blob: 9728be0e704bc703d9e2bc1868e6656fe3729157 [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
* Copyright (c) 2013 Hauke Mehrtens <hauke@hauke-m.de>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/pci_ids.h>
#include <linux/if_ether.h>
#include <net/cfg80211.h>
#include <net/mac80211.h>
#include <brcm_hw_ids.h>
#include <aiutils.h>
#include <chipcommon.h>
#include "rate.h"
#include "scb.h"
#include "phy/phy_hal.h"
#include "channel.h"
#include "antsel.h"
#include "stf.h"
#include "ampdu.h"
#include "mac80211_if.h"
#include "ucode_loader.h"
#include "main.h"
#include "soc.h"
#include "dma.h"
#include "debug.h"
#include "brcms_trace_events.h"
/* watchdog timer, in unit of ms */
#define TIMER_INTERVAL_WATCHDOG 1000
/* radio monitor timer, in unit of ms */
#define TIMER_INTERVAL_RADIOCHK 800
/* beacon interval, in unit of 1024TU */
#define BEACON_INTERVAL_DEFAULT 100
/* n-mode support capability */
/* 2x2 includes both 1x1 & 2x2 devices
* reserved #define 2 for future when we want to separate 1x1 & 2x2 and
* control it independently
*/
#define WL_11N_2x2 1
#define WL_11N_3x3 3
#define WL_11N_4x4 4
#define EDCF_ACI_MASK 0x60
#define EDCF_ACI_SHIFT 5
#define EDCF_ECWMIN_MASK 0x0f
#define EDCF_ECWMAX_SHIFT 4
#define EDCF_AIFSN_MASK 0x0f
#define EDCF_AIFSN_MAX 15
#define EDCF_ECWMAX_MASK 0xf0
#define EDCF_AC_BE_TXOP_STA 0x0000
#define EDCF_AC_BK_TXOP_STA 0x0000
#define EDCF_AC_VO_ACI_STA 0x62
#define EDCF_AC_VO_ECW_STA 0x32
#define EDCF_AC_VI_ACI_STA 0x42
#define EDCF_AC_VI_ECW_STA 0x43
#define EDCF_AC_BK_ECW_STA 0xA4
#define EDCF_AC_VI_TXOP_STA 0x005e
#define EDCF_AC_VO_TXOP_STA 0x002f
#define EDCF_AC_BE_ACI_STA 0x03
#define EDCF_AC_BE_ECW_STA 0xA4
#define EDCF_AC_BK_ACI_STA 0x27
#define EDCF_AC_VO_TXOP_AP 0x002f
#define EDCF_TXOP2USEC(txop) ((txop) << 5)
#define EDCF_ECW2CW(exp) ((1 << (exp)) - 1)
#define APHY_SYMBOL_TIME 4
#define APHY_PREAMBLE_TIME 16
#define APHY_SIGNAL_TIME 4
#define APHY_SIFS_TIME 16
#define APHY_SERVICE_NBITS 16
#define APHY_TAIL_NBITS 6
#define BPHY_SIFS_TIME 10
#define BPHY_PLCP_SHORT_TIME 96
#define PREN_PREAMBLE 24
#define PREN_MM_EXT 12
#define PREN_PREAMBLE_EXT 4
#define DOT11_MAC_HDR_LEN 24
#define DOT11_ACK_LEN 10
#define DOT11_BA_LEN 4
#define DOT11_OFDM_SIGNAL_EXTENSION 6
#define DOT11_MIN_FRAG_LEN 256
#define DOT11_RTS_LEN 16
#define DOT11_CTS_LEN 10
#define DOT11_BA_BITMAP_LEN 128
#define DOT11_MAXNUMFRAGS 16
#define DOT11_MAX_FRAG_LEN 2346
#define BPHY_PLCP_TIME 192
#define RIFS_11N_TIME 2
/* length of the BCN template area */
#define BCN_TMPL_LEN 512
/* brcms_bss_info flag bit values */
#define BRCMS_BSS_HT 0x0020 /* BSS is HT (MIMO) capable */
/* chip rx buffer offset */
#define BRCMS_HWRXOFF 38
/* rfdisable delay timer 500 ms, runs of ALP clock */
#define RFDISABLE_DEFAULT 10000000
#define BRCMS_TEMPSENSE_PERIOD 10 /* 10 second timeout */
/* synthpu_dly times in us */
#define SYNTHPU_DLY_APHY_US 3700
#define SYNTHPU_DLY_BPHY_US 1050
#define SYNTHPU_DLY_NPHY_US 2048
#define SYNTHPU_DLY_LPPHY_US 300
#define ANTCNT 10 /* vanilla M_MAX_ANTCNT val */
/* Per-AC retry limit register definitions; uses defs.h bitfield macros */
#define EDCF_SHORT_S 0
#define EDCF_SFB_S 4
#define EDCF_LONG_S 8
#define EDCF_LFB_S 12
#define EDCF_SHORT_M BITFIELD_MASK(4)
#define EDCF_SFB_M BITFIELD_MASK(4)
#define EDCF_LONG_M BITFIELD_MASK(4)
#define EDCF_LFB_M BITFIELD_MASK(4)
#define RETRY_SHORT_DEF 7 /* Default Short retry Limit */
#define RETRY_SHORT_MAX 255 /* Maximum Short retry Limit */
#define RETRY_LONG_DEF 4 /* Default Long retry count */
#define RETRY_SHORT_FB 3 /* Short count for fb rate */
#define RETRY_LONG_FB 2 /* Long count for fb rate */
#define APHY_CWMIN 15
#define PHY_CWMAX 1023
#define EDCF_AIFSN_MIN 1
#define FRAGNUM_MASK 0xF
#define APHY_SLOT_TIME 9
#define BPHY_SLOT_TIME 20
#define WL_SPURAVOID_OFF 0
#define WL_SPURAVOID_ON1 1
#define WL_SPURAVOID_ON2 2
/* invalid core flags, use the saved coreflags */
#define BRCMS_USE_COREFLAGS 0xffffffff
/* values for PLCPHdr_override */
#define BRCMS_PLCP_AUTO -1
#define BRCMS_PLCP_SHORT 0
#define BRCMS_PLCP_LONG 1
/* values for g_protection_override and n_protection_override */
#define BRCMS_PROTECTION_AUTO -1
#define BRCMS_PROTECTION_OFF 0
#define BRCMS_PROTECTION_ON 1
#define BRCMS_PROTECTION_MMHDR_ONLY 2
#define BRCMS_PROTECTION_CTS_ONLY 3
/* values for g_protection_control and n_protection_control */
#define BRCMS_PROTECTION_CTL_OFF 0
#define BRCMS_PROTECTION_CTL_LOCAL 1
#define BRCMS_PROTECTION_CTL_OVERLAP 2
/* values for n_protection */
#define BRCMS_N_PROTECTION_OFF 0
#define BRCMS_N_PROTECTION_OPTIONAL 1
#define BRCMS_N_PROTECTION_20IN40 2
#define BRCMS_N_PROTECTION_MIXEDMODE 3
/* values for band specific 40MHz capabilities */
#define BRCMS_N_BW_20ALL 0
#define BRCMS_N_BW_40ALL 1
#define BRCMS_N_BW_20IN2G_40IN5G 2
/* bitflags for SGI support (sgi_rx iovar) */
#define BRCMS_N_SGI_20 0x01
#define BRCMS_N_SGI_40 0x02
/* defines used by the nrate iovar */
/* MSC in use,indicates b0-6 holds an mcs */
#define NRATE_MCS_INUSE 0x00000080
/* rate/mcs value */
#define NRATE_RATE_MASK 0x0000007f
/* stf mode mask: siso, cdd, stbc, sdm */
#define NRATE_STF_MASK 0x0000ff00
/* stf mode shift */
#define NRATE_STF_SHIFT 8
/* bit indicate to override mcs only */
#define NRATE_OVERRIDE_MCS_ONLY 0x40000000
#define NRATE_SGI_MASK 0x00800000 /* sgi mode */
#define NRATE_SGI_SHIFT 23 /* sgi mode */
#define NRATE_LDPC_CODING 0x00400000 /* adv coding in use */
#define NRATE_LDPC_SHIFT 22 /* ldpc shift */
#define NRATE_STF_SISO 0 /* stf mode SISO */
#define NRATE_STF_CDD 1 /* stf mode CDD */
#define NRATE_STF_STBC 2 /* stf mode STBC */
#define NRATE_STF_SDM 3 /* stf mode SDM */
#define MAX_DMA_SEGS 4
/* # of entries in Tx FIFO */
#define NTXD 64
/* Max # of entries in Rx FIFO based on 4kb page size */
#define NRXD 256
/* Amount of headroom to leave in Tx FIFO */
#define TX_HEADROOM 4
/* try to keep this # rbufs posted to the chip */
#define NRXBUFPOST 32
/* max # frames to process in brcms_c_recv() */
#define RXBND 8
/* max # tx status to process in wlc_txstatus() */
#define TXSBND 8
/* brcmu_format_flags() bit description structure */
struct brcms_c_bit_desc {
u32 bit;
const char *name;
};
/*
* The following table lists the buffer memory allocated to xmt fifos in HW.
* the size is in units of 256bytes(one block), total size is HW dependent
* ucode has default fifo partition, sw can overwrite if necessary
*
* This is documented in twiki under the topic UcodeTxFifo. Please ensure
* the twiki is updated before making changes.
*/
/* Starting corerev for the fifo size table */
#define XMTFIFOTBL_STARTREV 17
struct d11init {
__le16 addr;
__le16 size;
__le32 value;
};
struct edcf_acparam {
u8 ACI;
u8 ECW;
u16 TXOP;
} __packed;
/* debug/trace */
uint brcm_msg_level;
/* TX FIFO number to WME/802.1E Access Category */
static const u8 wme_fifo2ac[] = {
IEEE80211_AC_BK,
IEEE80211_AC_BE,
IEEE80211_AC_VI,
IEEE80211_AC_VO,
IEEE80211_AC_BE,
IEEE80211_AC_BE
};
/* ieee80211 Access Category to TX FIFO number */
static const u8 wme_ac2fifo[] = {
TX_AC_VO_FIFO,
TX_AC_VI_FIFO,
TX_AC_BE_FIFO,
TX_AC_BK_FIFO
};
static const u16 xmtfifo_sz[][NFIFO] = {
/* corerev 17: 5120, 49152, 49152, 5376, 4352, 1280 */
{20, 192, 192, 21, 17, 5},
/* corerev 18: */
{0, 0, 0, 0, 0, 0},
/* corerev 19: */
{0, 0, 0, 0, 0, 0},
/* corerev 20: 5120, 49152, 49152, 5376, 4352, 1280 */
{20, 192, 192, 21, 17, 5},
/* corerev 21: 2304, 14848, 5632, 3584, 3584, 1280 */
{9, 58, 22, 14, 14, 5},
/* corerev 22: 5120, 49152, 49152, 5376, 4352, 1280 */
{20, 192, 192, 21, 17, 5},
/* corerev 23: 5120, 49152, 49152, 5376, 4352, 1280 */
{20, 192, 192, 21, 17, 5},
/* corerev 24: 2304, 14848, 5632, 3584, 3584, 1280 */
{9, 58, 22, 14, 14, 5},
/* corerev 25: */
{0, 0, 0, 0, 0, 0},
/* corerev 26: */
{0, 0, 0, 0, 0, 0},
/* corerev 27: */
{0, 0, 0, 0, 0, 0},
/* corerev 28: 2304, 14848, 5632, 3584, 3584, 1280 */
{9, 58, 22, 14, 14, 5},
};
#ifdef DEBUG
static const char * const fifo_names[] = {
"AC_BK", "AC_BE", "AC_VI", "AC_VO", "BCMC", "ATIM" };
#else
static const char fifo_names[6][1];
#endif
#ifdef DEBUG
/* pointer to most recently allocated wl/wlc */
static struct brcms_c_info *wlc_info_dbg = (struct brcms_c_info *) (NULL);
#endif
/* Mapping of ieee80211 AC numbers to tx fifos */
static const u8 ac_to_fifo_mapping[IEEE80211_NUM_ACS] = {
[IEEE80211_AC_VO] = TX_AC_VO_FIFO,
[IEEE80211_AC_VI] = TX_AC_VI_FIFO,
[IEEE80211_AC_BE] = TX_AC_BE_FIFO,
[IEEE80211_AC_BK] = TX_AC_BK_FIFO,
};
/* Mapping of tx fifos to ieee80211 AC numbers */
static const u8 fifo_to_ac_mapping[IEEE80211_NUM_ACS] = {
[TX_AC_BK_FIFO] = IEEE80211_AC_BK,
[TX_AC_BE_FIFO] = IEEE80211_AC_BE,
[TX_AC_VI_FIFO] = IEEE80211_AC_VI,
[TX_AC_VO_FIFO] = IEEE80211_AC_VO,
};
static u8 brcms_ac_to_fifo(u8 ac)
{
if (ac >= ARRAY_SIZE(ac_to_fifo_mapping))
return TX_AC_BE_FIFO;
return ac_to_fifo_mapping[ac];
}
static u8 brcms_fifo_to_ac(u8 fifo)
{
if (fifo >= ARRAY_SIZE(fifo_to_ac_mapping))
return IEEE80211_AC_BE;
return fifo_to_ac_mapping[fifo];
}
/* Find basic rate for a given rate */
static u8 brcms_basic_rate(struct brcms_c_info *wlc, u32 rspec)
{
if (is_mcs_rate(rspec))
return wlc->band->basic_rate[mcs_table[rspec & RSPEC_RATE_MASK]
.leg_ofdm];
return wlc->band->basic_rate[rspec & RSPEC_RATE_MASK];
}
static u16 frametype(u32 rspec, u8 mimoframe)
{
if (is_mcs_rate(rspec))
return mimoframe;
return is_cck_rate(rspec) ? FT_CCK : FT_OFDM;
}
/* currently the best mechanism for determining SIFS is the band in use */
static u16 get_sifs(struct brcms_band *band)
{
return band->bandtype == BRCM_BAND_5G ? APHY_SIFS_TIME :
BPHY_SIFS_TIME;
}
/*
* Detect Card removed.
* Even checking an sbconfig register read will not false trigger when the core
* is in reset it breaks CF address mechanism. Accessing gphy phyversion will
* cause SB error if aphy is in reset on 4306B0-DB. Need a simple accessible
* reg with fixed 0/1 pattern (some platforms return all 0).
* If clocks are present, call the sb routine which will figure out if the
* device is removed.
*/
static bool brcms_deviceremoved(struct brcms_c_info *wlc)
{
u32 macctrl;
if (!wlc->hw->clk)
return ai_deviceremoved(wlc->hw->sih);
macctrl = bcma_read32(wlc->hw->d11core,
D11REGOFFS(maccontrol));
return (macctrl & (MCTL_PSM_JMP_0 | MCTL_IHR_EN)) != MCTL_IHR_EN;
}
/* sum the individual fifo tx pending packet counts */
static int brcms_txpktpendtot(struct brcms_c_info *wlc)
{
int i;
int pending = 0;
for (i = 0; i < ARRAY_SIZE(wlc->hw->di); i++)
if (wlc->hw->di[i])
pending += dma_txpending(wlc->hw->di[i]);
return pending;
}
static bool brcms_is_mband_unlocked(struct brcms_c_info *wlc)
{
return wlc->pub->_nbands > 1 && !wlc->bandlocked;
}
static int brcms_chspec_bw(u16 chanspec)
{
if (CHSPEC_IS40(chanspec))
return BRCMS_40_MHZ;
if (CHSPEC_IS20(chanspec))
return BRCMS_20_MHZ;
return BRCMS_10_MHZ;
}
static void brcms_c_bsscfg_mfree(struct brcms_bss_cfg *cfg)
{
if (cfg == NULL)
return;
kfree(cfg->current_bss);
kfree(cfg);
}
static void brcms_c_detach_mfree(struct brcms_c_info *wlc)
{
if (wlc == NULL)
return;
brcms_c_bsscfg_mfree(wlc->bsscfg);
kfree(wlc->pub);
kfree(wlc->modulecb);
kfree(wlc->default_bss);
kfree(wlc->protection);
kfree(wlc->stf);
kfree(wlc->bandstate[0]);
if (wlc->corestate)
kfree(wlc->corestate->macstat_snapshot);
kfree(wlc->corestate);
if (wlc->hw)
kfree(wlc->hw->bandstate[0]);
kfree(wlc->hw);
if (wlc->beacon)
dev_kfree_skb_any(wlc->beacon);
if (wlc->probe_resp)
dev_kfree_skb_any(wlc->probe_resp);
kfree(wlc);
}
static struct brcms_bss_cfg *brcms_c_bsscfg_malloc(uint unit)
{
struct brcms_bss_cfg *cfg;
cfg = kzalloc(sizeof(struct brcms_bss_cfg), GFP_ATOMIC);
if (cfg == NULL)
goto fail;
cfg->current_bss = kzalloc(sizeof(struct brcms_bss_info), GFP_ATOMIC);
if (cfg->current_bss == NULL)
goto fail;
return cfg;
fail:
brcms_c_bsscfg_mfree(cfg);
return NULL;
}
static struct brcms_c_info *
brcms_c_attach_malloc(uint unit, uint *err, uint devid)
{
struct brcms_c_info *wlc;
wlc = kzalloc(sizeof(struct brcms_c_info), GFP_ATOMIC);
if (wlc == NULL) {
*err = 1002;
goto fail;
}
/* allocate struct brcms_c_pub state structure */
wlc->pub = kzalloc(sizeof(struct brcms_pub), GFP_ATOMIC);
if (wlc->pub == NULL) {
*err = 1003;
goto fail;
}
wlc->pub->wlc = wlc;
/* allocate struct brcms_hardware state structure */
wlc->hw = kzalloc(sizeof(struct brcms_hardware), GFP_ATOMIC);
if (wlc->hw == NULL) {
*err = 1005;
goto fail;
}
wlc->hw->wlc = wlc;
wlc->hw->bandstate[0] =
kzalloc(sizeof(struct brcms_hw_band) * MAXBANDS, GFP_ATOMIC);
if (wlc->hw->bandstate[0] == NULL) {
*err = 1006;
goto fail;
} else {
int i;
for (i = 1; i < MAXBANDS; i++)
wlc->hw->bandstate[i] = (struct brcms_hw_band *)
((unsigned long)wlc->hw->bandstate[0] +
(sizeof(struct brcms_hw_band) * i));
}
wlc->modulecb =
kzalloc(sizeof(struct modulecb) * BRCMS_MAXMODULES, GFP_ATOMIC);
if (wlc->modulecb == NULL) {
*err = 1009;
goto fail;
}
wlc->default_bss = kzalloc(sizeof(struct brcms_bss_info), GFP_ATOMIC);
if (wlc->default_bss == NULL) {
*err = 1010;
goto fail;
}
wlc->bsscfg = brcms_c_bsscfg_malloc(unit);
if (wlc->bsscfg == NULL) {
*err = 1011;
goto fail;
}
wlc->protection = kzalloc(sizeof(struct brcms_protection),
GFP_ATOMIC);
if (wlc->protection == NULL) {
*err = 1016;
goto fail;
}
wlc->stf = kzalloc(sizeof(struct brcms_stf), GFP_ATOMIC);
if (wlc->stf == NULL) {
*err = 1017;
goto fail;
}
wlc->bandstate[0] =
kzalloc(sizeof(struct brcms_band)*MAXBANDS, GFP_ATOMIC);
if (wlc->bandstate[0] == NULL) {
*err = 1025;
goto fail;
} else {
int i;
for (i = 1; i < MAXBANDS; i++)
wlc->bandstate[i] = (struct brcms_band *)
((unsigned long)wlc->bandstate[0]
+ (sizeof(struct brcms_band)*i));
}
wlc->corestate = kzalloc(sizeof(struct brcms_core), GFP_ATOMIC);
if (wlc->corestate == NULL) {
*err = 1026;
goto fail;
}
wlc->corestate->macstat_snapshot =
kzalloc(sizeof(struct macstat), GFP_ATOMIC);
if (wlc->corestate->macstat_snapshot == NULL) {
*err = 1027;
goto fail;
}
return wlc;
fail:
brcms_c_detach_mfree(wlc);
return NULL;
}
/*
* Update the slot timing for standard 11b/g (20us slots)
* or shortslot 11g (9us slots)
* The PSM needs to be suspended for this call.
