blob: 7fa40d7ccddbce0b38d247ec91c790fcc93faf2d [file] [log] [blame]
/*
* Copyright (c) 2010-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/export.h>
#include "hw.h"
#include "ar9003_phy.h"
#define AR9300_OFDM_RATES 8
#define AR9300_HT_SS_RATES 8
#define AR9300_HT_DS_RATES 8
#define AR9300_HT_TS_RATES 8
#define AR9300_11NA_OFDM_SHIFT 0
#define AR9300_11NA_HT_SS_SHIFT 8
#define AR9300_11NA_HT_DS_SHIFT 16
#define AR9300_11NA_HT_TS_SHIFT 24
#define AR9300_11NG_OFDM_SHIFT 4
#define AR9300_11NG_HT_SS_SHIFT 12
#define AR9300_11NG_HT_DS_SHIFT 20
#define AR9300_11NG_HT_TS_SHIFT 28
static const int firstep_table[] =
/* level: 0 1 2 3 4 5 6 7 8 */
{ -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
static const int cycpwrThr1_table[] =
/* level: 0 1 2 3 4 5 6 7 8 */
{ -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
/*
* register values to turn OFDM weak signal detection OFF
*/
static const int m1ThreshLow_off = 127;
static const int m2ThreshLow_off = 127;
static const int m1Thresh_off = 127;
static const int m2Thresh_off = 127;
static const int m2CountThr_off = 31;
static const int m2CountThrLow_off = 63;
static const int m1ThreshLowExt_off = 127;
static const int m2ThreshLowExt_off = 127;
static const int m1ThreshExt_off = 127;
static const int m2ThreshExt_off = 127;
static const u8 ofdm2pwr[] = {
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_36,
ALL_TARGET_LEGACY_48,
ALL_TARGET_LEGACY_54
};
static const u8 mcs2pwr_ht20[] = {
ALL_TARGET_HT20_0_8_16,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_4,
ALL_TARGET_HT20_5,
ALL_TARGET_HT20_6,
ALL_TARGET_HT20_7,
ALL_TARGET_HT20_0_8_16,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_12,
ALL_TARGET_HT20_13,
ALL_TARGET_HT20_14,
ALL_TARGET_HT20_15,
ALL_TARGET_HT20_0_8_16,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_20,
ALL_TARGET_HT20_21,
ALL_TARGET_HT20_22,
ALL_TARGET_HT20_23
};
static const u8 mcs2pwr_ht40[] = {
ALL_TARGET_HT40_0_8_16,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_4,
ALL_TARGET_HT40_5,
ALL_TARGET_HT40_6,
ALL_TARGET_HT40_7,
ALL_TARGET_HT40_0_8_16,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_12,
ALL_TARGET_HT40_13,
ALL_TARGET_HT40_14,
ALL_TARGET_HT40_15,
ALL_TARGET_HT40_0_8_16,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_20,
ALL_TARGET_HT40_21,
ALL_TARGET_HT40_22,
ALL_TARGET_HT40_23,
};
/**
* ar9003_hw_set_channel - set channel on single-chip device
* @ah: atheros hardware structure
* @chan:
*
* This is the function to change channel on single-chip devices, that is
* for AR9300 family of chipsets.
*
* This function takes the channel value in MHz and sets
* hardware channel value. Assumes writes have been enabled to analog bus.
*
* Actual Expression,
*
* For 2GHz channel,
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*
* For 5GHz channel,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
* (freq_ref = 40MHz/(24>>amodeRefSel))
*
* For 5GHz channels which are 5MHz spaced,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*/
static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
{
u16 bMode, fracMode = 0, aModeRefSel = 0;
u32 freq, chan_frac, div, channelSel = 0, reg32 = 0;
struct chan_centers centers;
int loadSynthChannel;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
if (freq < 4800) { /* 2 GHz, fractional mode */
if (AR_SREV_9330(ah)) {
if (ah->is_clk_25mhz)
div = 75;
else
div = 120;
channelSel = (freq * 4) / div;
chan_frac = (((freq * 4) % div) * 0x20000) / div;
channelSel = (channelSel << 17) | chan_frac;
} else if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
/*
* freq_ref = 40 / (refdiva >> amoderefsel);
* where refdiva=1 and amoderefsel=0
* ndiv = ((chan_mhz * 4) / 3) / freq_ref;
* chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
*/
channelSel = (freq * 4) / 120;
chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
channelSel = (channelSel << 17) | chan_frac;
} else if (AR_SREV_9340(ah)) {
if (ah->is_clk_25mhz) {
channelSel = (freq * 2) / 75;
chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
channelSel = (channelSel << 17) | chan_frac;
} else {
channelSel = CHANSEL_2G(freq) >> 1;
}
} else if (AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
AR_SREV_9561(ah)) {
if (ah->is_clk_25mhz)
div = 75;
else
div = 120;
channelSel = (freq * 4) / div;
chan_frac = (((freq * 4) % div) * 0x20000) / div;
channelSel = (channelSel << 17) | chan_frac;
} else {
channelSel = CHANSEL_2G(freq);
}
/* Set to 2G mode */
bMode = 1;
} else {
if ((AR_SREV_9340(ah) || AR_SREV_9550(ah) ||
AR_SREV_9531(ah) || AR_SREV_9561(ah)) &&
ah->is_clk_25mhz) {
channelSel = freq / 75;
chan_frac = ((freq % 75) * 0x20000) / 75;
channelSel = (channelSel << 17) | chan_frac;
} else {
channelSel = CHANSEL_5G(freq);
/* Doubler is ON, so, divide channelSel by 2. */
channelSel >>= 1;
}
/* Set to 5G mode */
bMode = 0;
}
/* Enable fractional mode for all channels */
fracMode = 1;
aModeRefSel = 0;
loadSynthChannel = 0;
reg32 = (bMode << 29);
REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
/* Enable Long shift Select for Synthesizer */
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
/* Program Synth. setting */
reg32 = (channelSel << 2) | (fracMode << 30) |
(aModeRefSel << 28) | (loadSynthChannel << 31);
REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
/* Toggle Load Synth channel bit */
loadSynthChannel = 1;
reg32 = (channelSel << 2) | (fracMode << 30) |
(aModeRefSel << 28) | (loadSynthChannel << 31);
REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
ah->curchan = chan;
return 0;
}
/**
* ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
* @ah: atheros hardware structure
* @chan:
*
* For single-chip solutions. Converts to baseband spur frequency given the
* input channel frequency and compute register settings below.
*
* Spur mitigation for MRC CCK
*/
static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
struct ath9k_channel *chan)
{
static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
int cur_bb_spur, negative = 0, cck_spur_freq;
int i;
int range, max_spur_cnts, synth_freq;
u8 *spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah, IS_CHAN_2GHZ(chan));
/*
* Need to verify range +/- 10 MHz in control channel, otherwise spur
* is out-of-band and can be ignored.
