
static inline struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb,
int headroom, gfp_t gfp_mask,
bool fclone)
{
return __pskb_copy(skb, headroom, gfp_mask);
}
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,18,0)
#define skb_clone_sk LINUX_BACKPORT(skb_clone_sk)
struct sk_buff *skb_clone_sk(struct sk_buff *skb);
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,19,0)
/**
* __dev_alloc_pages - allocate page for network Rx
* @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
* @order: size of the allocation
*
* Allocate a new page.
*
* %NULL is returned if there is no free memory.
*/
#define __dev_alloc_pages LINUX_BACKPORT(__dev_alloc_pages)
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
unsigned int order)
{
/* This piece of code contains several assumptions.
* 1. This is for device Rx, therefor a cold page is preferred.
* 2. The expectation is the user wants a compound page.
* 3. If requesting a order 0 page it will not be compound
* due to the check to see if order has a value in prep_new_page
* 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
* code in gfp_to_alloc_flags that should be enforcing this.
*/
gfp_mask |= __GFP_COLD | __GFP_COMP;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,6,0)
gfp_mask |= __GFP_MEMALLOC;
#endif
return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
}
#define dev_alloc_pages LINUX_BACKPORT(dev_alloc_pages)
static inline struct page *dev_alloc_pages(unsigned int order)
{
return __dev_alloc_pages(GFP_ATOMIC, order);
}
/**
* __dev_alloc_page - allocate a page for network Rx
* @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
*
* Allocate a new page.
*
* %NULL is returned if there is no free memory.
*/
#define __dev_alloc_page LINUX_BACKPORT(__dev_alloc_page)
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
{
return __dev_alloc_pages(gfp_mask, 0);
}
#define dev_alloc_page LINUX_BACKPORT(dev_alloc_page)
static inline struct page *dev_alloc_page(void)
{
return __dev_alloc_page(GFP_ATOMIC);
}
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(3,19,0) */
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,19,0)
#define skb_copy_datagram_msg LINUX_BACKPORT(skb_copy_datagram_msg)
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
struct msghdr *msg, int size)
{
return skb_copy_datagram_iovec(from, offset, msg->msg_iov, size);
}
#define memcpy_from_msg LINUX_BACKPORT(memcpy_from_msg)
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
{
return memcpy_fromiovec(data, msg->msg_iov, len);
}
/**
* skb_put_padto - increase size and pad an skbuff up to a minimal size
* @skb: buffer to pad
* @len: minimal length
*
* Pads up a buffer to ensure the trailing bytes exist and are
* blanked. If the buffer already contains sufficient data it
* is untouched. Otherwise it is extended. Returns zero on
* success. The skb is freed on error.
*/
#define skb_put_padto LINUX_BACKPORT(skb_put_padto)
static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
{
unsigned int size = skb->len;
if (unlikely(size < len)) {
len -= size;
if (skb_pad(skb, len))
return -ENOMEM;
__skb_put(skb, len);
}
return 0;
}
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(3,19,0) */
#endif /* __BACKPORT_SKBUFF_H */