*/
static void brcms_b_update_slot_timing(struct brcms_hardware *wlc_hw,
bool shortslot)
{
struct bcma_device *core = wlc_hw->d11core;
if (shortslot) {
/* 11g short slot: 11a timing */
bcma_write16(core, D11REGOFFS(ifs_slot), 0x0207);
brcms_b_write_shm(wlc_hw, M_DOT11_SLOT, APHY_SLOT_TIME);
} else {
/* 11g long slot: 11b timing */
bcma_write16(core, D11REGOFFS(ifs_slot), 0x0212);
brcms_b_write_shm(wlc_hw, M_DOT11_SLOT, BPHY_SLOT_TIME);
}
}
/*
* calculate frame duration of a given rate and length, return
* time in usec unit
*/
static uint brcms_c_calc_frame_time(struct brcms_c_info *wlc, u32 ratespec,
u8 preamble_type, uint mac_len)
{
uint nsyms, dur = 0, Ndps, kNdps;
uint rate = rspec2rate(ratespec);
if (rate == 0) {
brcms_err(wlc->hw->d11core, "wl%d: WAR: using rate of 1 mbps\n",
wlc->pub->unit);
rate = BRCM_RATE_1M;
}
if (is_mcs_rate(ratespec)) {
uint mcs = ratespec & RSPEC_RATE_MASK;
int tot_streams = mcs_2_txstreams(mcs) + rspec_stc(ratespec);
dur = PREN_PREAMBLE + (tot_streams * PREN_PREAMBLE_EXT);
if (preamble_type == BRCMS_MM_PREAMBLE)
dur += PREN_MM_EXT;
/* 1000Ndbps = kbps * 4 */
kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec),
rspec_issgi(ratespec)) * 4;
if (rspec_stc(ratespec) == 0)
nsyms =
CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
APHY_TAIL_NBITS) * 1000, kNdps);
else
/* STBC needs to have even number of symbols */
nsyms =
2 *
CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
APHY_TAIL_NBITS) * 1000, 2 * kNdps);
dur += APHY_SYMBOL_TIME * nsyms;
if (wlc->band->bandtype == BRCM_BAND_2G)
dur += DOT11_OFDM_SIGNAL_EXTENSION;
} else if (is_ofdm_rate(rate)) {
dur = APHY_PREAMBLE_TIME;
dur += APHY_SIGNAL_TIME;
/* Ndbps = Mbps * 4 = rate(500Kbps) * 2 */
Ndps = rate * 2;
/* NSyms = CEILING((SERVICE + 8*NBytes + TAIL) / Ndbps) */
nsyms =
CEIL((APHY_SERVICE_NBITS + 8 * mac_len + APHY_TAIL_NBITS),
Ndps);
dur += APHY_SYMBOL_TIME * nsyms;
if (wlc->band->bandtype == BRCM_BAND_2G)
dur += DOT11_OFDM_SIGNAL_EXTENSION;
} else {
/*
* calc # bits * 2 so factor of 2 in rate (1/2 mbps)
* will divide out
*/
mac_len = mac_len * 8 * 2;
/* calc ceiling of bits/rate = microseconds of air time */
dur = (mac_len + rate - 1) / rate;
if (preamble_type & BRCMS_SHORT_PREAMBLE)
dur += BPHY_PLCP_SHORT_TIME;
else
dur += BPHY_PLCP_TIME;
}
return dur;
}
static void brcms_c_write_inits(struct brcms_hardware *wlc_hw,
const struct d11init *inits)
{
struct bcma_device *core = wlc_hw->d11core;
int i;
uint offset;
u16 size;
u32 value;
brcms_dbg_info(wlc_hw->d11core, "wl%d\n", wlc_hw->unit);
for (i = 0; inits[i].addr != cpu_to_le16(0xffff); i++) {
size = le16_to_cpu(inits[i].size);
offset = le16_to_cpu(inits[i].addr);
value = le32_to_cpu(inits[i].value);
if (size == 2)
bcma_write16(core, offset, value);
else if (size == 4)
bcma_write32(core, offset, value);
else
break;
}
}
static void brcms_c_write_mhf(struct brcms_hardware *wlc_hw, u16 *mhfs)
{
u8 idx;
u16 addr[] = {
M_HOST_FLAGS1, M_HOST_FLAGS2, M_HOST_FLAGS3, M_HOST_FLAGS4,
M_HOST_FLAGS5
};
for (idx = 0; idx < MHFMAX; idx++)
brcms_b_write_shm(wlc_hw, addr[idx], mhfs[idx]);
}
static void brcms_c_ucode_bsinit(struct brcms_hardware *wlc_hw)
{
struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode;
/* init microcode host flags */
brcms_c_write_mhf(wlc_hw, wlc_hw->band->mhfs);
/* do band-specific ucode IHR, SHM, and SCR inits */
if (D11REV_IS(wlc_hw->corerev, 17) || D11REV_IS(wlc_hw->corerev, 23)) {
if (BRCMS_ISNPHY(wlc_hw->band))
brcms_c_write_inits(wlc_hw, ucode->d11n0bsinitvals16);
else
brcms_err(wlc_hw->d11core,
"%s: wl%d: unsupported phy in corerev %d\n",
__func__, wlc_hw->unit,
wlc_hw->corerev);
} else {
if (D11REV_IS(wlc_hw->corerev, 24)) {
if (BRCMS_ISLCNPHY(wlc_hw->band))
brcms_c_write_inits(wlc_hw,
ucode->d11lcn0bsinitvals24);
else
brcms_err(wlc_hw->d11core,
"%s: wl%d: unsupported phy in core rev %d\n",
__func__, wlc_hw->unit,
wlc_hw->corerev);
} else {
brcms_err(wlc_hw->d11core,
"%s: wl%d: unsupported corerev %d\n",
__func__, wlc_hw->unit, wlc_hw->corerev);
}
}
}
static void brcms_b_core_ioctl(struct brcms_hardware *wlc_hw, u32 m, u32 v)
{
struct bcma_device *core = wlc_hw->d11core;
u32 ioctl = bcma_aread32(core, BCMA_IOCTL) & ~m;
bcma_awrite32(core, BCMA_IOCTL, ioctl | v);
}
static void brcms_b_core_phy_clk(struct brcms_hardware *wlc_hw, bool clk)
{
brcms_dbg_info(wlc_hw->d11core, "wl%d: clk %d\n", wlc_hw->unit, clk);
wlc_hw->phyclk = clk;
if (OFF == clk) { /* clear gmode bit, put phy into reset */
brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC | SICF_GMODE),
(SICF_PRST | SICF_FGC));
udelay(1);
brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC), SICF_PRST);
udelay(1);
} else { /* take phy out of reset */
brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC), SICF_FGC);
udelay(1);
brcms_b_core_ioctl(wlc_hw, SICF_FGC, 0);
udelay(1);
}
}
/* low-level band switch utility routine */
static void brcms_c_setxband(struct brcms_hardware *wlc_hw, uint bandunit)
{
brcms_dbg_mac80211(wlc_hw->d11core, "wl%d: bandunit %d\n", wlc_hw->unit,
bandunit);
wlc_hw->band = wlc_hw->bandstate[bandunit];
/*
* BMAC_NOTE:
* until we eliminate need for wlc->band refs in low level code
*/
wlc_hw->wlc->band = wlc_hw->wlc->bandstate[bandunit];
/* set gmode core flag */
if (wlc_hw->sbclk && !wlc_hw->noreset) {
u32 gmode = 0;
if (bandunit == 0)
gmode = SICF_GMODE;
brcms_b_core_ioctl(wlc_hw, SICF_GMODE, gmode);
}
}
/* switch to new band but leave it inactive */
static u32 brcms_c_setband_inact(struct brcms_c_info *wlc, uint bandunit)
{
struct brcms_hardware *wlc_hw = wlc->hw;
u32 macintmask;
u32 macctrl;
brcms_dbg_mac80211(wlc_hw->d11core, "wl%d\n", wlc_hw->unit);
macctrl = bcma_read32(wlc_hw->d11core,
D11REGOFFS(maccontrol));
WARN_ON((macctrl & MCTL_EN_MAC) != 0);
/* disable interrupts */
macintmask = brcms_intrsoff(wlc->wl);
/* radio off */
wlc_phy_switch_radio(wlc_hw->band->pi, OFF);
brcms_b_core_phy_clk(wlc_hw, OFF);
brcms_c_setxband(wlc_hw, bandunit);
return macintmask;
}
/* process an individual struct tx_status */
static bool
brcms_c_dotxstatus(struct brcms_c_info *wlc, struct tx_status *txs)
{
struct sk_buff *p = NULL;
uint queue = NFIFO;
struct dma_pub *dma = NULL;
struct d11txh *txh = NULL;
struct scb *scb = NULL;
bool free_pdu;
int tx_rts, tx_frame_count, tx_rts_count;
uint totlen, supr_status;
bool lastframe;
struct ieee80211_hdr *h;
u16 mcl;
struct ieee80211_tx_info *tx_info;
struct ieee80211_tx_rate *txrate;
int i;
bool fatal = true;
trace_brcms_txstatus(&wlc->hw->d11core->dev, txs->framelen,
txs->frameid, txs->status, txs->lasttxtime,
txs->sequence, txs->phyerr, txs->ackphyrxsh);
/* discard intermediate indications for ucode with one legitimate case:
* e.g. if "useRTS" is set. ucode did a successful rts/cts exchange,
* but the subsequent tx of DATA failed. so it will start rts/cts
* from the beginning (resetting the rts transmission count)
*/
if (!(txs->status & TX_STATUS_AMPDU)
&& (txs->status & TX_STATUS_INTERMEDIATE)) {
brcms_dbg_tx(wlc->hw->d11core, "INTERMEDIATE but not AMPDU\n");
fatal = false;
goto out;
}
queue = txs->frameid & TXFID_QUEUE_MASK;
if (queue >= NFIFO) {
brcms_err(wlc->hw->d11core, "queue %u >= NFIFO\n", queue);
goto out;
}
dma = wlc->hw->di[queue];
p = dma_getnexttxp(wlc->hw->di[queue], DMA_RANGE_TRANSMITTED);
if (p == NULL) {
brcms_err(wlc->hw->d11core, "dma_getnexttxp returned null!\n");
goto out;
}
txh = (struct d11txh *) (p->data);
mcl = le16_to_cpu(txh->MacTxControlLow);
if (txs->phyerr)
brcms_dbg_tx(wlc->hw->d11core, "phyerr 0x%x, rate 0x%x\n",
txs->phyerr, txh->MainRates);
if (txs->frameid != le16_to_cpu(txh->TxFrameID)) {
brcms_err(wlc->hw->d11core, "frameid != txh->TxFrameID\n");
goto out;
}
tx_info = IEEE80211_SKB_CB(p);
h = (struct ieee80211_hdr *)((u8 *) (txh + 1) + D11_PHY_HDR_LEN);
if (tx_info->rate_driver_data[0])
scb = &wlc->pri_scb;
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
brcms_c_ampdu_dotxstatus(wlc->ampdu, scb, p, txs);
fatal = false;
goto out;
}
/*
* brcms_c_ampdu_dotxstatus() will trace tx descriptors for AMPDU
* frames; this traces them for the rest.
*/
trace_brcms_txdesc(&wlc->hw->d11core->dev, txh, sizeof(*txh));
supr_status = txs->status & TX_STATUS_SUPR_MASK;
if (supr_status == TX_STATUS_SUPR_BADCH) {
unsigned xfts = le16_to_cpu(txh->XtraFrameTypes);
brcms_dbg_tx(wlc->hw->d11core,
"Pkt tx suppressed, dest chan %u, current %d\n",
(xfts >> XFTS_CHANNEL_SHIFT) & 0xff,
CHSPEC_CHANNEL(wlc->default_bss->chanspec));
}
tx_rts = le16_to_cpu(txh->MacTxControlLow) & TXC_SENDRTS;
tx_frame_count =
(txs->status & TX_STATUS_FRM_RTX_MASK) >> TX_STATUS_FRM_RTX_SHIFT;
tx_rts_count =
(txs->status & TX_STATUS_RTS_RTX_MASK) >> TX_STATUS_RTS_RTX_SHIFT;
lastframe = !ieee80211_has_morefrags(h->frame_control);
if (!lastframe) {
brcms_err(wlc->hw->d11core, "Not last frame!\n");
} else {
/*
* Set information to be consumed by Minstrel ht.
*
* The "fallback limit" is the number of tx attempts a given
* MPDU is sent at the "primary" rate. Tx attempts beyond that
* limit are sent at the "secondary" rate.
* A 'short frame' does not exceed RTS treshold.
*/
u16 sfbl, /* Short Frame Rate Fallback Limit */
lfbl, /* Long Frame Rate Fallback Limit */
fbl;
if (queue < IEEE80211_NUM_ACS) {
sfbl = GFIELD(wlc->wme_retries[wme_fifo2ac[queue]],
EDCF_SFB);
lfbl = GFIELD(wlc->wme_retries[wme_fifo2ac[queue]],
EDCF_LFB);
} else {
sfbl = wlc->SFBL;
lfbl = wlc->LFBL;
}
txrate = tx_info->status.rates;
if (txrate[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
fbl = lfbl;
else
fbl = sfbl;
ieee80211_tx_info_clear_status(tx_info);
if ((tx_frame_count > fbl) && (txrate[1].idx >= 0)) {
/*
* rate selection requested a fallback rate
* and we used it
*/
txrate[0].count = fbl;
txrate[1].count = tx_frame_count - fbl;
} else {
/*
* rate selection did not request fallback rate, or
* we didn't need it
*/
txrate[0].count = tx_frame_count;
/*
* rc80211_minstrel.c:minstrel_tx_status() expects
* unused rates to be marked with idx = -1
*/
txrate[1].idx = -1;
txrate[1].count = 0;
}
/* clear the rest of the rates */
for (i = 2; i < IEEE80211_TX_MAX_RATES; i++) {
txrate[i].idx = -1;
txrate[i].count = 0;
}
if (txs->status & TX_STATUS_ACK_RCV)
tx_info->flags |= IEEE80211_TX_STAT_ACK;
}
totlen = p->len;
free_pdu = true;
if (lastframe) {
/* remove PLCP & Broadcom tx descriptor header */
skb_pull(p, D11_PHY_HDR_LEN);
skb_pull(p, D11_TXH_LEN);
ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw, p);
} else {
brcms_err(wlc->hw->d11core,
"%s: Not last frame => not calling tx_status\n",
__func__);
}
fatal = false;
out:
if (fatal) {
if (txh)
trace_brcms_txdesc(&wlc->hw->d11core->dev, txh,
sizeof(*txh));
brcmu_pkt_buf_free_skb(p);
}
if (dma && queue < NFIFO) {
u16 ac_queue = brcms_fifo_to_ac(queue);
if (dma->txavail > TX_HEADROOM && queue < TX_BCMC_FIFO &&
ieee80211_queue_stopped(wlc->pub->ieee_hw, ac_queue))
ieee80211_wake_queue(wlc->pub->ieee_hw, ac_queue);
dma_kick_tx(dma);
}
return fatal;
}
/* process tx completion events in BMAC
* Return true if more tx status need to be processed. false otherwise.
*/
static bool
brcms_b_txstatus(struct brcms_hardware *wlc_hw, bool bound, bool *fatal)
{
struct bcma_device *core;
struct tx_status txstatus, *txs;
u32 s1, s2;
uint n = 0;
/*
* Param 'max_tx_num' indicates max. # tx status to process before
* break out.