*/
if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
AR_SREV_9550(ah) || AR_SREV_9561(ah)) {
if (spur_fbin_ptr[0] == 0) /* No spur */
return;
max_spur_cnts = 5;
if (IS_CHAN_HT40(chan)) {
range = 19;
if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
AR_PHY_GC_DYN2040_PRI_CH) == 0)
synth_freq = chan->channel + 10;
else
synth_freq = chan->channel - 10;
} else {
range = 10;
synth_freq = chan->channel;
}
} else {
range = AR_SREV_9462(ah) ? 5 : 10;
max_spur_cnts = 4;
synth_freq = chan->channel;
}
for (i = 0; i < max_spur_cnts; i++) {
if (AR_SREV_9462(ah) && (i == 0 || i == 3))
continue;
negative = 0;
if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
AR_SREV_9550(ah) || AR_SREV_9561(ah))
cur_bb_spur = ath9k_hw_fbin2freq(spur_fbin_ptr[i],
IS_CHAN_2GHZ(chan));
else
cur_bb_spur = spur_freq[i];
cur_bb_spur -= synth_freq;
if (cur_bb_spur < 0) {
negative = 1;
cur_bb_spur = -cur_bb_spur;
}
if (cur_bb_spur < range) {
cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
if (negative == 1)
cck_spur_freq = -cck_spur_freq;
cck_spur_freq = cck_spur_freq & 0xfffff;
REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
0x2);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
0x1);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
cck_spur_freq);
return;
}
}
REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
}
/* Clean all spur register fields */
static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
{
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
}
static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
int freq_offset,
int spur_freq_sd,
int spur_delta_phase,
int spur_subchannel_sd,
int range,
int synth_freq)
{
int mask_index = 0;
/* OFDM Spur mitigation */
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
if (!(AR_SREV_9565(ah) && range == 10 && synth_freq == 2437))
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
if (!AR_SREV_9340(ah) &&
REG_READ_FIELD(ah, AR_PHY_MODE,
AR_PHY_MODE_DYNAMIC) == 0x1)
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
mask_index = (freq_offset << 4) / 5;
if (mask_index < 0)
mask_index = mask_index - 1;
mask_index = mask_index & 0x7f;
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
}
static void ar9003_hw_spur_ofdm_9565(struct ath_hw *ah,
int freq_offset)
{
int mask_index = 0;
mask_index = (freq_offset << 4) / 5;
if (mask_index < 0)
mask_index = mask_index - 1;
mask_index = mask_index & 0x7f;
REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_B,
mask_index);
/* A == B */
REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_B,
AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A,
mask_index);
REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_B,
mask_index);
REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_B, 0xe);
REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_B, 0xe);
/* A == B */
REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_B,
AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
}
static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
struct ath9k_channel *chan,
int freq_offset,
int range,
int synth_freq)
{
int spur_freq_sd = 0;
int spur_subchannel_sd = 0;
int spur_delta_phase = 0;
if (IS_CHAN_HT40(chan)) {
if (freq_offset < 0) {
if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
spur_subchannel_sd = 1;
else
spur_subchannel_sd = 0;
spur_freq_sd = ((freq_offset + 10) << 9) / 11;
} else {
if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
spur_subchannel_sd = 0;
else
spur_subchannel_sd = 1;
spur_freq_sd = ((freq_offset - 10) << 9) / 11;
}
spur_delta_phase = (freq_offset << 17) / 5;
} else {
spur_subchannel_sd = 0;
spur_freq_sd = (freq_offset << 9) /11;
spur_delta_phase = (freq_offset << 18) / 5;
}
spur_freq_sd = spur_freq_sd & 0x3ff;
spur_delta_phase = spur_delta_phase & 0xfffff;
ar9003_hw_spur_ofdm(ah,
freq_offset,
spur_freq_sd,
spur_delta_phase,
spur_subchannel_sd,
range, synth_freq);
}
/* Spur mitigation for OFDM */
static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int synth_freq;
int range = 10;
int freq_offset = 0;
int mode;
u8* spurChansPtr;
unsigned int i;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (IS_CHAN_5GHZ(chan)) {
spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
mode = 0;
}
else {
spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
mode = 1;
}
if (spurChansPtr[0] == 0)
return; /* No spur in the mode */
if (IS_CHAN_HT40(chan)) {
range = 19;
if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
synth_freq = chan->channel - 10;
else
synth_freq = chan->channel + 10;
} else {
range = 10;
synth_freq = chan->channel;
}
ar9003_hw_spur_ofdm_clear(ah);
for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) {
freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i], mode);
freq_offset -= synth_freq;
if (abs(freq_offset) < range) {
ar9003_hw_spur_ofdm_work(ah, chan, freq_offset,
range, synth_freq);
if (AR_SREV_9565(ah) && (i < 4)) {
freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i + 1],
mode);
freq_offset -= synth_freq;
if (abs(freq_offset) < range)
ar9003_hw_spur_ofdm_9565(ah, freq_offset);
}
break;
}
}
}
static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
struct ath9k_channel *chan)
{
if (!AR_SREV_9565(ah))
ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
ar9003_hw_spur_mitigate_ofdm(ah, chan);
}
static u32 ar9003_hw_compute_pll_control_soc(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 pll;
pll = SM(0x5, AR_RTC_9300_SOC_PLL_REFDIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9300_SOC_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9300_SOC_PLL_CLKSEL);
pll |= SM(0x2c, AR_RTC_9300_SOC_PLL_DIV_INT);
return pll;
}
static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 pll;
pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
return pll;
}
static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 phymode;
u32 enableDacFifo = 0;
enableDacFifo =
(REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
/* Enable 11n HT, 20 MHz */
phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
if (!AR_SREV_9561(ah))
phymode |= AR_PHY_GC_SINGLE_HT_LTF1;
/* Configure baseband for dynamic 20/40 operation */
if (IS_CHAN_HT40(chan)) {
phymode |= AR_PHY_GC_DYN2040_EN;
/* Configure control (primary) channel at +-10MHz */
if (IS_CHAN_HT40PLUS(chan))
phymode |= AR_PHY_GC_DYN2040_PRI_CH;
}
/* make sure we preserve INI settings */
phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
/* turn off Green Field detection for STA for now */
phymode &= ~AR_PHY_GC_GF_DETECT_EN;
REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
/* Configure MAC for 20/40 operation */
ath9k_hw_set11nmac2040(ah, chan);
/* global transmit timeout (25 TUs default)*/
REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
/* carrier sense timeout */
REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
}
static void ar9003_hw_init_bb(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 synthDelay;
/*
* Wait for the frequency synth to settle (synth goes on
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
/* Activate the PHY (includes baseband activate + synthesizer on) */
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
ath9k_hw_synth_delay(ah, chan, synthDelay);
}
void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
{
if (ah->caps.tx_chainmask == 5 || ah->caps.rx_chainmask == 5)
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
tx = 3;
REG_WRITE(ah, AR_SELFGEN_MASK, tx);
}
/*
* Override INI values with chip specific configuration.