*/
uint max_tx_num = bound ? TXSBND : -1;
txs = &txstatus;
core = wlc_hw->d11core;
*fatal = false;
while (n < max_tx_num) {
s1 = bcma_read32(core, D11REGOFFS(frmtxstatus));
if (s1 == 0xffffffff) {
brcms_err(core, "wl%d: %s: dead chip\n", wlc_hw->unit,
__func__);
*fatal = true;
return false;
}
/* only process when valid */
if (!(s1 & TXS_V))
break;
s2 = bcma_read32(core, D11REGOFFS(frmtxstatus2));
txs->status = s1 & TXS_STATUS_MASK;
txs->frameid = (s1 & TXS_FID_MASK) >> TXS_FID_SHIFT;
txs->sequence = s2 & TXS_SEQ_MASK;
txs->phyerr = (s2 & TXS_PTX_MASK) >> TXS_PTX_SHIFT;
txs->lasttxtime = 0;
*fatal = brcms_c_dotxstatus(wlc_hw->wlc, txs);
if (*fatal == true)
return false;
n++;
}
return n >= max_tx_num;
}
static void brcms_c_tbtt(struct brcms_c_info *wlc)
{
if (wlc->bsscfg->type == BRCMS_TYPE_ADHOC)
/*
* DirFrmQ is now valid...defer setting until end
* of ATIM window
*/
wlc->qvalid |= MCMD_DIRFRMQVAL;
}
/* set initial host flags value */
static void
brcms_c_mhfdef(struct brcms_c_info *wlc, u16 *mhfs, u16 mhf2_init)
{
struct brcms_hardware *wlc_hw = wlc->hw;
memset(mhfs, 0, MHFMAX * sizeof(u16));
mhfs[MHF2] |= mhf2_init;
/* prohibit use of slowclock on multifunction boards */
if (wlc_hw->boardflags & BFL_NOPLLDOWN)
mhfs[MHF1] |= MHF1_FORCEFASTCLK;
if (BRCMS_ISNPHY(wlc_hw->band) && NREV_LT(wlc_hw->band->phyrev, 2)) {
mhfs[MHF2] |= MHF2_NPHY40MHZ_WAR;
mhfs[MHF1] |= MHF1_IQSWAP_WAR;
}
}
static uint
dmareg(uint direction, uint fifonum)
{
if (direction == DMA_TX)
return offsetof(struct d11regs, fifo64regs[fifonum].dmaxmt);
return offsetof(struct d11regs, fifo64regs[fifonum].dmarcv);
}
static bool brcms_b_attach_dmapio(struct brcms_c_info *wlc, uint j, bool wme)
{
uint i;
char name[8];
/*
* ucode host flag 2 needed for pio mode, independent of band and fifo
*/
u16 pio_mhf2 = 0;
struct brcms_hardware *wlc_hw = wlc->hw;
uint unit = wlc_hw->unit;
/* name and offsets for dma_attach */
snprintf(name, sizeof(name), "wl%d", unit);
if (wlc_hw->di[0] == NULL) { /* Init FIFOs */
int dma_attach_err = 0;
/*
* FIFO 0
* TX: TX_AC_BK_FIFO (TX AC Background data packets)
* RX: RX_FIFO (RX data packets)
*/
wlc_hw->di[0] = dma_attach(name, wlc,
(wme ? dmareg(DMA_TX, 0) : 0),
dmareg(DMA_RX, 0),
(wme ? NTXD : 0), NRXD,
RXBUFSZ, -1, NRXBUFPOST,
BRCMS_HWRXOFF);
dma_attach_err |= (NULL == wlc_hw->di[0]);
/*
* FIFO 1
* TX: TX_AC_BE_FIFO (TX AC Best-Effort data packets)
* (legacy) TX_DATA_FIFO (TX data packets)
* RX: UNUSED
*/
wlc_hw->di[1] = dma_attach(name, wlc,
dmareg(DMA_TX, 1), 0,
NTXD, 0, 0, -1, 0, 0);
dma_attach_err |= (NULL == wlc_hw->di[1]);
/*
* FIFO 2
* TX: TX_AC_VI_FIFO (TX AC Video data packets)
* RX: UNUSED
*/
wlc_hw->di[2] = dma_attach(name, wlc,
dmareg(DMA_TX, 2), 0,
NTXD, 0, 0, -1, 0, 0);
dma_attach_err |= (NULL == wlc_hw->di[2]);
/*
* FIFO 3
* TX: TX_AC_VO_FIFO (TX AC Voice data packets)
* (legacy) TX_CTL_FIFO (TX control & mgmt packets)
*/
wlc_hw->di[3] = dma_attach(name, wlc,
dmareg(DMA_TX, 3),
0, NTXD, 0, 0, -1,
0, 0);
dma_attach_err |= (NULL == wlc_hw->di[3]);
/* Cleaner to leave this as if with AP defined */
if (dma_attach_err) {
brcms_err(wlc_hw->d11core,
"wl%d: wlc_attach: dma_attach failed\n",
unit);
return false;
}
/* get pointer to dma engine tx flow control variable */
for (i = 0; i < NFIFO; i++)
if (wlc_hw->di[i])
wlc_hw->txavail[i] =
(uint *) dma_getvar(wlc_hw->di[i],
"&txavail");
}
/* initial ucode host flags */
brcms_c_mhfdef(wlc, wlc_hw->band->mhfs, pio_mhf2);
return true;
}
static void brcms_b_detach_dmapio(struct brcms_hardware *wlc_hw)
{
uint j;
for (j = 0; j < NFIFO; j++) {
if (wlc_hw->di[j]) {
dma_detach(wlc_hw->di[j]);
wlc_hw->di[j] = NULL;
}
}
}
/*
* Initialize brcms_c_info default values ...
* may get overrides later in this function
* BMAC_NOTES, move low out and resolve the dangling ones
*/
static void brcms_b_info_init(struct brcms_hardware *wlc_hw)
{
struct brcms_c_info *wlc = wlc_hw->wlc;
/* set default sw macintmask value */
wlc->defmacintmask = DEF_MACINTMASK;
/* various 802.11g modes */
wlc_hw->shortslot = false;
wlc_hw->SFBL = RETRY_SHORT_FB;
wlc_hw->LFBL = RETRY_LONG_FB;
/* default mac retry limits */
wlc_hw->SRL = RETRY_SHORT_DEF;
wlc_hw->LRL = RETRY_LONG_DEF;
wlc_hw->chanspec = ch20mhz_chspec(1);
}
static void brcms_b_wait_for_wake(struct brcms_hardware *wlc_hw)
{
/* delay before first read of ucode state */
udelay(40);
/* wait until ucode is no longer asleep */
SPINWAIT((brcms_b_read_shm(wlc_hw, M_UCODE_DBGST) ==
DBGST_ASLEEP), wlc_hw->wlc->fastpwrup_dly);
}
/* control chip clock to save power, enable dynamic clock or force fast clock */
static void brcms_b_clkctl_clk(struct brcms_hardware *wlc_hw, enum bcma_clkmode mode)
{
if (ai_get_cccaps(wlc_hw->sih) & CC_CAP_PMU) {
/* new chips with PMU, CCS_FORCEHT will distribute the HT clock
* on backplane, but mac core will still run on ALP(not HT) when
* it enters powersave mode, which means the FCA bit may not be
* set. Should wakeup mac if driver wants it to run on HT.
*/
if (wlc_hw->clk) {
if (mode == BCMA_CLKMODE_FAST) {
bcma_set32(wlc_hw->d11core,
D11REGOFFS(clk_ctl_st),
CCS_FORCEHT);
udelay(64);
SPINWAIT(
((bcma_read32(wlc_hw->d11core,
D11REGOFFS(clk_ctl_st)) &
CCS_HTAVAIL) == 0),
PMU_MAX_TRANSITION_DLY);
WARN_ON(!(bcma_read32(wlc_hw->d11core,
D11REGOFFS(clk_ctl_st)) &
CCS_HTAVAIL));
} else {
if ((ai_get_pmurev(wlc_hw->sih) == 0) &&
(bcma_read32(wlc_hw->d11core,
D11REGOFFS(clk_ctl_st)) &
(CCS_FORCEHT | CCS_HTAREQ)))
SPINWAIT(
((bcma_read32(wlc_hw->d11core,
offsetof(struct d11regs,
clk_ctl_st)) &
CCS_HTAVAIL) == 0),
PMU_MAX_TRANSITION_DLY);
bcma_mask32(wlc_hw->d11core,
D11REGOFFS(clk_ctl_st),
~CCS_FORCEHT);
}
}
wlc_hw->forcefastclk = (mode == BCMA_CLKMODE_FAST);
} else {
/* old chips w/o PMU, force HT through cc,
* then use FCA to verify mac is running fast clock
*/
wlc_hw->forcefastclk = ai_clkctl_cc(wlc_hw->sih, mode);
/* check fast clock is available (if core is not in reset) */
if (wlc_hw->forcefastclk && wlc_hw->clk)
WARN_ON(!(bcma_aread32(wlc_hw->d11core, BCMA_IOST) &
SISF_FCLKA));
/*
* keep the ucode wake bit on if forcefastclk is on since we
* do not want ucode to put us back to slow clock when it dozes
* for PM mode. Code below matches the wake override bit with
* current forcefastclk state. Only setting bit in wake_override
* instead of waking ucode immediately since old code had this
* behavior. Older code set wlc->forcefastclk but only had the
* wake happen if the wakup_ucode work (protected by an up
* check) was executed just below.
*/
if (wlc_hw->forcefastclk)
mboolset(wlc_hw->wake_override,
BRCMS_WAKE_OVERRIDE_FORCEFAST);
else
mboolclr(wlc_hw->wake_override,
BRCMS_WAKE_OVERRIDE_FORCEFAST);
}
}
/* set or clear ucode host flag bits
* it has an optimization for no-change write
* it only writes through shared memory when the core has clock;
* pre-CLK changes should use wlc_write_mhf to get around the optimization
*
*
* bands values are: BRCM_BAND_AUTO <--- Current band only
* BRCM_BAND_5G <--- 5G band only
* BRCM_BAND_2G <--- 2G band only
* BRCM_BAND_ALL <--- All bands
*/
void
brcms_b_mhf(struct brcms_hardware *wlc_hw, u8 idx, u16 mask, u16 val,
int bands)
{
u16 save;
u16 addr[MHFMAX] = {
M_HOST_FLAGS1, M_HOST_FLAGS2, M_HOST_FLAGS3, M_HOST_FLAGS4,
M_HOST_FLAGS5
};
struct brcms_hw_band *band;
if ((val & ~mask) || idx >= MHFMAX)
return; /* error condition */
switch (bands) {
/* Current band only or all bands,
* then set the band to current band
*/
case BRCM_BAND_AUTO:
case BRCM_BAND_ALL:
band = wlc_hw->band;
break;
case BRCM_BAND_5G:
band = wlc_hw->bandstate[BAND_5G_INDEX];
break;
case BRCM_BAND_2G:
band = wlc_hw->bandstate[BAND_2G_INDEX];
break;
default:
band = NULL; /* error condition */
}
if (band) {
save = band->mhfs[idx];
band->mhfs[idx] = (band->mhfs[idx] & ~mask) | val;
/* optimization: only write through if changed, and
* changed band is the current band
*/
if (wlc_hw->clk && (band->mhfs[idx] != save)
&& (band == wlc_hw->band))
brcms_b_write_shm(wlc_hw, addr[idx],
(u16) band->mhfs[idx]);
}
if (bands == BRCM_BAND_ALL) {
wlc_hw->bandstate[0]->mhfs[idx] =
(wlc_hw->bandstate[0]->mhfs[idx] & ~mask) | val;
wlc_hw->bandstate[1]->mhfs[idx] =
(wlc_hw->bandstate[1]->mhfs[idx] & ~mask) | val;
}
}
/* set the maccontrol register to desired reset state and
* initialize the sw cache of the register
*/
static void brcms_c_mctrl_reset(struct brcms_hardware *wlc_hw)
{
/* IHR accesses are always enabled, PSM disabled, HPS off and WAKE on */
wlc_hw->maccontrol = 0;
wlc_hw->suspended_fifos = 0;
wlc_hw->wake_override = 0;
wlc_hw->mute_override = 0;
brcms_b_mctrl(wlc_hw, ~0, MCTL_IHR_EN | MCTL_WAKE);
}
/*
* write the software state of maccontrol and
* overrides to the maccontrol register
*/
static void brcms_c_mctrl_write(struct brcms_hardware *wlc_hw)
{
u32 maccontrol = wlc_hw->maccontrol;
/* OR in the wake bit if overridden */
if (wlc_hw->wake_override)
maccontrol |= MCTL_WAKE;
/* set AP and INFRA bits for mute if needed */
if (wlc_hw->mute_override) {
maccontrol &= ~(MCTL_AP);
maccontrol |= MCTL_INFRA;
}
bcma_write32(wlc_hw->d11core, D11REGOFFS(maccontrol),
maccontrol);
}
/* set or clear maccontrol bits */
void brcms_b_mctrl(struct brcms_hardware *wlc_hw, u32 mask, u32 val)
{
u32 maccontrol;
u32 new_maccontrol;
if (val & ~mask)
return; /* error condition */
maccontrol = wlc_hw->maccontrol;
new_maccontrol = (maccontrol & ~mask) | val;
/* if the new maccontrol value is the same as the old, nothing to do */
if (new_maccontrol == maccontrol)
return;
/* something changed, cache the new value */
wlc_hw->maccontrol = new_maccontrol;
/* write the new values with overrides applied */
brcms_c_mctrl_write(wlc_hw);
}
void brcms_c_ucode_wake_override_set(struct brcms_hardware *wlc_hw,
u32 override_bit)
{
if (wlc_hw->wake_override || (wlc_hw->maccontrol & MCTL_WAKE)) {
mboolset(wlc_hw->wake_override, override_bit);
return;
}
mboolset(wlc_hw->wake_override, override_bit);
brcms_c_mctrl_write(wlc_hw);
brcms_b_wait_for_wake(wlc_hw);
}
void brcms_c_ucode_wake_override_clear(struct brcms_hardware *wlc_hw,
u32 override_bit)
{
mboolclr(wlc_hw->wake_override, override_bit);
if (wlc_hw->wake_override || (wlc_hw->maccontrol & MCTL_WAKE))
return;
brcms_c_mctrl_write(wlc_hw);
}
/* When driver needs ucode to stop beaconing, it has to make sure that
* MCTL_AP is clear and MCTL_INFRA is set
* Mode MCTL_AP MCTL_INFRA
* AP 1 1
* STA 0 1 <--- This will ensure no beacons
* IBSS 0 0
*/
static void brcms_c_ucode_mute_override_set(struct brcms_hardware *wlc_hw)
{
wlc_hw->mute_override = 1;
/* if maccontrol already has AP == 0 and INFRA == 1 without this
* override, then there is no change to write
*/
if ((wlc_hw->maccontrol & (MCTL_AP | MCTL_INFRA)) == MCTL_INFRA)
return;
brcms_c_mctrl_write(wlc_hw);
}
/* Clear the override on AP and INFRA bits */
static void brcms_c_ucode_mute_override_clear(struct brcms_hardware *wlc_hw)
{
if (wlc_hw->mute_override == 0)
return;
wlc_hw->mute_override = 0;
/* if maccontrol already has AP == 0 and INFRA == 1 without this
* override, then there is no change to write
*/
if ((wlc_hw->maccontrol & (MCTL_AP | MCTL_INFRA)) == MCTL_INFRA)
return;
brcms_c_mctrl_write(wlc_hw);
}
/*
* Write a MAC address to the given match reg offset in the RXE match engine.
*/
static void
brcms_b_set_addrmatch(struct brcms_hardware *wlc_hw, int match_reg_offset,
const u8 *addr)
{
struct bcma_device *core = wlc_hw->d11core;
u16 mac_l;
u16 mac_m;
u16 mac_h;
brcms_dbg_rx(core, "wl%d: brcms_b_set_addrmatch\n", wlc_hw->unit);
mac_l = addr[0] | (addr[1] << 8);
mac_m = addr[2] | (addr[3] << 8);
mac_h = addr[4] | (addr[5] << 8);
/* enter the MAC addr into the RXE match registers */
bcma_write16(core, D11REGOFFS(rcm_ctl),
RCM_INC_DATA | match_reg_offset);
bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_l);
bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_m);
bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_h);
}
void
brcms_b_write_template_ram(struct brcms_hardware *wlc_hw, int offset, int len,
void *buf)
{
struct bcma_device *core = wlc_hw->d11core;
u32 word;
__le32 word_le;
__be32 word_be;
bool be_bit;
brcms_dbg_info(core, "wl%d\n", wlc_hw->unit);
bcma_write32(core, D11REGOFFS(tplatewrptr), offset);
/* if MCTL_BIGEND bit set in mac control register,
* the chip swaps data in fifo, as well as data in
* template ram
*/
be_bit = (bcma_read32(core, D11REGOFFS(maccontrol)) & MCTL_BIGEND) != 0;
while (len > 0) {
memcpy(&word, buf, sizeof(u32));
if (be_bit) {
word_be = cpu_to_be32(word);
word = *(u32 *)&word_be;
} else {
word_le = cpu_to_le32(word);
word = *(u32 *)&word_le;
}
bcma_write32(core, D11REGOFFS(tplatewrdata), word);
buf = (u8 *) buf + sizeof(u32);
len -= sizeof(u32);
}
}
static void brcms_b_set_cwmin(struct brcms_hardware *wlc_hw, u16 newmin)
{
wlc_hw->band->CWmin = newmin;
bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr),
OBJADDR_SCR_SEL | S_DOT11_CWMIN);
(void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr));
bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), newmin);
}
static void brcms_b_set_cwmax(struct brcms_hardware *wlc_hw, u16 newmax)
{
wlc_hw->band->CWmax = newmax;
bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr),
OBJADDR_SCR_SEL | S_DOT11_CWMAX);
(void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr));
bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), newmax);
}
void brcms_b_bw_set(struct brcms_hardware *wlc_hw, u16 bw)
{
bool fastclk;
/* request FAST clock if not on */
fastclk = wlc_hw->forcefastclk;
if (!fastclk)
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
wlc_phy_bw_state_set(wlc_hw->band->pi, bw);
brcms_b_phy_reset(wlc_hw);
wlc_phy_init(wlc_hw->band->pi, wlc_phy_chanspec_get(wlc_hw->band->pi));
/* restore the clk */
if (!fastclk)
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC);
}
static void brcms_b_upd_synthpu(struct brcms_hardware *wlc_hw)
{
u16 v;
struct brcms_c_info *wlc = wlc_hw->wlc;
/* update SYNTHPU_DLY */
if (BRCMS_ISLCNPHY(wlc->band))
v = SYNTHPU_DLY_LPPHY_US;
else if (BRCMS_ISNPHY(wlc->band) && (NREV_GE(wlc->band->phyrev, 3)))
v = SYNTHPU_DLY_NPHY_US;
else
v = SYNTHPU_DLY_BPHY_US;
brcms_b_write_shm(wlc_hw, M_SYNTHPU_DLY, v);
}
static void brcms_c_ucode_txant_set(struct brcms_hardware *wlc_hw)
{
u16 phyctl;
u16 phytxant = wlc_hw->bmac_phytxant;
u16 mask = PHY_TXC_ANT_MASK;
/* set the Probe Response frame phy control word */
phyctl = brcms_b_read_shm(wlc_hw, M_CTXPRS_BLK + C_CTX_PCTLWD_POS);
phyctl = (phyctl & ~mask) | phytxant;
brcms_b_write_shm(wlc_hw, M_CTXPRS_BLK + C_CTX_PCTLWD_POS, phyctl);
/* set the Response (ACK/CTS) frame phy control word */
phyctl = brcms_b_read_shm(wlc_hw, M_RSP_PCTLWD);
phyctl = (phyctl & ~mask) | phytxant;
brcms_b_write_shm(wlc_hw, M_RSP_PCTLWD, phyctl);
}
static u16 brcms_b_ofdm_ratetable_offset(struct brcms_hardware *wlc_hw,
u8 rate)
{
uint i;
u8 plcp_rate = 0;
struct plcp_signal_rate_lookup {
u8 rate;
u8 signal_rate;
};
/* OFDM RATE sub-field of PLCP SIGNAL field, per 802.11 sec 17.3.4.1 */
const struct plcp_signal_rate_lookup rate_lookup[] = {
{BRCM_RATE_6M, 0xB},
{BRCM_RATE_9M, 0xF},
{BRCM_RATE_12M, 0xA},
{BRCM_RATE_18M, 0xE},
{BRCM_RATE_24M, 0x9},
{BRCM_RATE_36M, 0xD},
{BRCM_RATE_48M, 0x8},
{BRCM_RATE_54M, 0xC}
};
for (i = 0; i < ARRAY_SIZE(rate_lookup); i++) {
if (rate == rate_lookup[i].rate) {
plcp_rate = rate_lookup[i].signal_rate;
break;
}
}
/* Find the SHM pointer to the rate table entry by looking in the
* Direct-map Table
*/
return 2 * brcms_b_read_shm(wlc_hw, M_RT_DIRMAP_A + (plcp_rate * 2));
}
static void brcms_upd_ofdm_pctl1_table(struct brcms_hardware *wlc_hw)
{
u8 rate;
u8 rates[8] = {
BRCM_RATE_6M, BRCM_RATE_9M, BRCM_RATE_12M, BRCM_RATE_18M,
BRCM_RATE_24M, BRCM_RATE_36M, BRCM_RATE_48M, BRCM_RATE_54M
};
u16 entry_ptr;
u16 pctl1;
uint i;
if (!BRCMS_PHY_11N_CAP(wlc_hw->band))
return;
/* walk the phy rate table and update the entries */
for (i = 0; i < ARRAY_SIZE(rates); i++) {
rate = rates[i];
entry_ptr = brcms_b_ofdm_ratetable_offset(wlc_hw, rate);
/* read the SHM Rate Table entry OFDM PCTL1 values */
pctl1 =
brcms_b_read_shm(wlc_hw, entry_ptr + M_RT_OFDM_PCTL1_POS);
/* modify the value */
pctl1 &= ~PHY_TXC1_MODE_MASK;
pctl1 |= (wlc_hw->hw_stf_ss_opmode << PHY_TXC1_MODE_SHIFT);
/* Update the SHM Rate Table entry OFDM PCTL1 values */
brcms_b_write_shm(wlc_hw, entry_ptr + M_RT_OFDM_PCTL1_POS,
pctl1);
}
}
/* band-specific init */
static void brcms_b_bsinit(struct brcms_c_info *wlc, u16 chanspec)
{
struct brcms_hardware *wlc_hw = wlc->hw;
brcms_dbg_mac80211(wlc_hw->d11core, "wl%d: bandunit %d\n", wlc_hw->unit,
wlc_hw->band->bandunit);
brcms_c_ucode_bsinit(wlc_hw);
wlc_phy_init(wlc_hw->band->pi, chanspec);
brcms_c_ucode_txant_set(wlc_hw);
/*
* cwmin is band-specific, update hardware
* with value for current band
*/
brcms_b_set_cwmin(wlc_hw, wlc_hw->band->CWmin);
brcms_b_set_cwmax(wlc_hw, wlc_hw->band->CWmax);
brcms_b_update_slot_timing(wlc_hw,
wlc_hw->band->bandtype == BRCM_BAND_5G ?
true : wlc_hw->shortslot);
/* write phytype and phyvers */
brcms_b_write_shm(wlc_hw, M_PHYTYPE, (u16) wlc_hw->band->phytype);
brcms_b_write_shm(wlc_hw, M_PHYVER, (u16) wlc_hw->band->phyrev);
/*
* initialize the txphyctl1 rate table since
* shmem is shared between bands
*/
brcms_upd_ofdm_pctl1_table(wlc_hw);
brcms_b_upd_synthpu(wlc_hw);
}
/* Perform a soft reset of the PHY PLL */
void brcms_b_core_phypll_reset(struct brcms_hardware *wlc_hw)
{
ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_addr),
~0, 0);
udelay(1);
ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data),
0x4, 0);
udelay(1);
ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data),
0x4, 4);
udelay(1);
ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data),
0x4, 0);
udelay(1);
}
/* light way to turn on phy clock without reset for NPHY only
* refer to brcms_b_core_phy_clk for full version
*/
void brcms_b_phyclk_fgc(struct brcms_hardware *wlc_hw, bool clk)
{
/* support(necessary for NPHY and HYPHY) only */
if (!BRCMS_ISNPHY(wlc_hw->band))
return;
if (ON == clk)
brcms_b_core_ioctl(wlc_hw, SICF_FGC, SICF_FGC);
else
brcms_b_core_ioctl(wlc_hw, SICF_FGC, 0);
}
void brcms_b_macphyclk_set(struct brcms_hardware *wlc_hw, bool clk)
{
if (ON == clk)
brcms_b_core_ioctl(wlc_hw, SICF_MPCLKE, SICF_MPCLKE);
else
brcms_b_core_ioctl(wlc_hw, SICF_MPCLKE, 0);
}
void brcms_b_phy_reset(struct brcms_hardware *wlc_hw)
{
struct brcms_phy_pub *pih = wlc_hw->band->pi;
u32 phy_bw_clkbits;
bool phy_in_reset = false;
brcms_dbg_info(wlc_hw->d11core, "wl%d: reset phy\n", wlc_hw->unit);
if (pih == NULL)
return;
phy_bw_clkbits = wlc_phy_clk_bwbits(wlc_hw->band->pi);
/* Specific reset sequence required for NPHY rev 3 and 4 */
if (BRCMS_ISNPHY(wlc_hw->band) && NREV_GE(wlc_hw->band->phyrev, 3) &&
NREV_LE(wlc_hw->band->phyrev, 4)) {
/* Set the PHY bandwidth */
brcms_b_core_ioctl(wlc_hw, SICF_BWMASK, phy_bw_clkbits);
udelay(1);
/* Perform a soft reset of the PHY PLL */
brcms_b_core_phypll_reset(wlc_hw);
/* reset the PHY */
brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_PCLKE),
(SICF_PRST | SICF_PCLKE));
phy_in_reset = true;
} else {
brcms_b_core_ioctl(wlc_hw,
(SICF_PRST | SICF_PCLKE | SICF_BWMASK),
(SICF_PRST | SICF_PCLKE | phy_bw_clkbits));
}
udelay(2);
brcms_b_core_phy_clk(wlc_hw, ON);
if (pih)
wlc_phy_anacore(pih, ON);
}
/* switch to and initialize new band */
static void brcms_b_setband(struct brcms_hardware *wlc_hw, uint bandunit,
u16 chanspec) {
struct brcms_c_info *wlc = wlc_hw->wlc;
u32 macintmask;
/* Enable the d11 core before accessing it */
if (!bcma_core_is_enabled(wlc_hw->d11core)) {
bcma_core_enable(wlc_hw->d11core, 0);
brcms_c_mctrl_reset(wlc_hw);
}
macintmask = brcms_c_setband_inact(wlc, bandunit);
if (!wlc_hw->up)
return;
brcms_b_core_phy_clk(wlc_hw, ON);
/* band-specific initializations */
brcms_b_bsinit(wlc, chanspec);
/*
* If there are any pending software interrupt bits,
* then replace these with a harmless nonzero value
* so brcms_c_dpc() will re-enable interrupts when done.
*/
if (wlc->macintstatus)
wlc->macintstatus = MI_DMAINT;
/* restore macintmask */
brcms_intrsrestore(wlc->wl, macintmask);
/* ucode should still be suspended.. */
WARN_ON((bcma_read32(wlc_hw->d11core, D11REGOFFS(maccontrol)) &
MCTL_EN_MAC) != 0);
}
static bool brcms_c_isgoodchip(struct brcms_hardware *wlc_hw)
{
/* reject unsupported corerev */
if (!CONF_HAS(D11CONF, wlc_hw->corerev)) {
wiphy_err(wlc_hw->wlc->wiphy, "unsupported core rev %d\n",
wlc_hw->corerev);
return false;
}
return true;
}
/* Validate some board info parameters */
static bool brcms_c_validboardtype(struct brcms_hardware *wlc_hw)
{
uint boardrev = wlc_hw->boardrev;
/* 4 bits each for board type, major, minor, and tiny version */
uint brt = (boardrev & 0xf000) >> 12;
uint b0 = (boardrev & 0xf00) >> 8;
uint b1 = (boardrev & 0xf0) >> 4;
uint b2 = boardrev & 0xf;
/* voards from other vendors are always considered valid */
if (ai_get_boardvendor(wlc_hw->sih) != PCI_VENDOR_ID_BROADCOM)
return true;
/* do some boardrev sanity checks when boardvendor is Broadcom */
if (boardrev == 0)
return false;
if (boardrev <= 0xff)
return true;
if ((brt > 2) || (brt == 0) || (b0 > 9) || (b0 == 0) || (b1 > 9)
|| (b2 > 9))
return false;
return true;
}
static void brcms_c_get_macaddr(struct brcms_hardware *wlc_hw, u8 etheraddr[ETH_ALEN])
{
struct ssb_sprom *sprom = &wlc_hw->d11core->bus->sprom;
/* If macaddr exists, use it (Sromrev4, CIS, ...). */
if (!is_zero_ether_addr(sprom->il0mac)) {
memcpy(etheraddr, sprom->il0mac, ETH_ALEN);
return;
}
if (wlc_hw->_nbands > 1)
memcpy(etheraddr, sprom->et1mac, ETH_ALEN);
else
memcpy(etheraddr, sprom->il0mac, ETH_ALEN);
}
/* power both the pll and external oscillator on/off */
static void brcms_b_xtal(struct brcms_hardware *wlc_hw, bool want)
{
brcms_dbg_info(wlc_hw->d11core, "wl%d: want %d\n", wlc_hw->unit, want);
/*
* dont power down if plldown is false or
* we must poll hw radio disable
*/
if (!want && wlc_hw->pllreq)
return;
wlc_hw->sbclk = want;
if (!wlc_hw->sbclk) {
wlc_hw->clk = false;
if (wlc_hw->band && wlc_hw->band->pi)
wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false);
}
}
/*
* Return true if radio is disabled, otherwise false.
* hw radio disable signal is an external pin, users activate it asynchronously
* this function could be called when driver is down and w/o clock
* it operates on different registers depending on corerev and boardflag.
*/
static bool brcms_b_radio_read_hwdisabled(struct brcms_hardware *wlc_hw)
{
bool v, clk, xtal;
u32 flags = 0;
xtal = wlc_hw->sbclk;
if (!xtal)
brcms_b_xtal(wlc_hw, ON);
/* may need to take core out of reset first */
clk = wlc_hw->clk;
if (!clk) {
/*
* mac no longer enables phyclk automatically when driver
* accesses phyreg throughput mac. This can be skipped since
* only mac reg is accessed below
*/
if (D11REV_GE(wlc_hw->corerev, 18))
flags |= SICF_PCLKE;
/*
* TODO: test suspend/resume
*
* AI chip doesn't restore bar0win2 on
* hibernation/resume, need sw fixup
*/
bcma_core_enable(wlc_hw->d11core, flags);
brcms_c_mctrl_reset(wlc_hw);
}
v = ((bcma_read32(wlc_hw->d11core,
D11REGOFFS(phydebug)) & PDBG_RFD) != 0);
/* put core back into reset */
if (!clk)
bcma_core_disable(wlc_hw->d11core, 0);
if (!xtal)
brcms_b_xtal(wlc_hw, OFF);
return v;
}
static bool wlc_dma_rxreset(struct brcms_hardware *wlc_hw, uint fifo)
{
struct dma_pub *di = wlc_hw->di[fifo];
return dma_rxreset(di);
}
/* d11 core reset
* ensure fask clock during reset
* reset dma
* reset d11(out of reset)
* reset phy(out of reset)
* clear software macintstatus for fresh new start
* one testing hack wlc_hw->noreset will bypass the d11/phy reset
*/
void brcms_b_corereset(struct brcms_hardware *wlc_hw, u32 flags)
{
uint i;
bool fastclk;
if (flags == BRCMS_USE_COREFLAGS)
flags = (wlc_hw->band->pi ? wlc_hw->band->core_flags : 0);
brcms_dbg_info(wlc_hw->d11core, "wl%d: core reset\n", wlc_hw->unit);
/* request FAST clock if not on */
fastclk = wlc_hw->forcefastclk;
if (!fastclk)
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
/* reset the dma engines except first time thru */
if (bcma_core_is_enabled(wlc_hw->d11core)) {
for (i = 0; i < NFIFO; i++)
if ((wlc_hw->di[i]) && (!dma_txreset(wlc_hw->di[i])))
brcms_err(wlc_hw->d11core, "wl%d: %s: "
"dma_txreset[%d]: cannot stop dma\n",
wlc_hw->unit, __func__, i);
if ((wlc_hw->di[RX_FIFO])
&& (!wlc_dma_rxreset(wlc_hw, RX_FIFO)))
brcms_err(wlc_hw->d11core, "wl%d: %s: dma_rxreset"
"[%d]: cannot stop dma\n",
wlc_hw->unit, __func__, RX_FIFO);
}
/* if noreset, just stop the psm and return */
if (wlc_hw->noreset) {
wlc_hw->wlc->macintstatus = 0; /* skip wl_dpc after down */
brcms_b_mctrl(wlc_hw, MCTL_PSM_RUN | MCTL_EN_MAC, 0);
return;
}
/*
* mac no longer enables phyclk automatically when driver accesses
* phyreg throughput mac, AND phy_reset is skipped at early stage when
* band->pi is invalid. need to enable PHY CLK
*/
if (D11REV_GE(wlc_hw->corerev, 18))
flags |= SICF_PCLKE;
/*
* reset the core
* In chips with PMU, the fastclk request goes through d11 core
* reg 0x1e0, which is cleared by the core_reset. have to re-request it.
*
* This adds some delay and we can optimize it by also requesting
* fastclk through chipcommon during this period if necessary. But
* that has to work coordinate with other driver like mips/arm since
* they may touch chipcommon as well.
*/
wlc_hw->clk = false;
bcma_core_enable(wlc_hw->d11core, flags);
wlc_hw->clk = true;
if (wlc_hw->band && wlc_hw->band->pi)
wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, true);
brcms_c_mctrl_reset(wlc_hw);
if (ai_get_cccaps(wlc_hw->sih) & CC_CAP_PMU)
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
brcms_b_phy_reset(wlc_hw);
/* turn on PHY_PLL */
brcms_b_core_phypll_ctl(wlc_hw, true);
/* clear sw intstatus */
wlc_hw->wlc->macintstatus = 0;
/* restore the clk setting */
if (!fastclk)
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC);
}
/* txfifo sizes needs to be modified(increased) since the newer cores
* have more memory.
*/
static void brcms_b_corerev_fifofixup(struct brcms_hardware *wlc_hw)
{
struct bcma_device *core = wlc_hw->d11core;
u16 fifo_nu;
u16 txfifo_startblk = TXFIFO_START_BLK, txfifo_endblk;
u16 txfifo_def, txfifo_def1;
u16 txfifo_cmd;
/* tx fifos start at TXFIFO_START_BLK from the Base address */
txfifo_startblk = TXFIFO_START_BLK;
/* sequence of operations: reset fifo, set fifo size, reset fifo */
for (fifo_nu = 0; fifo_nu < NFIFO; fifo_nu++) {
txfifo_endblk = txfifo_startblk + wlc_hw->xmtfifo_sz[fifo_nu];
txfifo_def = (txfifo_startblk & 0xff) |
(((txfifo_endblk - 1) & 0xff) << TXFIFO_FIFOTOP_SHIFT);
txfifo_def1 = ((txfifo_startblk >> 8) & 0x1) |
((((txfifo_endblk -
1) >> 8) & 0x1) << TXFIFO_FIFOTOP_SHIFT);
txfifo_cmd =
TXFIFOCMD_RESET_MASK | (fifo_nu << TXFIFOCMD_FIFOSEL_SHIFT);
bcma_write16(core, D11REGOFFS(xmtfifocmd), txfifo_cmd);
bcma_write16(core, D11REGOFFS(xmtfifodef), txfifo_def);
bcma_write16(core, D11REGOFFS(xmtfifodef1), txfifo_def1);
bcma_write16(core, D11REGOFFS(xmtfifocmd), txfifo_cmd);
txfifo_startblk += wlc_hw->xmtfifo_sz[fifo_nu];
}
/*
* need to propagate to shm location to be in sync since ucode/hw won't
* do this
*/
brcms_b_write_shm(wlc_hw, M_FIFOSIZE0,
wlc_hw->xmtfifo_sz[TX_AC_BE_FIFO]);
brcms_b_write_shm(wlc_hw, M_FIFOSIZE1,
wlc_hw->xmtfifo_sz[TX_AC_VI_FIFO]);
brcms_b_write_shm(wlc_hw, M_FIFOSIZE2,
((wlc_hw->xmtfifo_sz[TX_AC_VO_FIFO] << 8) | wlc_hw->
xmtfifo_sz[TX_AC_BK_FIFO]));
brcms_b_write_shm(wlc_hw, M_FIFOSIZE3,
((wlc_hw->xmtfifo_sz[TX_ATIM_FIFO] << 8) | wlc_hw->
xmtfifo_sz[TX_BCMC_FIFO]));
}
/* This function is used for changing the tsf frac register
* If spur avoidance mode is off, the mac freq will be 80/120/160Mhz
* If spur avoidance mode is on1, the mac freq will be 82/123/164Mhz
* If spur avoidance mode is on2, the mac freq will be 84/126/168Mhz
* HTPHY Formula is 2^26/freq(MHz) e.g.