*/
static void ar9003_hw_override_ini(struct ath_hw *ah)
{
u32 val;
/*
* Set the RX_ABORT and RX_DIS and clear it only after
* RXE is set for MAC. This prevents frames with
* corrupted descriptor status.
*/
REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
/*
* For AR9280 and above, there is a new feature that allows
* Multicast search based on both MAC Address and Key ID. By default,
* this feature is enabled. But since the driver is not using this
* feature, we switch it off; otherwise multicast search based on
* MAC addr only will fail.
*/
val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
val |= AR_AGG_WEP_ENABLE_FIX |
AR_AGG_WEP_ENABLE |
AR_PCU_MISC_MODE2_CFP_IGNORE;
REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
REG_WRITE(ah, AR_GLB_SWREG_DISCONT_MODE,
AR_GLB_SWREG_DISCONT_EN_BT_WLAN);
if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0,
AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL))
ah->enabled_cals |= TX_IQ_CAL;
else
ah->enabled_cals &= ~TX_IQ_CAL;
}
if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE)
ah->enabled_cals |= TX_CL_CAL;
else
ah->enabled_cals &= ~TX_CL_CAL;
if (AR_SREV_9340(ah) || AR_SREV_9531(ah) || AR_SREV_9550(ah) ||
AR_SREV_9561(ah)) {
if (ah->is_clk_25mhz) {
REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
} else {
REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
}
udelay(100);
}
}
static void ar9003_hw_prog_ini(struct ath_hw *ah,
struct ar5416IniArray *iniArr,
int column)
{
unsigned int i, regWrites = 0;
/* New INI format: Array may be undefined (pre, core, post arrays) */
if (!iniArr->ia_array)
return;
/*
* New INI format: Pre, core, and post arrays for a given subsystem
* may be modal (> 2 columns) or non-modal (2 columns). Determine if
* the array is non-modal and force the column to 1.
*/
if (column >= iniArr->ia_columns)
column = 1;
for (i = 0; i < iniArr->ia_rows; i++) {
u32 reg = INI_RA(iniArr, i, 0);
u32 val = INI_RA(iniArr, i, column);
REG_WRITE(ah, reg, val);
DO_DELAY(regWrites);
}
}
static int ar9550_hw_get_modes_txgain_index(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int ret;
if (IS_CHAN_2GHZ(chan)) {
if (IS_CHAN_HT40(chan))
return 7;
else
return 8;
}
if (chan->channel <= 5350)
ret = 1;
else if ((chan->channel > 5350) && (chan->channel <= 5600))
ret = 3;
else
ret = 5;
if (IS_CHAN_HT40(chan))
ret++;
return ret;
}
static int ar9561_hw_get_modes_txgain_index(struct ath_hw *ah,
struct ath9k_channel *chan)
{
if (IS_CHAN_2GHZ(chan)) {
if (IS_CHAN_HT40(chan))
return 1;
else
return 2;
}
return 0;
}
static void ar9003_doubler_fix(struct ath_hw *ah)
{
if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9550(ah)) {
REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2,
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0);
REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2,
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0);
REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2,
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0);
udelay(200);
REG_CLR_BIT(ah, AR_PHY_65NM_CH0_RXTX2,
AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK);
REG_CLR_BIT(ah, AR_PHY_65NM_CH1_RXTX2,
AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK);
REG_CLR_BIT(ah, AR_PHY_65NM_CH2_RXTX2,
AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK);
udelay(1);
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX2,
AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1);
REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX2,
AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1);
REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX2,
AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1);
udelay(200);
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH12,
AR_PHY_65NM_CH0_SYNTH12_VREFMUL3, 0xf);
REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 0,
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S);
REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 0,
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S);
REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 0,
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S |
1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S);
}
}
static int ar9003_hw_process_ini(struct ath_hw *ah,
struct ath9k_channel *chan)
{
unsigned int regWrites = 0, i;
u32 modesIndex;
if (IS_CHAN_5GHZ(chan))
modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
else
modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
/*
* SOC, MAC, BB, RADIO initvals.
*/
for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
if (i == ATH_INI_POST && AR_SREV_9462_20_OR_LATER(ah))
ar9003_hw_prog_ini(ah,
&ah->ini_radio_post_sys2ant,
modesIndex);
}
ar9003_doubler_fix(ah);
/*
* RXGAIN initvals.
*/
REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
if (AR_SREV_9462_20_OR_LATER(ah)) {
/*
* CUS217 mix LNA mode.
*/
if (ar9003_hw_get_rx_gain_idx(ah) == 2) {
REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_core,
1, regWrites);
REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_postamble,
modesIndex, regWrites);
}
/*
* 5G-XLNA
*/
if ((ar9003_hw_get_rx_gain_idx(ah) == 2) ||
(ar9003_hw_get_rx_gain_idx(ah) == 3)) {
REG_WRITE_ARRAY(&ah->ini_modes_rxgain_xlna,
modesIndex, regWrites);
}
}
if (AR_SREV_9550(ah) || AR_SREV_9561(ah))
REG_WRITE_ARRAY(&ah->ini_modes_rx_gain_bounds, modesIndex,
regWrites);
if (AR_SREV_9561(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0))
REG_WRITE_ARRAY(&ah->ini_modes_rxgain_xlna,
modesIndex, regWrites);
/*
* TXGAIN initvals.
*/
if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
int modes_txgain_index = 1;
if (AR_SREV_9550(ah))
modes_txgain_index = ar9550_hw_get_modes_txgain_index(ah, chan);
if (AR_SREV_9561(ah))
modes_txgain_index =
ar9561_hw_get_modes_txgain_index(ah, chan);
if (modes_txgain_index < 0)
return -EINVAL;
REG_WRITE_ARRAY(&ah->iniModesTxGain, modes_txgain_index,
regWrites);
} else {
REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
}
/*
* For 5GHz channels requiring Fast Clock, apply
* different modal values.
*/
if (IS_CHAN_A_FAST_CLOCK(ah, chan))
REG_WRITE_ARRAY(&ah->iniModesFastClock,
modesIndex, regWrites);
/*
* Clock frequency initvals.
*/
REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
/*
* JAPAN regulatory.