* For spuron2 - 126MHz -> 2^26/126 = 532610.0
* - 532610 = 0x82082 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x2082
* For spuron: 123MHz -> 2^26/123 = 545600.5
* - 545601 = 0x85341 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x5341
* For spur off: 120MHz -> 2^26/120 = 559240.5
* - 559241 = 0x88889 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x8889
*/
void brcms_b_switch_macfreq(struct brcms_hardware *wlc_hw, u8 spurmode)
{
struct bcma_device *core = wlc_hw->d11core;
if ((ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM43224) ||
(ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM43225)) {
if (spurmode == WL_SPURAVOID_ON2) { /* 126Mhz */
bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x2082);
bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8);
} else if (spurmode == WL_SPURAVOID_ON1) { /* 123Mhz */
bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x5341);
bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8);
} else { /* 120Mhz */
bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x8889);
bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8);
}
} else if (BRCMS_ISLCNPHY(wlc_hw->band)) {
if (spurmode == WL_SPURAVOID_ON1) { /* 82Mhz */
bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x7CE0);
bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0xC);
} else { /* 80Mhz */
bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0xCCCD);
bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0xC);
}
}
}
void brcms_c_start_station(struct brcms_c_info *wlc, u8 *addr)
{
memcpy(wlc->pub->cur_etheraddr, addr, sizeof(wlc->pub->cur_etheraddr));
wlc->bsscfg->type = BRCMS_TYPE_STATION;
}
void brcms_c_start_ap(struct brcms_c_info *wlc, u8 *addr, const u8 *bssid,
u8 *ssid, size_t ssid_len)
{
brcms_c_set_ssid(wlc, ssid, ssid_len);
memcpy(wlc->pub->cur_etheraddr, addr, sizeof(wlc->pub->cur_etheraddr));
memcpy(wlc->bsscfg->BSSID, bssid, sizeof(wlc->bsscfg->BSSID));
wlc->bsscfg->type = BRCMS_TYPE_AP;
brcms_b_mctrl(wlc->hw, MCTL_AP | MCTL_INFRA, MCTL_AP | MCTL_INFRA);
}
void brcms_c_start_adhoc(struct brcms_c_info *wlc, u8 *addr)
{
memcpy(wlc->pub->cur_etheraddr, addr, sizeof(wlc->pub->cur_etheraddr));
wlc->bsscfg->type = BRCMS_TYPE_ADHOC;
brcms_b_mctrl(wlc->hw, MCTL_AP | MCTL_INFRA, 0);
}
/* Initialize GPIOs that are controlled by D11 core */
static void brcms_c_gpio_init(struct brcms_c_info *wlc)
{
struct brcms_hardware *wlc_hw = wlc->hw;
u32 gc, gm;
/* use GPIO select 0 to get all gpio signals from the gpio out reg */
brcms_b_mctrl(wlc_hw, MCTL_GPOUT_SEL_MASK, 0);
/*
* Common GPIO setup:
* G0 = LED 0 = WLAN Activity
* G1 = LED 1 = WLAN 2.4 GHz Radio State
* G2 = LED 2 = WLAN 5 GHz Radio State
* G4 = radio disable input (HI enabled, LO disabled)
*/
gc = gm = 0;
/* Allocate GPIOs for mimo antenna diversity feature */
if (wlc_hw->antsel_type == ANTSEL_2x3) {
/* Enable antenna diversity, use 2x3 mode */
brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_EN,
MHF3_ANTSEL_EN, BRCM_BAND_ALL);
brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_MODE,
MHF3_ANTSEL_MODE, BRCM_BAND_ALL);
/* init superswitch control */
wlc_phy_antsel_init(wlc_hw->band->pi, false);
} else if (wlc_hw->antsel_type == ANTSEL_2x4) {
gm |= gc |= (BOARD_GPIO_12 | BOARD_GPIO_13);
/*
* The board itself is powered by these GPIOs
* (when not sending pattern) so set them high
*/
bcma_set16(wlc_hw->d11core, D11REGOFFS(psm_gpio_oe),
(BOARD_GPIO_12 | BOARD_GPIO_13));
bcma_set16(wlc_hw->d11core, D11REGOFFS(psm_gpio_out),
(BOARD_GPIO_12 | BOARD_GPIO_13));
/* Enable antenna diversity, use 2x4 mode */
brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_EN,
MHF3_ANTSEL_EN, BRCM_BAND_ALL);
brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_MODE, 0,
BRCM_BAND_ALL);
/* Configure the desired clock to be 4Mhz */
brcms_b_write_shm(wlc_hw, M_ANTSEL_CLKDIV,
ANTSEL_CLKDIV_4MHZ);
}
/*
* gpio 9 controls the PA. ucode is responsible
* for wiggling out and oe
*/
if (wlc_hw->boardflags & BFL_PACTRL)
gm |= gc |= BOARD_GPIO_PACTRL;
/* apply to gpiocontrol register */
bcma_chipco_gpio_control(&wlc_hw->d11core->bus->drv_cc, gm, gc);
}
static void brcms_ucode_write(struct brcms_hardware *wlc_hw,
const __le32 ucode[], const size_t nbytes)
{
struct bcma_device *core = wlc_hw->d11core;
uint i;
uint count;
brcms_dbg_info(wlc_hw->d11core, "wl%d\n", wlc_hw->unit);
count = (nbytes / sizeof(u32));
bcma_write32(core, D11REGOFFS(objaddr),
OBJADDR_AUTO_INC | OBJADDR_UCM_SEL);
(void)bcma_read32(core, D11REGOFFS(objaddr));
for (i = 0; i < count; i++)
bcma_write32(core, D11REGOFFS(objdata), le32_to_cpu(ucode[i]));
}
static void brcms_ucode_download(struct brcms_hardware *wlc_hw)
{
struct brcms_c_info *wlc;
struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode;
wlc = wlc_hw->wlc;
if (wlc_hw->ucode_loaded)
return;
if (D11REV_IS(wlc_hw->corerev, 17) || D11REV_IS(wlc_hw->corerev, 23)) {
if (BRCMS_ISNPHY(wlc_hw->band)) {
brcms_ucode_write(wlc_hw, ucode->bcm43xx_16_mimo,
ucode->bcm43xx_16_mimosz);
wlc_hw->ucode_loaded = true;
} else
brcms_err(wlc_hw->d11core,
"%s: wl%d: unsupported phy in corerev %d\n",
__func__, wlc_hw->unit, wlc_hw->corerev);
} else if (D11REV_IS(wlc_hw->corerev, 24)) {
if (BRCMS_ISLCNPHY(wlc_hw->band)) {
brcms_ucode_write(wlc_hw, ucode->bcm43xx_24_lcn,
ucode->bcm43xx_24_lcnsz);
wlc_hw->ucode_loaded = true;
} else {
brcms_err(wlc_hw->d11core,
"%s: wl%d: unsupported phy in corerev %d\n",
__func__, wlc_hw->unit, wlc_hw->corerev);
}
}
}
void brcms_b_txant_set(struct brcms_hardware *wlc_hw, u16 phytxant)
{
/* update sw state */
wlc_hw->bmac_phytxant = phytxant;
/* push to ucode if up */
if (!wlc_hw->up)
return;
brcms_c_ucode_txant_set(wlc_hw);
}
u16 brcms_b_get_txant(struct brcms_hardware *wlc_hw)
{
return (u16) wlc_hw->wlc->stf->txant;
}
void brcms_b_antsel_type_set(struct brcms_hardware *wlc_hw, u8 antsel_type)
{
wlc_hw->antsel_type = antsel_type;
/* Update the antsel type for phy module to use */
wlc_phy_antsel_type_set(wlc_hw->band->pi, antsel_type);
}
static void brcms_b_fifoerrors(struct brcms_hardware *wlc_hw)
{
bool fatal = false;
uint unit;
uint intstatus, idx;
struct bcma_device *core = wlc_hw->d11core;
unit = wlc_hw->unit;
for (idx = 0; idx < NFIFO; idx++) {
/* read intstatus register and ignore any non-error bits */
intstatus =
bcma_read32(core,
D11REGOFFS(intctrlregs[idx].intstatus)) &
I_ERRORS;
if (!intstatus)
continue;
brcms_dbg_int(core, "wl%d: intstatus%d 0x%x\n",
unit, idx, intstatus);
if (intstatus & I_RO) {
brcms_err(core, "wl%d: fifo %d: receive fifo "
"overflow\n", unit, idx);
fatal = true;
}
if (intstatus & I_PC) {
brcms_err(core, "wl%d: fifo %d: descriptor error\n",
unit, idx);
fatal = true;
}
if (intstatus & I_PD) {
brcms_err(core, "wl%d: fifo %d: data error\n", unit,
idx);
fatal = true;
}
if (intstatus & I_DE) {
brcms_err(core, "wl%d: fifo %d: descriptor protocol "
"error\n", unit, idx);
fatal = true;
}
if (intstatus & I_RU)
brcms_err(core, "wl%d: fifo %d: receive descriptor "
"underflow\n", idx, unit);
if (intstatus & I_XU) {
brcms_err(core, "wl%d: fifo %d: transmit fifo "
"underflow\n", idx, unit);
fatal = true;
}
if (fatal) {
brcms_fatal_error(wlc_hw->wlc->wl); /* big hammer */
break;
} else
bcma_write32(core,
D11REGOFFS(intctrlregs[idx].intstatus),
intstatus);
}
}
void brcms_c_intrson(struct brcms_c_info *wlc)
{
struct brcms_hardware *wlc_hw = wlc->hw;
wlc->macintmask = wlc->defmacintmask;
bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), wlc->macintmask);
}
u32 brcms_c_intrsoff(struct brcms_c_info *wlc)
{
struct brcms_hardware *wlc_hw = wlc->hw;
u32 macintmask;
if (!wlc_hw->clk)
return 0;
macintmask = wlc->macintmask; /* isr can still happen */
bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), 0);
(void)bcma_read32(wlc_hw->d11core, D11REGOFFS(macintmask));
udelay(1); /* ensure int line is no longer driven */
wlc->macintmask = 0;
/* return previous macintmask; resolve race between us and our isr */
return wlc->macintstatus ? 0 : macintmask;
}
void brcms_c_intrsrestore(struct brcms_c_info *wlc, u32 macintmask)
{
struct brcms_hardware *wlc_hw = wlc->hw;
if (!wlc_hw->clk)
return;
wlc->macintmask = macintmask;
bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), wlc->macintmask);
}
/* assumes that the d11 MAC is enabled */
static void brcms_b_tx_fifo_suspend(struct brcms_hardware *wlc_hw,
uint tx_fifo)
{
u8 fifo = 1 << tx_fifo;
/* Two clients of this code, 11h Quiet period and scanning. */
/* only suspend if not already suspended */
if ((wlc_hw->suspended_fifos & fifo) == fifo)
return;
/* force the core awake only if not already */
if (wlc_hw->suspended_fifos == 0)
brcms_c_ucode_wake_override_set(wlc_hw,
BRCMS_WAKE_OVERRIDE_TXFIFO);
wlc_hw->suspended_fifos |= fifo;
if (wlc_hw->di[tx_fifo]) {
/*
* Suspending AMPDU transmissions in the middle can cause
* underflow which may result in mismatch between ucode and
* driver so suspend the mac before suspending the FIFO
*/
if (BRCMS_PHY_11N_CAP(wlc_hw->band))
brcms_c_suspend_mac_and_wait(wlc_hw->wlc);
dma_txsuspend(wlc_hw->di[tx_fifo]);
if (BRCMS_PHY_11N_CAP(wlc_hw->band))
brcms_c_enable_mac(wlc_hw->wlc);
}
}
static void brcms_b_tx_fifo_resume(struct brcms_hardware *wlc_hw,
uint tx_fifo)
{
/* BMAC_NOTE: BRCMS_TX_FIFO_ENAB is done in brcms_c_dpc() for DMA case
* but need to be done here for PIO otherwise the watchdog will catch
* the inconsistency and fire
*/
/* Two clients of this code, 11h Quiet period and scanning. */
if (wlc_hw->di[tx_fifo])
dma_txresume(wlc_hw->di[tx_fifo]);
/* allow core to sleep again */
if (wlc_hw->suspended_fifos == 0)
return;
else {
wlc_hw->suspended_fifos &= ~(1 << tx_fifo);
if (wlc_hw->suspended_fifos == 0)
brcms_c_ucode_wake_override_clear(wlc_hw,
BRCMS_WAKE_OVERRIDE_TXFIFO);
}
}
/* precondition: requires the mac core to be enabled */
static void brcms_b_mute(struct brcms_hardware *wlc_hw, bool mute_tx)
{
static const u8 null_ether_addr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
u8 *ethaddr = wlc_hw->wlc->pub->cur_etheraddr;
if (mute_tx) {
/* suspend tx fifos */
brcms_b_tx_fifo_suspend(wlc_hw, TX_DATA_FIFO);
brcms_b_tx_fifo_suspend(wlc_hw, TX_CTL_FIFO);
brcms_b_tx_fifo_suspend(wlc_hw, TX_AC_BK_FIFO);
brcms_b_tx_fifo_suspend(wlc_hw, TX_AC_VI_FIFO);
/* zero the address match register so we do not send ACKs */
brcms_b_set_addrmatch(wlc_hw, RCM_MAC_OFFSET, null_ether_addr);
} else {
/* resume tx fifos */
brcms_b_tx_fifo_resume(wlc_hw, TX_DATA_FIFO);
brcms_b_tx_fifo_resume(wlc_hw, TX_CTL_FIFO);
brcms_b_tx_fifo_resume(wlc_hw, TX_AC_BK_FIFO);
brcms_b_tx_fifo_resume(wlc_hw, TX_AC_VI_FIFO);
/* Restore address */
brcms_b_set_addrmatch(wlc_hw, RCM_MAC_OFFSET, ethaddr);
}
wlc_phy_mute_upd(wlc_hw->band->pi, mute_tx, 0);
if (mute_tx)
brcms_c_ucode_mute_override_set(wlc_hw);
else
brcms_c_ucode_mute_override_clear(wlc_hw);
}
void
brcms_c_mute(struct brcms_c_info *wlc, bool mute_tx)
{
brcms_b_mute(wlc->hw, mute_tx);
}
/*
* Read and clear macintmask and macintstatus and intstatus registers.
* This routine should be called with interrupts off
* Return:
* -1 if brcms_deviceremoved(wlc) evaluates to true;
* 0 if the interrupt is not for us, or we are in some special cases;
* device interrupt status bits otherwise.
*/
static inline u32 wlc_intstatus(struct brcms_c_info *wlc, bool in_isr)
{
struct brcms_hardware *wlc_hw = wlc->hw;
struct bcma_device *core = wlc_hw->d11core;
u32 macintstatus, mask;
/* macintstatus includes a DMA interrupt summary bit */
macintstatus = bcma_read32(core, D11REGOFFS(macintstatus));
mask = in_isr ? wlc->macintmask : wlc->defmacintmask;
trace_brcms_macintstatus(&core->dev, in_isr, macintstatus, mask);
/* detect cardbus removed, in power down(suspend) and in reset */
if (brcms_deviceremoved(wlc))
return -1;
/* brcms_deviceremoved() succeeds even when the core is still resetting,
* handle that case here.
*/
if (macintstatus == 0xffffffff)
return 0;
/* defer unsolicited interrupts */
macintstatus &= mask;
/* if not for us */
if (macintstatus == 0)
return 0;
/* turn off the interrupts */
bcma_write32(core, D11REGOFFS(macintmask), 0);
(void)bcma_read32(core, D11REGOFFS(macintmask));
wlc->macintmask = 0;
/* clear device interrupts */
bcma_write32(core, D11REGOFFS(macintstatus), macintstatus);
/* MI_DMAINT is indication of non-zero intstatus */
if (macintstatus & MI_DMAINT)
/*
* only fifo interrupt enabled is I_RI in
* RX_FIFO. If MI_DMAINT is set, assume it
* is set and clear the interrupt.
*/
bcma_write32(core, D11REGOFFS(intctrlregs[RX_FIFO].intstatus),
DEF_RXINTMASK);
return macintstatus;
}
/* Update wlc->macintstatus and wlc->intstatus[]. */
/* Return true if they are updated successfully. false otherwise */
bool brcms_c_intrsupd(struct brcms_c_info *wlc)
{
u32 macintstatus;
/* read and clear macintstatus and intstatus registers */
macintstatus = wlc_intstatus(wlc, false);
/* device is removed */
if (macintstatus == 0xffffffff)
return false;
/* update interrupt status in software */
wlc->macintstatus |= macintstatus;
return true;
}
/*
* First-level interrupt processing.
* Return true if this was our interrupt
* and if further brcms_c_dpc() processing is required,
* false otherwise.
*/
bool brcms_c_isr(struct brcms_c_info *wlc)
{
struct brcms_hardware *wlc_hw = wlc->hw;
u32 macintstatus;
if (!wlc_hw->up || !wlc->macintmask)
return false;
/* read and clear macintstatus and intstatus registers */
macintstatus = wlc_intstatus(wlc, true);
if (macintstatus == 0xffffffff) {
brcms_err(wlc_hw->d11core,
"DEVICEREMOVED detected in the ISR code path\n");
return false;
}
/* it is not for us */
if (macintstatus == 0)
return false;
/* save interrupt status bits */
wlc->macintstatus = macintstatus;
return true;
}
void brcms_c_suspend_mac_and_wait(struct brcms_c_info *wlc)
{
struct brcms_hardware *wlc_hw = wlc->hw;
struct bcma_device *core = wlc_hw->d11core;
u32 mc, mi;
brcms_dbg_mac80211(core, "wl%d: bandunit %d\n", wlc_hw->unit,
wlc_hw->band->bandunit);
/*
* Track overlapping suspend requests
*/
wlc_hw->mac_suspend_depth++;
if (wlc_hw->mac_suspend_depth > 1)
return;
/* force the core awake */
brcms_c_ucode_wake_override_set(wlc_hw, BRCMS_WAKE_OVERRIDE_MACSUSPEND);
mc = bcma_read32(core, D11REGOFFS(maccontrol));
if (mc == 0xffffffff) {
brcms_err(core, "wl%d: %s: dead chip\n", wlc_hw->unit,
__func__);
brcms_down(wlc->wl);
return;
}
WARN_ON(mc & MCTL_PSM_JMP_0);
WARN_ON(!(mc & MCTL_PSM_RUN));
WARN_ON(!(mc & MCTL_EN_MAC));
mi = bcma_read32(core, D11REGOFFS(macintstatus));
if (mi == 0xffffffff) {
brcms_err(core, "wl%d: %s: dead chip\n", wlc_hw->unit,
__func__);
brcms_down(wlc->wl);
return;
}
WARN_ON(mi & MI_MACSSPNDD);
brcms_b_mctrl(wlc_hw, MCTL_EN_MAC, 0);
SPINWAIT(!(bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD),
BRCMS_MAX_MAC_SUSPEND);
if (!(bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD)) {
brcms_err(core, "wl%d: wlc_suspend_mac_and_wait: waited %d uS"
" and MI_MACSSPNDD is still not on.\n",
wlc_hw->unit, BRCMS_MAX_MAC_SUSPEND);
brcms_err(core, "wl%d: psmdebug 0x%08x, phydebug 0x%08x, "
"psm_brc 0x%04x\n", wlc_hw->unit,
bcma_read32(core, D11REGOFFS(psmdebug)),
bcma_read32(core, D11REGOFFS(phydebug)),
bcma_read16(core, D11REGOFFS(psm_brc)));
}
mc = bcma_read32(core, D11REGOFFS(maccontrol));
if (mc == 0xffffffff) {
brcms_err(core, "wl%d: %s: dead chip\n", wlc_hw->unit,
__func__);
brcms_down(wlc->wl);
return;
}
WARN_ON(mc & MCTL_PSM_JMP_0);
WARN_ON(!(mc & MCTL_PSM_RUN));
WARN_ON(mc & MCTL_EN_MAC);
}
void brcms_c_enable_mac(struct brcms_c_info *wlc)
{
struct brcms_hardware *wlc_hw = wlc->hw;
struct bcma_device *core = wlc_hw->d11core;
u32 mc, mi;
brcms_dbg_mac80211(core, "wl%d: bandunit %d\n", wlc_hw->unit,
wlc->band->bandunit);
/*
* Track overlapping suspend requests
*/
wlc_hw->mac_suspend_depth--;
if (wlc_hw->mac_suspend_depth > 0)
return;
mc = bcma_read32(core, D11REGOFFS(maccontrol));
WARN_ON(mc & MCTL_PSM_JMP_0);
WARN_ON(mc & MCTL_EN_MAC);
WARN_ON(!(mc & MCTL_PSM_RUN));
brcms_b_mctrl(wlc_hw, MCTL_EN_MAC, MCTL_EN_MAC);
bcma_write32(core, D11REGOFFS(macintstatus), MI_MACSSPNDD);
mc = bcma_read32(core, D11REGOFFS(maccontrol));
WARN_ON(mc & MCTL_PSM_JMP_0);
WARN_ON(!(mc & MCTL_EN_MAC));
WARN_ON(!(mc & MCTL_PSM_RUN));
mi = bcma_read32(core, D11REGOFFS(macintstatus));
WARN_ON(mi & MI_MACSSPNDD);
brcms_c_ucode_wake_override_clear(wlc_hw,
BRCMS_WAKE_OVERRIDE_MACSUSPEND);
}
void brcms_b_band_stf_ss_set(struct brcms_hardware *wlc_hw, u8 stf_mode)
{
wlc_hw->hw_stf_ss_opmode = stf_mode;
if (wlc_hw->clk)
brcms_upd_ofdm_pctl1_table(wlc_hw);
}
static bool brcms_b_validate_chip_access(struct brcms_hardware *wlc_hw)
{
struct bcma_device *core = wlc_hw->d11core;
u32 w, val;
struct wiphy *wiphy = wlc_hw->wlc->wiphy;
/* Validate dchip register access */
bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
(void)bcma_read32(core, D11REGOFFS(objaddr));
w = bcma_read32(core, D11REGOFFS(objdata));
/* Can we write and read back a 32bit register? */
bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
(void)bcma_read32(core, D11REGOFFS(objaddr));
bcma_write32(core, D11REGOFFS(objdata), (u32) 0xaa5555aa);
bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
(void)bcma_read32(core, D11REGOFFS(objaddr));
val = bcma_read32(core, D11REGOFFS(objdata));
if (val != (u32) 0xaa5555aa) {
wiphy_err(wiphy, "wl%d: validate_chip_access: SHM = 0x%x, "
"expected 0xaa5555aa\n", wlc_hw->unit, val);
return false;
}
bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
(void)bcma_read32(core, D11REGOFFS(objaddr));
bcma_write32(core, D11REGOFFS(objdata), (u32) 0x55aaaa55);
bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
(void)bcma_read32(core, D11REGOFFS(objaddr));
val = bcma_read32(core, D11REGOFFS(objdata));
if (val != (u32) 0x55aaaa55) {
wiphy_err(wiphy, "wl%d: validate_chip_access: SHM = 0x%x, "
"expected 0x55aaaa55\n", wlc_hw->unit, val);
return false;
}
bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
(void)bcma_read32(core, D11REGOFFS(objaddr));
bcma_write32(core, D11REGOFFS(objdata), w);
/* clear CFPStart */
bcma_write32(core, D11REGOFFS(tsf_cfpstart), 0);
w = bcma_read32(core, D11REGOFFS(maccontrol));
if ((w != (MCTL_IHR_EN | MCTL_WAKE)) &&
(w != (MCTL_IHR_EN | MCTL_GMODE | MCTL_WAKE))) {
wiphy_err(wiphy, "wl%d: validate_chip_access: maccontrol = "
"0x%x, expected 0x%x or 0x%x\n", wlc_hw->unit, w,
(MCTL_IHR_EN | MCTL_WAKE),
(MCTL_IHR_EN | MCTL_GMODE | MCTL_WAKE));
return false;
}
return true;
}
#define PHYPLL_WAIT_US 100000
void brcms_b_core_phypll_ctl(struct brcms_hardware *wlc_hw, bool on)
{
struct bcma_device *core = wlc_hw->d11core;
u32 tmp;
brcms_dbg_info(core, "wl%d\n", wlc_hw->unit);
tmp = 0;
if (on) {
if ((ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM4313)) {
bcma_set32(core, D11REGOFFS(clk_ctl_st),
CCS_ERSRC_REQ_HT |
CCS_ERSRC_REQ_D11PLL |
CCS_ERSRC_REQ_PHYPLL);
SPINWAIT((bcma_read32(core, D11REGOFFS(clk_ctl_st)) &
CCS_ERSRC_AVAIL_HT) != CCS_ERSRC_AVAIL_HT,
PHYPLL_WAIT_US);
tmp = bcma_read32(core, D11REGOFFS(clk_ctl_st));
if ((tmp & CCS_ERSRC_AVAIL_HT) != CCS_ERSRC_AVAIL_HT)
brcms_err(core, "%s: turn on PHY PLL failed\n",
__func__);
} else {
bcma_set32(core, D11REGOFFS(clk_ctl_st),
tmp | CCS_ERSRC_REQ_D11PLL |
CCS_ERSRC_REQ_PHYPLL);
SPINWAIT((bcma_read32(core, D11REGOFFS(clk_ctl_st)) &
(CCS_ERSRC_AVAIL_D11PLL |
CCS_ERSRC_AVAIL_PHYPLL)) !=
(CCS_ERSRC_AVAIL_D11PLL |
CCS_ERSRC_AVAIL_PHYPLL), PHYPLL_WAIT_US);
tmp = bcma_read32(core, D11REGOFFS(clk_ctl_st));
if ((tmp &
(CCS_ERSRC_AVAIL_D11PLL | CCS_ERSRC_AVAIL_PHYPLL))
!=
(CCS_ERSRC_AVAIL_D11PLL | CCS_ERSRC_AVAIL_PHYPLL))
brcms_err(core, "%s: turn on PHY PLL failed\n",
__func__);
}
} else {
/*
* Since the PLL may be shared, other cores can still
* be requesting it; so we'll deassert the request but
* not wait for status to comply.
*/
bcma_mask32(core, D11REGOFFS(clk_ctl_st),
~CCS_ERSRC_REQ_PHYPLL);
(void)bcma_read32(core, D11REGOFFS(clk_ctl_st));
}
}
static void brcms_c_coredisable(struct brcms_hardware *wlc_hw)
{
bool dev_gone;
brcms_dbg_info(wlc_hw->d11core, "wl%d: disable core\n", wlc_hw->unit);
dev_gone = brcms_deviceremoved(wlc_hw->wlc);
if (dev_gone)
return;
if (wlc_hw->noreset)
return;
/* radio off */
wlc_phy_switch_radio(wlc_hw->band->pi, OFF);
/* turn off analog core */
wlc_phy_anacore(wlc_hw->band->pi, OFF);
/* turn off PHYPLL to save power */
brcms_b_core_phypll_ctl(wlc_hw, false);
wlc_hw->clk = false;
bcma_core_disable(wlc_hw->d11core, 0);
wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false);
}
static void brcms_c_flushqueues(struct brcms_c_info *wlc)
{
struct brcms_hardware *wlc_hw = wlc->hw;
uint i;
/* free any posted tx packets */
for (i = 0; i < NFIFO; i++) {
if (wlc_hw->di[i]) {
dma_txreclaim(wlc_hw->di[i], DMA_RANGE_ALL);
if (i < TX_BCMC_FIFO)
ieee80211_wake_queue(wlc->pub->ieee_hw,
brcms_fifo_to_ac(i));
}
}
/* free any posted rx packets */
dma_rxreclaim(wlc_hw->di[RX_FIFO]);
}
static u16
brcms_b_read_objmem(struct brcms_hardware *wlc_hw, uint offset, u32 sel)
{
struct bcma_device *core = wlc_hw->d11core;
u16 objoff = D11REGOFFS(objdata);
bcma_write32(core, D11REGOFFS(objaddr), sel | (offset >> 2));
(void)bcma_read32(core, D11REGOFFS(objaddr));
if (offset & 2)
objoff += 2;
return bcma_read16(core, objoff);
}
static void
brcms_b_write_objmem(struct brcms_hardware *wlc_hw, uint offset, u16 v,
u32 sel)
{
struct bcma_device *core = wlc_hw->d11core;
u16 objoff = D11REGOFFS(objdata);
bcma_write32(core, D11REGOFFS(objaddr), sel | (offset >> 2));
(void)bcma_read32(core, D11REGOFFS(objaddr));
if (offset & 2)
objoff += 2;
bcma_wflush16(core, objoff, v);
}
/*
* Read a single u16 from shared memory.
* SHM 'offset' needs to be an even address
*/
u16 brcms_b_read_shm(struct brcms_hardware *wlc_hw, uint offset)
{
return brcms_b_read_objmem(wlc_hw, offset, OBJADDR_SHM_SEL);
}
/*
* Write a single u16 to shared memory.
* SHM 'offset' needs to be an even address
*/
void brcms_b_write_shm(struct brcms_hardware *wlc_hw, uint offset, u16 v)
{
brcms_b_write_objmem(wlc_hw, offset, v, OBJADDR_SHM_SEL);
}
/*
* Copy a buffer to shared memory of specified type .
* SHM 'offset' needs to be an even address and
* Buffer length 'len' must be an even number of bytes
* 'sel' selects the type of memory
*/
void
brcms_b_copyto_objmem(struct brcms_hardware *wlc_hw, uint offset,
const void *buf, int len, u32 sel)
{
u16 v;
const u8 *p = (const u8 *)buf;
int i;
if (len <= 0 || (offset & 1) || (len & 1))
return;
for (i = 0; i < len; i += 2) {
v = p[i] | (p[i + 1] << 8);
brcms_b_write_objmem(wlc_hw, offset + i, v, sel);
}
}
/*
* Copy a piece of shared memory of specified type to a buffer .
* SHM 'offset' needs to be an even address and
* Buffer length 'len' must be an even number of bytes
* 'sel' selects the type of memory
*/
void
brcms_b_copyfrom_objmem(struct brcms_hardware *wlc_hw, uint offset, void *buf,
int len, u32 sel)
{
u16 v;
u8 *p = (u8 *) buf;
int i;
if (len <= 0 || (offset & 1) || (len & 1))
return;
for (i = 0; i < len; i += 2) {
v = brcms_b_read_objmem(wlc_hw, offset + i, sel);
p[i] = v & 0xFF;
p[i + 1] = (v >> 8) & 0xFF;
}
}
/* Copy a buffer to shared memory.
* SHM 'offset' needs to be an even address and
* Buffer length 'len' must be an even number of bytes
*/
static void brcms_c_copyto_shm(struct brcms_c_info *wlc, uint offset,
const void *buf, int len)
{
brcms_b_copyto_objmem(wlc->hw, offset, buf, len, OBJADDR_SHM_SEL);
}
static void brcms_b_retrylimit_upd(struct brcms_hardware *wlc_hw,
u16 SRL, u16 LRL)
{
wlc_hw->SRL = SRL;
wlc_hw->LRL = LRL;
/* write retry limit to SCR, shouldn't need to suspend */
if (wlc_hw->up) {
bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr),
OBJADDR_SCR_SEL | S_DOT11_SRC_LMT);
(void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr));
bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), wlc_hw->SRL);
bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr),
OBJADDR_SCR_SEL | S_DOT11_LRC_LMT);
(void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr));
bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), wlc_hw->LRL);
}
}
static void brcms_b_pllreq(struct brcms_hardware *wlc_hw, bool set, u32 req_bit)
{
if (set) {
if (mboolisset(wlc_hw->pllreq, req_bit))
return;
mboolset(wlc_hw->pllreq, req_bit);
if (mboolisset(wlc_hw->pllreq, BRCMS_PLLREQ_FLIP)) {
if (!wlc_hw->sbclk)
brcms_b_xtal(wlc_hw, ON);
}
} else {
if (!mboolisset(wlc_hw->pllreq, req_bit))
return;
mboolclr(wlc_hw->pllreq, req_bit);
if (mboolisset(wlc_hw->pllreq, BRCMS_PLLREQ_FLIP)) {
if (wlc_hw->sbclk)
brcms_b_xtal(wlc_hw, OFF);
}
}
}
static void brcms_b_antsel_set(struct brcms_hardware *wlc_hw, u32 antsel_avail)
{
wlc_hw->antsel_avail = antsel_avail;
}
/*
* conditions under which the PM bit should be set in outgoing frames
* and STAY_AWAKE is meaningful
*/
static bool brcms_c_ps_allowed(struct brcms_c_info *wlc)
{
/* not supporting PS so always return false for now */
return false;
}
static void brcms_c_statsupd(struct brcms_c_info *wlc)
{
int i;
struct macstat *macstats;
#ifdef DEBUG
u16 delta;
u16 rxf0ovfl;
u16 txfunfl[NFIFO];
#endif /* DEBUG */
/* if driver down, make no sense to update stats */
if (!wlc->pub->up)
return;
macstats = wlc->core->macstat_snapshot;
#ifdef DEBUG
/* save last rx fifo 0 overflow count */
rxf0ovfl = macstats->rxf0ovfl;
/* save last tx fifo underflow count */
for (i = 0; i < NFIFO; i++)
txfunfl[i] = macstats->txfunfl[i];
#endif /* DEBUG */
/* Read mac stats from contiguous shared memory */
brcms_b_copyfrom_objmem(wlc->hw, M_UCODE_MACSTAT, macstats,
sizeof(*macstats), OBJADDR_SHM_SEL);
#ifdef DEBUG
/* check for rx fifo 0 overflow */
delta = (u16)(macstats->rxf0ovfl - rxf0ovfl);
if (delta)
brcms_err(wlc->hw->d11core, "wl%d: %u rx fifo 0 overflows!\n",
wlc->pub->unit, delta);
/* check for tx fifo underflows */
for (i = 0; i < NFIFO; i++) {
delta = macstats->txfunfl[i] - txfunfl[i];
if (delta)
brcms_err(wlc->hw->d11core,
"wl%d: %u tx fifo %d underflows!\n",
wlc->pub->unit, delta, i);
}
#endif /* DEBUG */
/* merge counters from dma module */
for (i = 0; i < NFIFO; i++) {
if (wlc->hw->di[i])
dma_counterreset(wlc->hw->di[i]);
}
}
static void brcms_b_reset(struct brcms_hardware *wlc_hw)
{
/* reset the core */
if (!brcms_deviceremoved(wlc_hw->wlc))
brcms_b_corereset(wlc_hw, BRCMS_USE_COREFLAGS);
/* purge the dma rings */
brcms_c_flushqueues(wlc_hw->wlc);
}
void brcms_c_reset(struct brcms_c_info *wlc)
{
brcms_dbg_info(wlc->hw->d11core, "wl%d\n", wlc->pub->unit);
/* slurp up hw mac counters before core reset */
brcms_c_statsupd(wlc);
/* reset our snapshot of macstat counters */
memset(wlc->core->macstat_snapshot, 0, sizeof(struct macstat));
brcms_b_reset(wlc->hw);
}
void brcms_c_init_scb(struct scb *scb)
{
int i;
memset(scb, 0, sizeof(struct scb));
scb->flags = SCB_WMECAP | SCB_HTCAP;
for (i = 0; i < NUMPRIO; i++) {
scb->seqnum[i] = 0;
scb->seqctl[i] = 0xFFFF;
}
scb->seqctl_nonqos = 0xFFFF;
scb->magic = SCB_MAGIC;
}
/* d11 core init
* reset PSM
* download ucode/PCM
* let ucode run to suspended
* download ucode inits
* config other core registers
* init dma
*/
static void brcms_b_coreinit(struct brcms_c_info *wlc)
{
struct brcms_hardware *wlc_hw = wlc->hw;
struct bcma_device *core = wlc_hw->d11core;
u32 sflags;
u32 bcnint_us;
uint i = 0;
bool fifosz_fixup = false;
int err = 0;
u16 buf[NFIFO];
struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode;
brcms_dbg_info(core, "wl%d: core init\n", wlc_hw->unit);
/* reset PSM */
brcms_b_mctrl(wlc_hw, ~0, (MCTL_IHR_EN | MCTL_PSM_JMP_0 | MCTL_WAKE));
brcms_ucode_download(wlc_hw);
/*
* FIFOSZ fixup. driver wants to controls the fifo allocation.