*/
if (chan->channel == 2484)
ar9003_hw_prog_ini(ah, &ah->iniCckfirJapan2484, 1);
ah->modes_index = modesIndex;
ar9003_hw_override_ini(ah);
ar9003_hw_set_channel_regs(ah, chan);
ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
ath9k_hw_apply_txpower(ah, chan, false);
return 0;
}
static void ar9003_hw_set_rfmode(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 rfMode = 0;
if (chan == NULL)
return;
if (IS_CHAN_2GHZ(chan))
rfMode |= AR_PHY_MODE_DYNAMIC;
else
rfMode |= AR_PHY_MODE_OFDM;
if (IS_CHAN_A_FAST_CLOCK(ah, chan))
rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
if (rfMode & (AR_PHY_MODE_QUARTER | AR_PHY_MODE_HALF))
REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
AR_PHY_FRAME_CTL_CF_OVERLAP_WINDOW, 3);
REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
{
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
}
static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 coef_scaled, ds_coef_exp, ds_coef_man;
u32 clockMhzScaled = 0x64000000;
struct chan_centers centers;
/*
* half and quarter rate can divide the scaled clock by 2 or 4
* scale for selected channel bandwidth
*/
if (IS_CHAN_HALF_RATE(chan))
clockMhzScaled = clockMhzScaled >> 1;
else if (IS_CHAN_QUARTER_RATE(chan))
clockMhzScaled = clockMhzScaled >> 2;
/*
* ALGO -> coef = 1e8/fcarrier*fclock/40;
* scaled coef to provide precision for this floating calculation
*/
ath9k_hw_get_channel_centers(ah, chan, &centers);
coef_scaled = clockMhzScaled / centers.synth_center;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
/*
* For Short GI,
* scaled coeff is 9/10 that of normal coeff
*/
coef_scaled = (9 * coef_scaled) / 10;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
/* for short gi */
REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
AR_PHY_SGI_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
AR_PHY_SGI_DSC_EXP, ds_coef_exp);
}
static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
{
REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
}
/*
* Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
* Read the phy active delay register. Value is in 100ns increments.
*/
static void ar9003_hw_rfbus_done(struct ath_hw *ah)
{
u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
}
static bool ar9003_hw_ani_control(struct ath_hw *ah,
enum ath9k_ani_cmd cmd, int param)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_channel *chan = ah->curchan;
struct ar5416AniState *aniState = &ah->ani;
int m1ThreshLow, m2ThreshLow;
int m1Thresh, m2Thresh;
int m2CountThr, m2CountThrLow;
int m1ThreshLowExt, m2ThreshLowExt;
int m1ThreshExt, m2ThreshExt;
s32 value, value2;
switch (cmd & ah->ani_function) {
case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
/*
* on == 1 means ofdm weak signal detection is ON
* on == 1 is the default, for less noise immunity
*
* on == 0 means ofdm weak signal detection is OFF
* on == 0 means more noise imm
*/
u32 on = param ? 1 : 0;
if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
goto skip_ws_det;
m1ThreshLow = on ?
aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
m2ThreshLow = on ?
aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
m1Thresh = on ?
aniState->iniDef.m1Thresh : m1Thresh_off;
m2Thresh = on ?
aniState->iniDef.m2Thresh : m2Thresh_off;
m2CountThr = on ?
aniState->iniDef.m2CountThr : m2CountThr_off;
m2CountThrLow = on ?
aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
m1ThreshLowExt = on ?
aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
m2ThreshLowExt = on ?
aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
m1ThreshExt = on ?
aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
m2ThreshExt = on ?
aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
m1ThreshLow);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
m2ThreshLow);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M1_THRESH,
m1Thresh);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M2_THRESH,
m2Thresh);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M2COUNT_THR,
m2CountThr);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
m2CountThrLow);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M1_THRESH_LOW,
m1ThreshLowExt);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M2_THRESH_LOW,
m2ThreshLowExt);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M1_THRESH,
m1ThreshExt);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M2_THRESH,
m2ThreshExt);
skip_ws_det:
if (on)
REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
else
REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
if (on != aniState->ofdmWeakSigDetect) {
ath_dbg(common, ANI,
"** ch %d: ofdm weak signal: %s=>%s\n",
chan->channel,
aniState->ofdmWeakSigDetect ?
"on" : "off",
on ? "on" : "off");
if (on)
ah->stats.ast_ani_ofdmon++;
else
ah->stats.ast_ani_ofdmoff++;
aniState->ofdmWeakSigDetect = on;
}
break;
}
case ATH9K_ANI_FIRSTEP_LEVEL:{
u32 level = param;
if (level >= ARRAY_SIZE(firstep_table)) {
ath_dbg(common, ANI,
"ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
level, ARRAY_SIZE(firstep_table));
return false;
}
/*
* make register setting relative to default
* from INI file & cap value
*/
value = firstep_table[level] -
firstep_table[ATH9K_ANI_FIRSTEP_LVL] +
aniState->iniDef.firstep;
if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
AR_PHY_FIND_SIG_FIRSTEP,
value);
/*
* we need to set first step low register too
* make register setting relative to default
* from INI file & cap value
*/
value2 = firstep_table[level] -
firstep_table[ATH9K_ANI_FIRSTEP_LVL] +
aniState->iniDef.firstepLow;
if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
if (level != aniState->firstepLevel) {
ath_dbg(common, ANI,
"** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
chan->channel,
aniState->firstepLevel,
level,
ATH9K_ANI_FIRSTEP_LVL,
value,
aniState->iniDef.firstep);
ath_dbg(common, ANI,
"** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
chan->channel,
aniState->firstepLevel,
level,
ATH9K_ANI_FIRSTEP_LVL,
value2,
aniState->iniDef.firstepLow);
if (level > aniState->firstepLevel)
ah->stats.ast_ani_stepup++;
else if (level < aniState->firstepLevel)
ah->stats.ast_ani_stepdown++;
aniState->firstepLevel = level;
}
break;
}
case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
u32 level = param;
if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
ath_dbg(common, ANI,
"ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
level, ARRAY_SIZE(cycpwrThr1_table));
return false;
}
/*
* make register setting relative to default
* from INI file & cap value
*/
value = cycpwrThr1_table[level] -
cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] +
aniState->iniDef.cycpwrThr1;
if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
REG_RMW_FIELD(ah, AR_PHY_TIMING5,
AR_PHY_TIMING5_CYCPWR_THR1,
value);
/*
* set AR_PHY_EXT_CCA for extension channel
* make register setting relative to default
* from INI file & cap value
*/
value2 = cycpwrThr1_table[level] -
cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] +
aniState->iniDef.cycpwrThr1Ext;
if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
AR_PHY_EXT_CYCPWR_THR1, value2);
if (level != aniState->spurImmunityLevel) {
ath_dbg(common, ANI,
"** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
chan->channel,
aniState->spurImmunityLevel,
level,
ATH9K_ANI_SPUR_IMMUNE_LVL,
value,
aniState->iniDef.cycpwrThr1);