*/
fifosz_fixup = true;
/* let the PSM run to the suspended state, set mode to BSS STA */
bcma_write32(core, D11REGOFFS(macintstatus), -1);
brcms_b_mctrl(wlc_hw, ~0,
(MCTL_IHR_EN | MCTL_INFRA | MCTL_PSM_RUN | MCTL_WAKE));
/* wait for ucode to self-suspend after auto-init */
SPINWAIT(((bcma_read32(core, D11REGOFFS(macintstatus)) &
MI_MACSSPNDD) == 0), 1000 * 1000);
if ((bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD) == 0)
brcms_err(core, "wl%d: wlc_coreinit: ucode did not self-"
"suspend!\n", wlc_hw->unit);
brcms_c_gpio_init(wlc);
sflags = bcma_aread32(core, BCMA_IOST);
if (D11REV_IS(wlc_hw->corerev, 17) || D11REV_IS(wlc_hw->corerev, 23)) {
if (BRCMS_ISNPHY(wlc_hw->band))
brcms_c_write_inits(wlc_hw, ucode->d11n0initvals16);
else
brcms_err(core, "%s: wl%d: unsupported phy in corerev"
" %d\n", __func__, wlc_hw->unit,
wlc_hw->corerev);
} else if (D11REV_IS(wlc_hw->corerev, 24)) {
if (BRCMS_ISLCNPHY(wlc_hw->band))
brcms_c_write_inits(wlc_hw, ucode->d11lcn0initvals24);
else
brcms_err(core, "%s: wl%d: unsupported phy in corerev"
" %d\n", __func__, wlc_hw->unit,
wlc_hw->corerev);
} else {
brcms_err(core, "%s: wl%d: unsupported corerev %d\n",
__func__, wlc_hw->unit, wlc_hw->corerev);
}
/* For old ucode, txfifo sizes needs to be modified(increased) */
if (fifosz_fixup)
brcms_b_corerev_fifofixup(wlc_hw);
/* check txfifo allocations match between ucode and driver */
buf[TX_AC_BE_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE0);
if (buf[TX_AC_BE_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_BE_FIFO]) {
i = TX_AC_BE_FIFO;
err = -1;
}
buf[TX_AC_VI_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE1);
if (buf[TX_AC_VI_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_VI_FIFO]) {
i = TX_AC_VI_FIFO;
err = -1;
}
buf[TX_AC_BK_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE2);
buf[TX_AC_VO_FIFO] = (buf[TX_AC_BK_FIFO] >> 8) & 0xff;
buf[TX_AC_BK_FIFO] &= 0xff;
if (buf[TX_AC_BK_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_BK_FIFO]) {
i = TX_AC_BK_FIFO;
err = -1;
}
if (buf[TX_AC_VO_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_VO_FIFO]) {
i = TX_AC_VO_FIFO;
err = -1;
}
buf[TX_BCMC_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE3);
buf[TX_ATIM_FIFO] = (buf[TX_BCMC_FIFO] >> 8) & 0xff;
buf[TX_BCMC_FIFO] &= 0xff;
if (buf[TX_BCMC_FIFO] != wlc_hw->xmtfifo_sz[TX_BCMC_FIFO]) {
i = TX_BCMC_FIFO;
err = -1;
}
if (buf[TX_ATIM_FIFO] != wlc_hw->xmtfifo_sz[TX_ATIM_FIFO]) {
i = TX_ATIM_FIFO;
err = -1;
}
if (err != 0)
brcms_err(core, "wlc_coreinit: txfifo mismatch: ucode size %d"
" driver size %d index %d\n", buf[i],
wlc_hw->xmtfifo_sz[i], i);
/* make sure we can still talk to the mac */
WARN_ON(bcma_read32(core, D11REGOFFS(maccontrol)) == 0xffffffff);
/* band-specific inits done by wlc_bsinit() */
/* Set up frame burst size and antenna swap threshold init values */
brcms_b_write_shm(wlc_hw, M_MBURST_SIZE, MAXTXFRAMEBURST);
brcms_b_write_shm(wlc_hw, M_MAX_ANTCNT, ANTCNT);
/* enable one rx interrupt per received frame */
bcma_write32(core, D11REGOFFS(intrcvlazy[0]), (1 << IRL_FC_SHIFT));
/* set the station mode (BSS STA) */
brcms_b_mctrl(wlc_hw,
(MCTL_INFRA | MCTL_DISCARD_PMQ | MCTL_AP),
(MCTL_INFRA | MCTL_DISCARD_PMQ));
/* set up Beacon interval */
bcnint_us = 0x8000 << 10;
bcma_write32(core, D11REGOFFS(tsf_cfprep),
(bcnint_us << CFPREP_CBI_SHIFT));
bcma_write32(core, D11REGOFFS(tsf_cfpstart), bcnint_us);
bcma_write32(core, D11REGOFFS(macintstatus), MI_GP1);
/* write interrupt mask */
bcma_write32(core, D11REGOFFS(intctrlregs[RX_FIFO].intmask),
DEF_RXINTMASK);
/* allow the MAC to control the PHY clock (dynamic on/off) */
brcms_b_macphyclk_set(wlc_hw, ON);
/* program dynamic clock control fast powerup delay register */
wlc->fastpwrup_dly = ai_clkctl_fast_pwrup_delay(wlc_hw->sih);
bcma_write16(core, D11REGOFFS(scc_fastpwrup_dly), wlc->fastpwrup_dly);
/* tell the ucode the corerev */
brcms_b_write_shm(wlc_hw, M_MACHW_VER, (u16) wlc_hw->corerev);
/* tell the ucode MAC capabilities */
brcms_b_write_shm(wlc_hw, M_MACHW_CAP_L,
(u16) (wlc_hw->machwcap & 0xffff));
brcms_b_write_shm(wlc_hw, M_MACHW_CAP_H,
(u16) ((wlc_hw->
machwcap >> 16) & 0xffff));
/* write retry limits to SCR, this done after PSM init */
bcma_write32(core, D11REGOFFS(objaddr),
OBJADDR_SCR_SEL | S_DOT11_SRC_LMT);
(void)bcma_read32(core, D11REGOFFS(objaddr));
bcma_write32(core, D11REGOFFS(objdata), wlc_hw->SRL);
bcma_write32(core, D11REGOFFS(objaddr),
OBJADDR_SCR_SEL | S_DOT11_LRC_LMT);
(void)bcma_read32(core, D11REGOFFS(objaddr));
bcma_write32(core, D11REGOFFS(objdata), wlc_hw->LRL);
/* write rate fallback retry limits */
brcms_b_write_shm(wlc_hw, M_SFRMTXCNTFBRTHSD, wlc_hw->SFBL);
brcms_b_write_shm(wlc_hw, M_LFRMTXCNTFBRTHSD, wlc_hw->LFBL);
bcma_mask16(core, D11REGOFFS(ifs_ctl), 0x0FFF);
bcma_write16(core, D11REGOFFS(ifs_aifsn), EDCF_AIFSN_MIN);
/* init the tx dma engines */
for (i = 0; i < NFIFO; i++) {
if (wlc_hw->di[i])
dma_txinit(wlc_hw->di[i]);
}
/* init the rx dma engine(s) and post receive buffers */
dma_rxinit(wlc_hw->di[RX_FIFO]);
dma_rxfill(wlc_hw->di[RX_FIFO]);
}
void
static brcms_b_init(struct brcms_hardware *wlc_hw, u16 chanspec) {
u32 macintmask;
bool fastclk;
struct brcms_c_info *wlc = wlc_hw->wlc;
/* request FAST clock if not on */
fastclk = wlc_hw->forcefastclk;
if (!fastclk)
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
/* disable interrupts */
macintmask = brcms_intrsoff(wlc->wl);
/* set up the specified band and chanspec */
brcms_c_setxband(wlc_hw, chspec_bandunit(chanspec));
wlc_phy_chanspec_radio_set(wlc_hw->band->pi, chanspec);
/* do one-time phy inits and calibration */
wlc_phy_cal_init(wlc_hw->band->pi);
/* core-specific initialization */
brcms_b_coreinit(wlc);
/* band-specific inits */
brcms_b_bsinit(wlc, chanspec);
/* restore macintmask */
brcms_intrsrestore(wlc->wl, macintmask);
/* seed wake_override with BRCMS_WAKE_OVERRIDE_MACSUSPEND since the mac
* is suspended and brcms_c_enable_mac() will clear this override bit.
*/
mboolset(wlc_hw->wake_override, BRCMS_WAKE_OVERRIDE_MACSUSPEND);
/*
* initialize mac_suspend_depth to 1 to match ucode
* initial suspended state
*/
wlc_hw->mac_suspend_depth = 1;
/* restore the clk */
if (!fastclk)
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC);
}
static void brcms_c_set_phy_chanspec(struct brcms_c_info *wlc,
u16 chanspec)
{
/* Save our copy of the chanspec */
wlc->chanspec = chanspec;
/* Set the chanspec and power limits for this locale */
brcms_c_channel_set_chanspec(wlc->cmi, chanspec, BRCMS_TXPWR_MAX);
if (wlc->stf->ss_algosel_auto)
brcms_c_stf_ss_algo_channel_get(wlc, &wlc->stf->ss_algo_channel,
chanspec);
brcms_c_stf_ss_update(wlc, wlc->band);
}
static void
brcms_default_rateset(struct brcms_c_info *wlc, struct brcms_c_rateset *rs)
{
brcms_c_rateset_default(rs, NULL, wlc->band->phytype,
wlc->band->bandtype, false, BRCMS_RATE_MASK_FULL,
(bool) (wlc->pub->_n_enab & SUPPORT_11N),
brcms_chspec_bw(wlc->default_bss->chanspec),
wlc->stf->txstreams);
}
/* derive wlc->band->basic_rate[] table from 'rateset' */
static void brcms_c_rate_lookup_init(struct brcms_c_info *wlc,
struct brcms_c_rateset *rateset)
{
u8 rate;
u8 mandatory;
u8 cck_basic = 0;
u8 ofdm_basic = 0;
u8 *br = wlc->band->basic_rate;
uint i;
/* incoming rates are in 500kbps units as in 802.11 Supported Rates */
memset(br, 0, BRCM_MAXRATE + 1);
/* For each basic rate in the rates list, make an entry in the
* best basic lookup.
*/
for (i = 0; i < rateset->count; i++) {
/* only make an entry for a basic rate */
if (!(rateset->rates[i] & BRCMS_RATE_FLAG))
continue;
/* mask off basic bit */
rate = (rateset->rates[i] & BRCMS_RATE_MASK);
if (rate > BRCM_MAXRATE) {
brcms_err(wlc->hw->d11core, "brcms_c_rate_lookup_init: "
"invalid rate 0x%X in rate set\n",
rateset->rates[i]);
continue;
}
br[rate] = rate;
}
/* The rate lookup table now has non-zero entries for each
* basic rate, equal to the basic rate: br[basicN] = basicN
*
* To look up the best basic rate corresponding to any
* particular rate, code can use the basic_rate table
* like this
*
* basic_rate = wlc->band->basic_rate[tx_rate]
*
* Make sure there is a best basic rate entry for
* every rate by walking up the table from low rates
* to high, filling in holes in the lookup table
*/
for (i = 0; i < wlc->band->hw_rateset.count; i++) {
rate = wlc->band->hw_rateset.rates[i];
if (br[rate] != 0) {
/* This rate is a basic rate.
* Keep track of the best basic rate so far by
* modulation type.
*/
if (is_ofdm_rate(rate))
ofdm_basic = rate;
else
cck_basic = rate;
continue;
}
/* This rate is not a basic rate so figure out the
* best basic rate less than this rate and fill in
* the hole in the table
*/
br[rate] = is_ofdm_rate(rate) ? ofdm_basic : cck_basic;
if (br[rate] != 0)
continue;
if (is_ofdm_rate(rate)) {
/*
* In 11g and 11a, the OFDM mandatory rates
* are 6, 12, and 24 Mbps
*/
if (rate >= BRCM_RATE_24M)
mandatory = BRCM_RATE_24M;
else if (rate >= BRCM_RATE_12M)
mandatory = BRCM_RATE_12M;
else
mandatory = BRCM_RATE_6M;
} else {
/* In 11b, all CCK rates are mandatory 1 - 11 Mbps */
mandatory = rate;
}
br[rate] = mandatory;
}
}
static void brcms_c_bandinit_ordered(struct brcms_c_info *wlc,
u16 chanspec)
{
struct brcms_c_rateset default_rateset;
uint parkband;
uint i, band_order[2];
/*
* We might have been bandlocked during down and the chip
* power-cycled (hibernate). Figure out the right band to park on
*/
if (wlc->bandlocked || wlc->pub->_nbands == 1) {
/* updated in brcms_c_bandlock() */
parkband = wlc->band->bandunit;
band_order[0] = band_order[1] = parkband;
} else {
/* park on the band of the specified chanspec */
parkband = chspec_bandunit(chanspec);
/* order so that parkband initialize last */
band_order[0] = parkband ^ 1;
band_order[1] = parkband;
}
/* make each band operational, software state init */
for (i = 0; i < wlc->pub->_nbands; i++) {
uint j = band_order[i];
wlc->band = wlc->bandstate[j];
brcms_default_rateset(wlc, &default_rateset);
/* fill in hw_rate */
brcms_c_rateset_filter(&default_rateset, &wlc->band->hw_rateset,
false, BRCMS_RATES_CCK_OFDM, BRCMS_RATE_MASK,
(bool) (wlc->pub->_n_enab & SUPPORT_11N));
/* init basic rate lookup */
brcms_c_rate_lookup_init(wlc, &default_rateset);
}
/* sync up phy/radio chanspec */
brcms_c_set_phy_chanspec(wlc, chanspec);
}
/*
* Set or clear filtering related maccontrol bits based on
* specified filter flags
*/
void brcms_c_mac_promisc(struct brcms_c_info *wlc, uint filter_flags)
{
u32 promisc_bits = 0;
wlc->filter_flags = filter_flags;
if (filter_flags & FIF_OTHER_BSS)
promisc_bits |= MCTL_PROMISC;
if (filter_flags & FIF_BCN_PRBRESP_PROMISC)
promisc_bits |= MCTL_BCNS_PROMISC;
if (filter_flags & FIF_FCSFAIL)
promisc_bits |= MCTL_KEEPBADFCS;
if (filter_flags & (FIF_CONTROL | FIF_PSPOLL))
promisc_bits |= MCTL_KEEPCONTROL;
brcms_b_mctrl(wlc->hw,
MCTL_PROMISC | MCTL_BCNS_PROMISC |
MCTL_KEEPCONTROL | MCTL_KEEPBADFCS,
promisc_bits);
}
/*
* ucode, hwmac update
* Channel dependent updates for ucode and hw
*/
static void brcms_c_ucode_mac_upd(struct brcms_c_info *wlc)
{
/* enable or disable any active IBSSs depending on whether or not
* we are on the home channel
*/
if (wlc->home_chanspec == wlc_phy_chanspec_get(wlc->band->pi)) {
if (wlc->pub->associated) {
/*
* BMAC_NOTE: This is something that should be fixed
* in ucode inits. I think that the ucode inits set
* up the bcn templates and shm values with a bogus
* beacon. This should not be done in the inits. If
* ucode needs to set up a beacon for testing, the
* test routines should write it down, not expect the
* inits to populate a bogus beacon.
*/
if (BRCMS_PHY_11N_CAP(wlc->band))
brcms_b_write_shm(wlc->hw,
M_BCN_TXTSF_OFFSET, 0);
}
} else {
/* disable an active IBSS if we are not on the home channel */
}
}
static void brcms_c_write_rate_shm(struct brcms_c_info *wlc, u8 rate,
u8 basic_rate)
{
u8 phy_rate, index;
u8 basic_phy_rate, basic_index;
u16 dir_table, basic_table;
u16 basic_ptr;
/* Shared memory address for the table we are reading */
dir_table = is_ofdm_rate(basic_rate) ? M_RT_DIRMAP_A : M_RT_DIRMAP_B;
/* Shared memory address for the table we are writing */
basic_table = is_ofdm_rate(rate) ? M_RT_BBRSMAP_A : M_RT_BBRSMAP_B;
/*
* for a given rate, the LS-nibble of the PLCP SIGNAL field is
* the index into the rate table.
*/
phy_rate = rate_info[rate] & BRCMS_RATE_MASK;
basic_phy_rate = rate_info[basic_rate] & BRCMS_RATE_MASK;
index = phy_rate & 0xf;
basic_index = basic_phy_rate & 0xf;
/* Find the SHM pointer to the ACK rate entry by looking in the
* Direct-map Table
*/
basic_ptr = brcms_b_read_shm(wlc->hw, (dir_table + basic_index * 2));
/* Update the SHM BSS-basic-rate-set mapping table with the pointer
* to the correct basic rate for the given incoming rate
*/
brcms_b_write_shm(wlc->hw, (basic_table + index * 2), basic_ptr);
}
static const struct brcms_c_rateset *
brcms_c_rateset_get_hwrs(struct brcms_c_info *wlc)
{
const struct brcms_c_rateset *rs_dflt;
if (BRCMS_PHY_11N_CAP(wlc->band)) {
if (wlc->band->bandtype == BRCM_BAND_5G)
rs_dflt = &ofdm_mimo_rates;
else
rs_dflt = &cck_ofdm_mimo_rates;
} else if (wlc->band->gmode)
rs_dflt = &cck_ofdm_rates;
else
rs_dflt = &cck_rates;
return rs_dflt;
}
static void brcms_c_set_ratetable(struct brcms_c_info *wlc)
{
const struct brcms_c_rateset *rs_dflt;
struct brcms_c_rateset rs;
u8 rate, basic_rate;
uint i;
rs_dflt = brcms_c_rateset_get_hwrs(wlc);
brcms_c_rateset_copy(rs_dflt, &rs);
brcms_c_rateset_mcs_upd(&rs, wlc->stf->txstreams);
/* walk the phy rate table and update SHM basic rate lookup table */
for (i = 0; i < rs.count; i++) {
rate = rs.rates[i] & BRCMS_RATE_MASK;
/* for a given rate brcms_basic_rate returns the rate at
* which a response ACK/CTS should be sent.
*/
basic_rate = brcms_basic_rate(wlc, rate);
if (basic_rate == 0)
/* This should only happen if we are using a
* restricted rateset.
*/
basic_rate = rs.rates[0] & BRCMS_RATE_MASK;
brcms_c_write_rate_shm(wlc, rate, basic_rate);
}
}
/* band-specific init */
static void brcms_c_bsinit(struct brcms_c_info *wlc)
{
brcms_dbg_info(wlc->hw->d11core, "wl%d: bandunit %d\n",
wlc->pub->unit, wlc->band->bandunit);
/* write ucode ACK/CTS rate table */
brcms_c_set_ratetable(wlc);
/* update some band specific mac configuration */
brcms_c_ucode_mac_upd(wlc);
/* init antenna selection */
brcms_c_antsel_init(wlc->asi);
}
/* formula: IDLE_BUSY_RATIO_X_16 = (100-duty_cycle)/duty_cycle*16 */
static int
brcms_c_duty_cycle_set(struct brcms_c_info *wlc, int duty_cycle, bool isOFDM,
bool writeToShm)
{
int idle_busy_ratio_x_16 = 0;
uint offset =
isOFDM ? M_TX_IDLE_BUSY_RATIO_X_16_OFDM :
M_TX_IDLE_BUSY_RATIO_X_16_CCK;
if (duty_cycle > 100 || duty_cycle < 0) {
brcms_err(wlc->hw->d11core,
"wl%d: duty cycle value off limit\n",
wlc->pub->unit);
return -EINVAL;
}
if (duty_cycle)
idle_busy_ratio_x_16 = (100 - duty_cycle) * 16 / duty_cycle;
/* Only write to shared memory when wl is up */
if (writeToShm)
brcms_b_write_shm(wlc->hw, offset, (u16) idle_busy_ratio_x_16);
if (isOFDM)
wlc->tx_duty_cycle_ofdm = (u16) duty_cycle;
else
wlc->tx_duty_cycle_cck = (u16) duty_cycle;
return 0;
}
/* push sw hps and wake state through hardware */
static void brcms_c_set_ps_ctrl(struct brcms_c_info *wlc)
{
u32 v1, v2;
bool hps;
bool awake_before;
hps = brcms_c_ps_allowed(wlc);
brcms_dbg_mac80211(wlc->hw->d11core, "wl%d: hps %d\n", wlc->pub->unit,
hps);
v1 = bcma_read32(wlc->hw->d11core, D11REGOFFS(maccontrol));
v2 = MCTL_WAKE;
if (hps)
v2 |= MCTL_HPS;
brcms_b_mctrl(wlc->hw, MCTL_WAKE | MCTL_HPS, v2);
awake_before = ((v1 & MCTL_WAKE) || ((v1 & MCTL_HPS) == 0));
if (!awake_before)
brcms_b_wait_for_wake(wlc->hw);
}
/*
* Write this BSS config's MAC address to core.