ath_dbg(common, ANI,
"** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
chan->channel,
aniState->spurImmunityLevel,
level,
ATH9K_ANI_SPUR_IMMUNE_LVL,
value2,
aniState->iniDef.cycpwrThr1Ext);
if (level > aniState->spurImmunityLevel)
ah->stats.ast_ani_spurup++;
else if (level < aniState->spurImmunityLevel)
ah->stats.ast_ani_spurdown++;
aniState->spurImmunityLevel = level;
}
break;
}
case ATH9K_ANI_MRC_CCK:{
/*
* is_on == 1 means MRC CCK ON (default, less noise imm)
* is_on == 0 means MRC CCK is OFF (more noise imm)
*/
bool is_on = param ? 1 : 0;
if (ah->caps.rx_chainmask == 1)
break;
REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
AR_PHY_MRC_CCK_ENABLE, is_on);
REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
AR_PHY_MRC_CCK_MUX_REG, is_on);
if (is_on != aniState->mrcCCK) {
ath_dbg(common, ANI, "** ch %d: MRC CCK: %s=>%s\n",
chan->channel,
aniState->mrcCCK ? "on" : "off",
is_on ? "on" : "off");
if (is_on)
ah->stats.ast_ani_ccklow++;
else
ah->stats.ast_ani_cckhigh++;
aniState->mrcCCK = is_on;
}
break;
}
default:
ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
return false;
}
ath_dbg(common, ANI,
"ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
aniState->spurImmunityLevel,
aniState->ofdmWeakSigDetect ? "on" : "off",
aniState->firstepLevel,
aniState->mrcCCK ? "on" : "off",
aniState->listenTime,
aniState->ofdmPhyErrCount,
aniState->cckPhyErrCount);
return true;
}
static void ar9003_hw_do_getnf(struct ath_hw *ah,
int16_t nfarray[NUM_NF_READINGS])
{
#define AR_PHY_CH_MINCCA_PWR 0x1FF00000
#define AR_PHY_CH_MINCCA_PWR_S 20
#define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
#define AR_PHY_CH_EXT_MINCCA_PWR_S 16
int16_t nf;
int i;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (ah->rxchainmask & BIT(i)) {
nf = MS(REG_READ(ah, ah->nf_regs[i]),
AR_PHY_CH_MINCCA_PWR);
nfarray[i] = sign_extend32(nf, 8);
if (IS_CHAN_HT40(ah->curchan)) {
u8 ext_idx = AR9300_MAX_CHAINS + i;
nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
AR_PHY_CH_EXT_MINCCA_PWR);
nfarray[ext_idx] = sign_extend32(nf, 8);
}
}
}
}
static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
{
ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
if (AR_SREV_9330(ah))
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ;
if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9462_2GHZ;
ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_5GHZ;
ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9462_5GHZ;
}
}
/*
* Initialize the ANI register values with default (ini) values.
* This routine is called during a (full) hardware reset after
* all the registers are initialised from the INI.
*/
static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
{
struct ar5416AniState *aniState;
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_channel *chan = ah->curchan;
struct ath9k_ani_default *iniDef;
u32 val;
aniState = &ah->ani;
iniDef = &aniState->iniDef;
ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
ah->hw_version.macVersion,
ah->hw_version.macRev,
ah->opmode,
chan->channel);
val = REG_READ(ah, AR_PHY_SFCORR);
iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
val = REG_READ(ah, AR_PHY_SFCORR_LOW);
iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
val = REG_READ(ah, AR_PHY_SFCORR_EXT);
iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
iniDef->firstep = REG_READ_FIELD(ah,
AR_PHY_FIND_SIG,
AR_PHY_FIND_SIG_FIRSTEP);
iniDef->firstepLow = REG_READ_FIELD(ah,
AR_PHY_FIND_SIG_LOW,
AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
AR_PHY_TIMING5,
AR_PHY_TIMING5_CYCPWR_THR1);
iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
AR_PHY_EXT_CCA,
AR_PHY_EXT_CYCPWR_THR1);
/* these levels just got reset to defaults by the INI */
aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
aniState->ofdmWeakSigDetect = true;
aniState->mrcCCK = true;
}
static void ar9003_hw_set_radar_params(struct ath_hw *ah,
struct ath_hw_radar_conf *conf)
{
unsigned int regWrites = 0;
u32 radar_0 = 0, radar_1;
if (!conf) {
REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
return;
}
radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
radar_1 = REG_READ(ah, AR_PHY_RADAR_1);
radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH |
AR_PHY_RADAR_1_RELPWR_THRESH);
radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
if (conf->ext_channel)
REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
else
REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
if (AR_SREV_9300(ah) || AR_SREV_9340(ah) || AR_SREV_9580(ah)) {
REG_WRITE_ARRAY(&ah->ini_dfs,
IS_CHAN_HT40(ah->curchan) ? 2 : 1, regWrites);
}
}
static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
{
struct ath_hw_radar_conf *conf = &ah->radar_conf;
conf->fir_power = -28;
conf->radar_rssi = 0;
conf->pulse_height = 10;
conf->pulse_rssi = 15;
conf->pulse_inband = 8;
conf->pulse_maxlen = 255;
conf->pulse_inband_step = 12;
conf->radar_inband = 8;
}
static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah,
struct ath_hw_antcomb_conf *antconf)
{
u32 regval;
regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
antconf->main_lna_conf = (regval & AR_PHY_ANT_DIV_MAIN_LNACONF) >>
AR_PHY_ANT_DIV_MAIN_LNACONF_S;
antconf->alt_lna_conf = (regval & AR_PHY_ANT_DIV_ALT_LNACONF) >>
AR_PHY_ANT_DIV_ALT_LNACONF_S;
antconf->fast_div_bias = (regval & AR_PHY_ANT_FAST_DIV_BIAS) >>
AR_PHY_ANT_FAST_DIV_BIAS_S;
if (AR_SREV_9330_11(ah)) {
antconf->lna1_lna2_switch_delta = -1;
antconf->lna1_lna2_delta = -9;
antconf->div_group = 1;
} else if (AR_SREV_9485(ah)) {
antconf->lna1_lna2_switch_delta = -1;
antconf->lna1_lna2_delta = -9;
antconf->div_group = 2;
} else if (AR_SREV_9565(ah)) {
antconf->lna1_lna2_switch_delta = 3;
antconf->lna1_lna2_delta = -9;
antconf->div_group = 3;
} else {
antconf->lna1_lna2_switch_delta = -1;
antconf->lna1_lna2_delta = -3;
antconf->div_group = 0;
}
}
static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah,
struct ath_hw_antcomb_conf *antconf)
{
u32 regval;
regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
regval &= ~(AR_PHY_ANT_DIV_MAIN_LNACONF |
AR_PHY_ANT_DIV_ALT_LNACONF |
AR_PHY_ANT_FAST_DIV_BIAS |
AR_PHY_ANT_DIV_MAIN_GAINTB |
AR_PHY_ANT_DIV_ALT_GAINTB);
regval |= ((antconf->main_lna_conf << AR_PHY_ANT_DIV_MAIN_LNACONF_S)
& AR_PHY_ANT_DIV_MAIN_LNACONF);
regval |= ((antconf->alt_lna_conf << AR_PHY_ANT_DIV_ALT_LNACONF_S)
& AR_PHY_ANT_DIV_ALT_LNACONF);
regval |= ((antconf->fast_div_bias << AR_PHY_ANT_FAST_DIV_BIAS_S)
& AR_PHY_ANT_FAST_DIV_BIAS);
regval |= ((antconf->main_gaintb << AR_PHY_ANT_DIV_MAIN_GAINTB_S)
& AR_PHY_ANT_DIV_MAIN_GAINTB);
regval |= ((antconf->alt_gaintb << AR_PHY_ANT_DIV_ALT_GAINTB_S)
& AR_PHY_ANT_DIV_ALT_GAINTB);
REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
}
#ifdef CPTCFG_ATH9K_BTCOEX_SUPPORT
static void ar9003_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
{
struct ath9k_hw_capabilities *pCap = &ah->caps;
u8 ant_div_ctl1;
u32 regval;
if (!AR_SREV_9485(ah) && !AR_SREV_9565(ah))
return;
if (AR_SREV_9485(ah)) {
regval = ar9003_hw_ant_ctrl_common_2_get(ah,
IS_CHAN_2GHZ(ah->curchan));
if (enable) {
regval &= ~AR_SWITCH_TABLE_COM2_ALL;
regval |= ah->config.ant_ctrl_comm2g_switch_enable;
}
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2,
AR_SWITCH_TABLE_COM2_ALL, regval);
}
ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
/*
* Set MAIN/ALT LNA conf.
* Set MAIN/ALT gain_tb.
*/
regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
regval &= (~AR_ANT_DIV_CTRL_ALL);
regval |= (ant_div_ctl1 & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
if (AR_SREV_9485_11_OR_LATER(ah)) {
/*
* Enable LNA diversity.
*/
regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
regval &= ~AR_PHY_ANT_DIV_LNADIV;
regval |= ((ant_div_ctl1 >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
if (enable)
regval |= AR_ANT_DIV_ENABLE;
REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
/*
* Enable fast antenna diversity.
*/
regval = REG_READ(ah, AR_PHY_CCK_DETECT);
regval &= ~AR_FAST_DIV_ENABLE;
regval |= ((ant_div_ctl1 >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
if (enable)
regval |= AR_FAST_DIV_ENABLE;
REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
AR_PHY_ANT_DIV_ALT_LNACONF |
AR_PHY_ANT_DIV_ALT_GAINTB |
AR_PHY_ANT_DIV_MAIN_GAINTB));
/*
* Set MAIN to LNA1 and ALT to LNA2 at the
* beginning.
*/
regval |= (ATH_ANT_DIV_COMB_LNA1 <<
AR_PHY_ANT_DIV_MAIN_LNACONF_S);
regval |= (ATH_ANT_DIV_COMB_LNA2 <<
AR_PHY_ANT_DIV_ALT_LNACONF_S);
REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
}
} else if (AR_SREV_9565(ah)) {
if (enable) {
REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL,
AR_ANT_DIV_ENABLE);
REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL,
(1 << AR_PHY_ANT_SW_RX_PROT_S));
REG_SET_BIT(ah, AR_PHY_CCK_DETECT,
AR_FAST_DIV_ENABLE);
REG_SET_BIT(ah, AR_PHY_RESTART,
AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
AR_BTCOEX_WL_LNADIV_FORCE_ON);
} else {
REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
AR_ANT_DIV_ENABLE);
REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
(1 << AR_PHY_ANT_SW_RX_PROT_S));
REG_CLR_BIT(ah, AR_PHY_CCK_DETECT,
AR_FAST_DIV_ENABLE);
REG_CLR_BIT(ah, AR_PHY_RESTART,
AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
AR_BTCOEX_WL_LNADIV_FORCE_ON);
regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
regval &= ~(AR_PHY_ANT_DIV_MAIN_LNACONF |
AR_PHY_ANT_DIV_ALT_LNACONF |
AR_PHY_ANT_DIV_MAIN_GAINTB |
AR_PHY_ANT_DIV_ALT_GAINTB);
regval |= (ATH_ANT_DIV_COMB_LNA1 <<
AR_PHY_ANT_DIV_MAIN_LNACONF_S);
regval |= (ATH_ANT_DIV_COMB_LNA2 <<
AR_PHY_ANT_DIV_ALT_LNACONF_S);
REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
}
}
}
#endif
static int ar9003_hw_fast_chan_change(struct ath_hw *ah,
struct ath9k_channel *chan,
u8 *ini_reloaded)
{
unsigned int regWrites = 0;
u32 modesIndex, txgain_index;
if (IS_CHAN_5GHZ(chan))
modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
else
modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
txgain_index = AR_SREV_9531(ah) ? 1 : modesIndex;
if (modesIndex == ah->modes_index) {
*ini_reloaded = false;
goto set_rfmode;
}
ar9003_hw_prog_ini(ah, &ah->iniSOC[ATH_INI_POST], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniMac[ATH_INI_POST], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniBB[ATH_INI_POST], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniRadio[ATH_INI_POST], modesIndex);
if (AR_SREV_9462_20_OR_LATER(ah))
ar9003_hw_prog_ini(ah, &ah->ini_radio_post_sys2ant,
modesIndex);
REG_WRITE_ARRAY(&ah->iniModesTxGain, txgain_index, regWrites);
if (AR_SREV_9462_20_OR_LATER(ah)) {
/*
* CUS217 mix LNA mode.
*/
if (ar9003_hw_get_rx_gain_idx(ah) == 2) {
REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_core,
1, regWrites);
REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_postamble,
modesIndex, regWrites);
}
}
/*
* For 5GHz channels requiring Fast Clock, apply
* different modal values.
*/
if (IS_CHAN_A_FAST_CLOCK(ah, chan))
REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites);
if (AR_SREV_9565(ah))
REG_WRITE_ARRAY(&ah->iniModesFastClock, 1, regWrites);
/*
* JAPAN regulatory.
*/
if (chan->channel == 2484)
ar9003_hw_prog_ini(ah, &ah->iniCckfirJapan2484, 1);
ah->modes_index = modesIndex;
*ini_reloaded = true;
set_rfmode:
ar9003_hw_set_rfmode(ah, chan);
return 0;
}
static void ar9003_hw_spectral_scan_config(struct ath_hw *ah,
struct ath_spec_scan *param)
{
u8 count;
if (!param->enabled) {
REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ENABLE);
return;
}
REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
/* on AR93xx and newer, count = 0 will make the the chip send
* spectral samples endlessly. Check if this really was intended,
* and fix otherwise.
*/
count = param->count;
if (param->endless)
count = 0;
else if (param->count == 0)
count = 1;
if (param->short_repeat)
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
else
REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_COUNT, count);
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
return;
}
static void ar9003_hw_spectral_scan_trigger(struct ath_hw *ah)
{
/* Activate spectral scan */
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ACTIVE);
}
static void ar9003_hw_spectral_scan_wait(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
/* Poll for spectral scan complete */
if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ACTIVE,
0, AH_WAIT_TIMEOUT)) {
ath_err(common, "spectral scan wait failed\n");
return;
}
}
static void ar9003_hw_tx99_start(struct ath_hw *ah, u32 qnum)
{
REG_SET_BIT(ah, AR_PHY_TEST, PHY_AGC_CLR);
REG_SET_BIT(ah, 0x9864, 0x7f000);
REG_SET_BIT(ah, 0x9924, 0x7f00fe);
REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
REG_WRITE(ah, AR_CR, AR_CR_RXD);
REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
}
static void ar9003_hw_tx99_stop(struct ath_hw *ah)
{
REG_CLR_BIT(ah, AR_PHY_TEST, PHY_AGC_CLR);
REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
}
static void ar9003_hw_tx99_set_txpower(struct ath_hw *ah, u8 txpower)
{
static s16 p_pwr_array[ar9300RateSize] = { 0 };
unsigned int i;
if (txpower <= MAX_RATE_POWER) {
for (i = 0; i < ar9300RateSize; i++)
p_pwr_array[i] = txpower;
} else {
for (i = 0; i < ar9300RateSize; i++)
p_pwr_array[i] = MAX_RATE_POWER;
}
REG_WRITE(ah, 0xa458, 0);
REG_WRITE(ah, 0xa3c0,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0));
REG_WRITE(ah, 0xa3c4,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_54], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_48], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_36], 8) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0));
REG_WRITE(ah, 0xa3c8,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0));
REG_WRITE(ah, 0xa3cc,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11S], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11L], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_5S], 8) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0));
REG_WRITE(ah, 0xa3d0,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_5], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_4], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19], 8)|
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_0_8_16], 0));
REG_WRITE(ah, 0xa3d4,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_13], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_12], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_7], 8) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_6], 0));
REG_WRITE(ah, 0xa3e4,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_21], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_20], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_15], 8) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_14], 0));
REG_WRITE(ah, 0xa3e8,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_23], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_22], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_23], 8) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_22], 0));
REG_WRITE(ah, 0xa3d8,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_5], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_4], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_0_8_16], 0));
REG_WRITE(ah, 0xa3dc,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_13], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_12], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_7], 8) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_6], 0));
REG_WRITE(ah, 0xa3ec,
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_21], 24) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_20], 16) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_15], 8) |
ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_14], 0));
}
static void ar9003_hw_init_txpower_cck(struct ath_hw *ah, u8 *rate_array)
{
ah->tx_power[0] = rate_array[ALL_TARGET_LEGACY_1L_5L];
ah->tx_power[1] = rate_array[ALL_TARGET_LEGACY_1L_5L];
ah->tx_power[2] = min(rate_array[ALL_TARGET_LEGACY_1L_5L],
rate_array[ALL_TARGET_LEGACY_5S]);
ah->tx_power[3] = min(rate_array[ALL_TARGET_LEGACY_11L],
rate_array[ALL_TARGET_LEGACY_11S]);
}
static void ar9003_hw_init_txpower_ofdm(struct ath_hw *ah, u8 *rate_array,
int offset)
{
int i, j;
for (i = offset; i < offset + AR9300_OFDM_RATES; i++) {
/* OFDM rate to power table idx */
j = ofdm2pwr[i - offset];
ah->tx_power[i] = rate_array[j];
}
}
static void ar9003_hw_init_txpower_ht(struct ath_hw *ah, u8 *rate_array,
int ss_offset, int ds_offset,
int ts_offset, bool is_40)
{
int i, j, mcs_idx = 0;
const u8 *mcs2pwr = (is_40) ? mcs2pwr_ht40 : mcs2pwr_ht20;
for (i = ss_offset; i < ss_offset + AR9300_HT_SS_RATES; i++) {
j = mcs2pwr[mcs_idx];
ah->tx_power[i] = rate_array[j];
mcs_idx++;
}
for (i = ds_offset; i < ds_offset + AR9300_HT_DS_RATES; i++) {
j = mcs2pwr[mcs_idx];
ah->tx_power[i] = rate_array[j];
mcs_idx++;
}
for (i = ts_offset; i < ts_offset + AR9300_HT_TS_RATES; i++) {
j = mcs2pwr[mcs_idx];
ah->tx_power[i] = rate_array[j];
mcs_idx++;
}
}
static void ar9003_hw_init_txpower_stbc(struct ath_hw *ah, int ss_offset,
int ds_offset, int ts_offset)
{
memcpy(&ah->tx_power_stbc[ss_offset], &ah->tx_power[ss_offset],
AR9300_HT_SS_RATES);
memcpy(&ah->tx_power_stbc[ds_offset], &ah->tx_power[ds_offset],
AR9300_HT_DS_RATES);
memcpy(&ah->tx_power_stbc[ts_offset], &ah->tx_power[ts_offset],
AR9300_HT_TS_RATES);
}
void ar9003_hw_init_rate_txpower(struct ath_hw *ah, u8 *rate_array,
struct ath9k_channel *chan)
{
if (IS_CHAN_5GHZ(chan)) {
ar9003_hw_init_txpower_ofdm(ah, rate_array,
AR9300_11NA_OFDM_SHIFT);
if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
ar9003_hw_init_txpower_ht(ah, rate_array,
AR9300_11NA_HT_SS_SHIFT,
AR9300_11NA_HT_DS_SHIFT,
AR9300_11NA_HT_TS_SHIFT,
IS_CHAN_HT40(chan));
ar9003_hw_init_txpower_stbc(ah,
AR9300_11NA_HT_SS_SHIFT,
AR9300_11NA_HT_DS_SHIFT,
AR9300_11NA_HT_TS_SHIFT);
}
} else {
ar9003_hw_init_txpower_cck(ah, rate_array);
ar9003_hw_init_txpower_ofdm(ah, rate_array,
AR9300_11NG_OFDM_SHIFT);
if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
ar9003_hw_init_txpower_ht(ah, rate_array,
AR9300_11NG_HT_SS_SHIFT,
AR9300_11NG_HT_DS_SHIFT,
AR9300_11NG_HT_TS_SHIFT,
IS_CHAN_HT40(chan));
ar9003_hw_init_txpower_stbc(ah,
AR9300_11NG_HT_SS_SHIFT,
AR9300_11NG_HT_DS_SHIFT,
AR9300_11NG_HT_TS_SHIFT);
}
}
}
void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
struct ath_hw_ops *ops = ath9k_hw_ops(ah);
static const u32 ar9300_cca_regs[6] = {
AR_PHY_CCA_0,
AR_PHY_CCA_1,
AR_PHY_CCA_2,
AR_PHY_EXT_CCA,
AR_PHY_EXT_CCA_1,
AR_PHY_EXT_CCA_2,
};
priv_ops->rf_set_freq = ar9003_hw_set_channel;
priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
AR_SREV_9561(ah))
priv_ops->compute_pll_control = ar9003_hw_compute_pll_control_soc;
else
priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
priv_ops->init_bb = ar9003_hw_init_bb;
priv_ops->process_ini = ar9003_hw_process_ini;
priv_ops->set_rfmode = ar9003_hw_set_rfmode;
priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
priv_ops->rfbus_req = ar9003_hw_rfbus_req;
priv_ops->rfbus_done = ar9003_hw_rfbus_done;
priv_ops->ani_control = ar9003_hw_ani_control;
priv_ops->do_getnf = ar9003_hw_do_getnf;
priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
priv_ops->set_radar_params = ar9003_hw_set_radar_params;
priv_ops->fast_chan_change = ar9003_hw_fast_chan_change;
ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
ops->spectral_scan_config = ar9003_hw_spectral_scan_config;
ops->spectral_scan_trigger = ar9003_hw_spectral_scan_trigger;
ops->spectral_scan_wait = ar9003_hw_spectral_scan_wait;
#ifdef CPTCFG_ATH9K_BTCOEX_SUPPORT
ops->set_bt_ant_diversity = ar9003_hw_set_bt_ant_diversity;
#endif
ops->tx99_start = ar9003_hw_tx99_start;
ops->tx99_stop = ar9003_hw_tx99_stop;
ops->tx99_set_txpower = ar9003_hw_tx99_set_txpower;
ar9003_hw_set_nf_limits(ah);
ar9003_hw_set_radar_conf(ah);
memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
}
/*
* Baseband Watchdog signatures:
*
* 0x04000539: BB hang when operating in HT40 DFS Channel.
* Full chip reset is not required, but a recovery
* mechanism is needed.
*
* 0x1300000a: Related to CAC deafness.
* Chip reset is not required.
*
* 0x0400000a: Related to CAC deafness.
* Full chip reset is required.
*
* 0x04000b09: RX state machine gets into an illegal state
* when a packet with unsupported rate is received.
* Full chip reset is required and PHY_RESTART has
* to be disabled.
*
* 0x04000409: Packet stuck on receive.
* Full chip reset is required for all chips except AR9340.
*/
/*
* ar9003_hw_bb_watchdog_check(): Returns true if a chip reset is required.
*/
bool ar9003_hw_bb_watchdog_check(struct ath_hw *ah)
{
u32 val;
switch(ah->bb_watchdog_last_status) {
case 0x04000539:
val = REG_READ(ah, AR_PHY_RADAR_0);
val &= (~AR_PHY_RADAR_0_FIRPWR);
val |= SM(0x7f, AR_PHY_RADAR_0_FIRPWR);
REG_WRITE(ah, AR_PHY_RADAR_0, val);
udelay(1);
val = REG_READ(ah, AR_PHY_RADAR_0);
val &= ~AR_PHY_RADAR_0_FIRPWR;
val |= SM(AR9300_DFS_FIRPWR, AR_PHY_RADAR_0_FIRPWR);
REG_WRITE(ah, AR_PHY_RADAR_0, val);
return false;
case 0x1300000a:
return false;
case 0x0400000a:
case 0x04000b09:
return true;
case 0x04000409:
if (AR_SREV_9340(ah) || AR_SREV_9531(ah))
return false;
else
return true;
default:
/*
* For any other unknown signatures, do a
* full chip reset.
*/
return true;
}
}
EXPORT_SYMBOL(ar9003_hw_bb_watchdog_check);
void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
u32 val, idle_count;
if (!idle_tmo_ms) {
/* disable IRQ, disable chip-reset for BB panic */
REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
~(AR_PHY_WATCHDOG_RST_ENABLE |
AR_PHY_WATCHDOG_IRQ_ENABLE));
/* disable watchdog in non-IDLE mode, disable in IDLE mode */
REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
AR_PHY_WATCHDOG_IDLE_ENABLE));
ath_dbg(common, RESET, "Disabled BB Watchdog\n");
return;
}
/* enable IRQ, disable chip-reset for BB watchdog */
val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
(val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
~AR_PHY_WATCHDOG_RST_ENABLE);
/* bound limit to 10 secs */
if (idle_tmo_ms > 10000)
idle_tmo_ms = 10000;
/*
* The time unit for watchdog event is 2^15 44/88MHz cycles.
*
* For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
* For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
*
* Given we use fast clock now in 5 GHz, these time units should
* be common for both 2 GHz and 5 GHz.
*/
idle_count = (100 * idle_tmo_ms) / 74;
if (ah->curchan && IS_CHAN_HT40(ah->curchan))
idle_count = (100 * idle_tmo_ms) / 37;
/*
* enable watchdog in non-IDLE mode, disable in IDLE mode,
* set idle time-out.
*/
REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
AR_PHY_WATCHDOG_IDLE_MASK |
(AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
ath_dbg(common, RESET, "Enabled BB Watchdog timeout (%u ms)\n",
idle_tmo_ms);
}
void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
{
/*
* we want to avoid printing in ISR context so we save the
* watchdog status to be printed later in bottom half context.
*/
ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
/*
* the watchdog timer should reset on status read but to be sure
* sure we write 0 to the watchdog status bit.
*/
REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
}
void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 status;
if (likely(!(common->debug_mask & ATH_DBG_RESET)))
return;
status = ah->bb_watchdog_last_status;
ath_dbg(common, RESET,
"\n==== BB update: BB status=0x%08x ====\n", status);
ath_dbg(common, RESET,
"** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
MS(status, AR_PHY_WATCHDOG_INFO),
MS(status, AR_PHY_WATCHDOG_DET_HANG),
MS(status, AR_PHY_WATCHDOG_RADAR_SM),
MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
MS(status, AR_PHY_WATCHDOG_AGC_SM),
MS(status, AR_PHY_WATCHDOG_SRCH_SM));
ath_dbg(common, RESET, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
ath_dbg(common, RESET, "** BB mode: BB_gen_controls=0x%08x **\n",
REG_READ(ah, AR_PHY_GEN_CTRL));
#define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
if (common->cc_survey.cycles)
ath_dbg(common, RESET,
"** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
ath_dbg(common, RESET, "==== BB update: done ====\n\n");
}
EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);
void ar9003_hw_disable_phy_restart(struct ath_hw *ah)
{
u8 result;
u32 val;
/* While receiving unsupported rate frame rx state machine
* gets into a state 0xb and if phy_restart happens in that
* state, BB would go hang. If RXSM is in 0xb state after
* first bb panic, ensure to disable the phy_restart.
*/
result = MS(ah->bb_watchdog_last_status, AR_PHY_WATCHDOG_RX_OFDM_SM);
if ((result == 0xb) || ah->bb_hang_rx_ofdm) {
ah->bb_hang_rx_ofdm = true;
val = REG_READ(ah, AR_PHY_RESTART);
val &= ~AR_PHY_RESTART_ENA;
REG_WRITE(ah, AR_PHY_RESTART, val);
}
}
EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);