* Updates RXE match engine.
*/
static int brcms_c_set_mac(struct brcms_bss_cfg *bsscfg)
{
int err = 0;
struct brcms_c_info *wlc = bsscfg->wlc;
/* enter the MAC addr into the RXE match registers */
brcms_c_set_addrmatch(wlc, RCM_MAC_OFFSET, wlc->pub->cur_etheraddr);
brcms_c_ampdu_macaddr_upd(wlc);
return err;
}
/* Write the BSS config's BSSID address to core (set_bssid in d11procs.tcl).
* Updates RXE match engine.
*/
static void brcms_c_set_bssid(struct brcms_bss_cfg *bsscfg)
{
/* we need to update BSSID in RXE match registers */
brcms_c_set_addrmatch(bsscfg->wlc, RCM_BSSID_OFFSET, bsscfg->BSSID);
}
void brcms_c_set_ssid(struct brcms_c_info *wlc, u8 *ssid, size_t ssid_len)
{
u8 len = min_t(u8, sizeof(wlc->bsscfg->SSID), ssid_len);
memset(wlc->bsscfg->SSID, 0, sizeof(wlc->bsscfg->SSID));
memcpy(wlc->bsscfg->SSID, ssid, len);
wlc->bsscfg->SSID_len = len;
}
static void brcms_b_set_shortslot(struct brcms_hardware *wlc_hw, bool shortslot)
{
wlc_hw->shortslot = shortslot;
if (wlc_hw->band->bandtype == BRCM_BAND_2G && wlc_hw->up) {
brcms_c_suspend_mac_and_wait(wlc_hw->wlc);
brcms_b_update_slot_timing(wlc_hw, shortslot);
brcms_c_enable_mac(wlc_hw->wlc);
}
}
/*
* Suspend the the MAC and update the slot timing
* for standard 11b/g (20us slots) or shortslot 11g (9us slots).
*/
static void brcms_c_switch_shortslot(struct brcms_c_info *wlc, bool shortslot)
{
/* use the override if it is set */
if (wlc->shortslot_override != BRCMS_SHORTSLOT_AUTO)
shortslot = (wlc->shortslot_override == BRCMS_SHORTSLOT_ON);
if (wlc->shortslot == shortslot)
return;
wlc->shortslot = shortslot;
brcms_b_set_shortslot(wlc->hw, shortslot);
}
static void brcms_c_set_home_chanspec(struct brcms_c_info *wlc, u16 chanspec)
{
if (wlc->home_chanspec != chanspec) {
wlc->home_chanspec = chanspec;
if (wlc->pub->associated)
wlc->bsscfg->current_bss->chanspec = chanspec;
}
}
void
brcms_b_set_chanspec(struct brcms_hardware *wlc_hw, u16 chanspec,
bool mute_tx, struct txpwr_limits *txpwr)
{
uint bandunit;
brcms_dbg_mac80211(wlc_hw->d11core, "wl%d: 0x%x\n", wlc_hw->unit,
chanspec);
wlc_hw->chanspec = chanspec;
/* Switch bands if necessary */
if (wlc_hw->_nbands > 1) {
bandunit = chspec_bandunit(chanspec);
if (wlc_hw->band->bandunit != bandunit) {
/* brcms_b_setband disables other bandunit,
* use light band switch if not up yet
*/
if (wlc_hw->up) {
wlc_phy_chanspec_radio_set(wlc_hw->
bandstate[bandunit]->
pi, chanspec);
brcms_b_setband(wlc_hw, bandunit, chanspec);
} else {
brcms_c_setxband(wlc_hw, bandunit);
}
}
}
wlc_phy_initcal_enable(wlc_hw->band->pi, !mute_tx);
if (!wlc_hw->up) {
if (wlc_hw->clk)
wlc_phy_txpower_limit_set(wlc_hw->band->pi, txpwr,
chanspec);
wlc_phy_chanspec_radio_set(wlc_hw->band->pi, chanspec);
} else {
wlc_phy_chanspec_set(wlc_hw->band->pi, chanspec);
wlc_phy_txpower_limit_set(wlc_hw->band->pi, txpwr, chanspec);
/* Update muting of the channel */
brcms_b_mute(wlc_hw, mute_tx);
}
}
/* switch to and initialize new band */
static void brcms_c_setband(struct brcms_c_info *wlc,
uint bandunit)
{
wlc->band = wlc->bandstate[bandunit];
if (!wlc->pub->up)
return;
/* wait for at least one beacon before entering sleeping state */
brcms_c_set_ps_ctrl(wlc);
/* band-specific initializations */
brcms_c_bsinit(wlc);
}
static void brcms_c_set_chanspec(struct brcms_c_info *wlc, u16 chanspec)
{
uint bandunit;
bool switchband = false;
u16 old_chanspec = wlc->chanspec;
if (!brcms_c_valid_chanspec_db(wlc->cmi, chanspec)) {
brcms_err(wlc->hw->d11core, "wl%d: %s: Bad channel %d\n",
wlc->pub->unit, __func__, CHSPEC_CHANNEL(chanspec));
return;
}
/* Switch bands if necessary */
if (wlc->pub->_nbands > 1) {
bandunit = chspec_bandunit(chanspec);
if (wlc->band->bandunit != bandunit || wlc->bandinit_pending) {
switchband = true;
if (wlc->bandlocked) {
brcms_err(wlc->hw->d11core,
"wl%d: %s: chspec %d band is locked!\n",
wlc->pub->unit, __func__,
CHSPEC_CHANNEL(chanspec));
return;
}
/*
* should the setband call come after the
* brcms_b_chanspec() ? if the setband updates
* (brcms_c_bsinit) use low level calls to inspect and
* set state, the state inspected may be from the wrong
* band, or the following brcms_b_set_chanspec() may
* undo the work.
*/
brcms_c_setband(wlc, bandunit);
}
}
/* sync up phy/radio chanspec */
brcms_c_set_phy_chanspec(wlc, chanspec);
/* init antenna selection */
if (brcms_chspec_bw(old_chanspec) != brcms_chspec_bw(chanspec)) {
brcms_c_antsel_init(wlc->asi);
/* Fix the hardware rateset based on bw.
* Mainly add MCS32 for 40Mhz, remove MCS 32 for 20Mhz
*/
brcms_c_rateset_bw_mcs_filter(&wlc->band->hw_rateset,
wlc->band->mimo_cap_40 ? brcms_chspec_bw(chanspec) : 0);
}
/* update some mac configuration since chanspec changed */
brcms_c_ucode_mac_upd(wlc);
}
/*
* This function changes the phytxctl for beacon based on current
* beacon ratespec AND txant setting as per this table:
* ratespec CCK ant = wlc->stf->txant
* OFDM ant = 3
*/
void brcms_c_beacon_phytxctl_txant_upd(struct brcms_c_info *wlc,
u32 bcn_rspec)
{
u16 phyctl;
u16 phytxant = wlc->stf->phytxant;
u16 mask = PHY_TXC_ANT_MASK;
/* for non-siso rates or default setting, use the available chains */
if (BRCMS_PHY_11N_CAP(wlc->band))
phytxant = brcms_c_stf_phytxchain_sel(wlc, bcn_rspec);
phyctl = brcms_b_read_shm(wlc->hw, M_BCN_PCTLWD);
phyctl = (phyctl & ~mask) | phytxant;
brcms_b_write_shm(wlc->hw, M_BCN_PCTLWD, phyctl);
}
/*
* centralized protection config change function to simplify debugging, no
* consistency checking this should be called only on changes to avoid overhead
* in periodic function
*/
void brcms_c_protection_upd(struct brcms_c_info *wlc, uint idx, int val)
{
/*
* Cannot use brcms_dbg_* here because this function is called
* before wlc is sufficiently initialized.
*/
BCMMSG(wlc->wiphy, "idx %d, val %d\n", idx, val);
switch (idx) {
case BRCMS_PROT_G_SPEC:
wlc->protection->_g = (bool) val;
break;
case BRCMS_PROT_G_OVR:
wlc->protection->g_override = (s8) val;
break;
case BRCMS_PROT_G_USER:
wlc->protection->gmode_user = (u8) val;
break;
case BRCMS_PROT_OVERLAP:
wlc->protection->overlap = (s8) val;
break;
case BRCMS_PROT_N_USER:
wlc->protection->nmode_user = (s8) val;
break;
case BRCMS_PROT_N_CFG:
wlc->protection->n_cfg = (s8) val;
break;
case BRCMS_PROT_N_CFG_OVR:
wlc->protection->n_cfg_override = (s8) val;
break;
case BRCMS_PROT_N_NONGF:
wlc->protection->nongf = (bool) val;
break;
case BRCMS_PROT_N_NONGF_OVR:
wlc->protection->nongf_override = (s8) val;
break;
case BRCMS_PROT_N_PAM_OVR:
wlc->protection->n_pam_override = (s8) val;
break;
case BRCMS_PROT_N_OBSS:
wlc->protection->n_obss = (bool) val;
break;
default:
break;
}
}
static void brcms_c_ht_update_sgi_rx(struct brcms_c_info *wlc, int val)
{
if (wlc->pub->up) {
brcms_c_update_beacon(wlc);
brcms_c_update_probe_resp(wlc, true);
}
}
static void brcms_c_ht_update_ldpc(struct brcms_c_info *wlc, s8 val)
{
wlc->stf->ldpc = val;
if (wlc->pub->up) {
brcms_c_update_beacon(wlc);
brcms_c_update_probe_resp(wlc, true);
wlc_phy_ldpc_override_set(wlc->band->pi, (val ? true : false));
}
}
void brcms_c_wme_setparams(struct brcms_c_info *wlc, u16 aci,
const struct ieee80211_tx_queue_params *params,
bool suspend)
{
int i;
struct shm_acparams acp_shm;
u16 *shm_entry;
/* Only apply params if the core is out of reset and has clocks */
if (!wlc->clk) {
brcms_err(wlc->hw->d11core, "wl%d: %s : no-clock\n",
wlc->pub->unit, __func__);
return;
}
memset(&acp_shm, 0, sizeof(struct shm_acparams));
/* fill in shm ac params struct */
acp_shm.txop = params->txop;
/* convert from units of 32us to us for ucode */
wlc->edcf_txop[aci & 0x3] = acp_shm.txop =
EDCF_TXOP2USEC(acp_shm.txop);
acp_shm.aifs = (params->aifs & EDCF_AIFSN_MASK);
if (aci == IEEE80211_AC_VI && acp_shm.txop == 0
&& acp_shm.aifs < EDCF_AIFSN_MAX)
acp_shm.aifs++;
if (acp_shm.aifs < EDCF_AIFSN_MIN
|| acp_shm.aifs > EDCF_AIFSN_MAX) {
brcms_err(wlc->hw->d11core, "wl%d: edcf_setparams: bad "
"aifs %d\n", wlc->pub->unit, acp_shm.aifs);
} else {
acp_shm.cwmin = params->cw_min;
acp_shm.cwmax = params->cw_max;
acp_shm.cwcur = acp_shm.cwmin;
acp_shm.bslots =
bcma_read16(wlc->hw->d11core, D11REGOFFS(tsf_random)) &
acp_shm.cwcur;
acp_shm.reggap = acp_shm.bslots + acp_shm.aifs;
/* Indicate the new params to the ucode */
acp_shm.status = brcms_b_read_shm(wlc->hw, (M_EDCF_QINFO +
wme_ac2fifo[aci] *
M_EDCF_QLEN +
M_EDCF_STATUS_OFF));
acp_shm.status |= WME_STATUS_NEWAC;
/* Fill in shm acparam table */
shm_entry = (u16 *) &acp_shm;
for (i = 0; i < (int)sizeof(struct shm_acparams); i += 2)
brcms_b_write_shm(wlc->hw,
M_EDCF_QINFO +
wme_ac2fifo[aci] * M_EDCF_QLEN + i,
*shm_entry++);
}
if (suspend)
brcms_c_suspend_mac_and_wait(wlc);
brcms_c_update_beacon(wlc);
brcms_c_update_probe_resp(wlc, false);
if (suspend)
brcms_c_enable_mac(wlc);
}
static void brcms_c_edcf_setparams(struct brcms_c_info *wlc, bool suspend)
{
u16 aci;
int i_ac;
struct ieee80211_tx_queue_params txq_pars;
static const struct edcf_acparam default_edcf_acparams[] = {
{EDCF_AC_BE_ACI_STA, EDCF_AC_BE_ECW_STA, EDCF_AC_BE_TXOP_STA},
{EDCF_AC_BK_ACI_STA, EDCF_AC_BK_ECW_STA, EDCF_AC_BK_TXOP_STA},
{EDCF_AC_VI_ACI_STA, EDCF_AC_VI_ECW_STA, EDCF_AC_VI_TXOP_STA},
{EDCF_AC_VO_ACI_STA, EDCF_AC_VO_ECW_STA, EDCF_AC_VO_TXOP_STA}
}; /* ucode needs these parameters during its initialization */
const struct edcf_acparam *edcf_acp = &default_edcf_acparams[0];
for (i_ac = 0; i_ac < IEEE80211_NUM_ACS; i_ac++, edcf_acp++) {
/* find out which ac this set of params applies to */
aci = (edcf_acp->ACI & EDCF_ACI_MASK) >> EDCF_ACI_SHIFT;
/* fill in shm ac params struct */
txq_pars.txop = edcf_acp->TXOP;
txq_pars.aifs = edcf_acp->ACI;
/* CWmin = 2^(ECWmin) - 1 */
txq_pars.cw_min = EDCF_ECW2CW(edcf_acp->ECW & EDCF_ECWMIN_MASK);
/* CWmax = 2^(ECWmax) - 1 */
txq_pars.cw_max = EDCF_ECW2CW((edcf_acp->ECW & EDCF_ECWMAX_MASK)
>> EDCF_ECWMAX_SHIFT);
brcms_c_wme_setparams(wlc, aci, &txq_pars, suspend);
}
if (suspend) {
brcms_c_suspend_mac_and_wait(wlc);
brcms_c_enable_mac(wlc);
}
}
static void brcms_c_radio_monitor_start(struct brcms_c_info *wlc)
{
/* Don't start the timer if HWRADIO feature is disabled */
if (wlc->radio_monitor)
return;
wlc->radio_monitor = true;
brcms_b_pllreq(wlc->hw, true, BRCMS_PLLREQ_RADIO_MON);
brcms_add_timer(wlc->radio_timer, TIMER_INTERVAL_RADIOCHK, true);
}
static bool brcms_c_radio_monitor_stop(struct brcms_c_info *wlc)
{
if (!wlc->radio_monitor)
return true;
wlc->radio_monitor = false;
brcms_b_pllreq(wlc->hw, false, BRCMS_PLLREQ_RADIO_MON);
return brcms_del_timer(wlc->radio_timer);
}
/* read hwdisable state and propagate to wlc flag */
static void brcms_c_radio_hwdisable_upd(struct brcms_c_info *wlc)
{
if (wlc->pub->hw_off)
return;
if (brcms_b_radio_read_hwdisabled(wlc->hw))
mboolset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE);
else
mboolclr(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE);
}
/* update hwradio status and return it */
bool brcms_c_check_radio_disabled(struct brcms_c_info *wlc)
{
brcms_c_radio_hwdisable_upd(wlc);
return mboolisset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE) ?
true : false;
}
/* periodical query hw radio button while driver is "down" */
static void brcms_c_radio_timer(void *arg)
{
struct brcms_c_info *wlc = (struct brcms_c_info *) arg;
if (brcms_deviceremoved(wlc)) {
brcms_err(wlc->hw->d11core, "wl%d: %s: dead chip\n",
wlc->pub->unit, __func__);
brcms_down(wlc->wl);
return;
}
brcms_c_radio_hwdisable_upd(wlc);
}
/* common low-level watchdog code */
static void brcms_b_watchdog(struct brcms_c_info *wlc)
{
struct brcms_hardware *wlc_hw = wlc->hw;
if (!wlc_hw->up)
return;
/* increment second count */
wlc_hw->now++;
/* Check for FIFO error interrupts */
brcms_b_fifoerrors(wlc_hw);
/* make sure RX dma has buffers */
dma_rxfill(wlc->hw->di[RX_FIFO]);
wlc_phy_watchdog(wlc_hw->band->pi);
}
/* common watchdog code */
static void brcms_c_watchdog(struct brcms_c_info *wlc)
{
brcms_dbg_info(wlc->hw->d11core, "wl%d\n", wlc->pub->unit);
if (!wlc->pub->up)
return;
if (brcms_deviceremoved(wlc)) {
brcms_err(wlc->hw->d11core, "wl%d: %s: dead chip\n",
wlc->pub->unit, __func__);
brcms_down(wlc->wl);
return;
}
/* increment second count */
wlc->pub->now++;
brcms_c_radio_hwdisable_upd(wlc);
/* if radio is disable, driver may be down, quit here */
if (wlc->pub->radio_disabled)
return;
brcms_b_watchdog(wlc);
/*
* occasionally sample mac stat counters to
* detect 16-bit counter wrap
*/
if ((wlc->pub->now % SW_TIMER_MAC_STAT_UPD) == 0)
brcms_c_statsupd(wlc);
if (BRCMS_ISNPHY(wlc->band) &&
((wlc->pub->now - wlc->tempsense_lasttime) >=
BRCMS_TEMPSENSE_PERIOD)) {
wlc->tempsense_lasttime = wlc->pub->now;
brcms_c_tempsense_upd(wlc);
}
}
static void brcms_c_watchdog_by_timer(void *arg)
{
struct brcms_c_info *wlc = (struct brcms_c_info *) arg;
brcms_c_watchdog(wlc);
}
static bool brcms_c_timers_init(struct brcms_c_info *wlc, int unit)
{
wlc->wdtimer = brcms_init_timer(wlc->wl, brcms_c_watchdog_by_timer,
wlc, "watchdog");
if (!wlc->wdtimer) {
wiphy_err(wlc->wiphy, "wl%d: wl_init_timer for wdtimer "
"failed\n", unit);
goto fail;
}
wlc->radio_timer = brcms_init_timer(wlc->wl, brcms_c_radio_timer,
wlc, "radio");
if (!wlc->radio_timer) {
wiphy_err(wlc->wiphy, "wl%d: wl_init_timer for radio_timer "
"failed\n", unit);
goto fail;
}
return true;
fail:
return false;
}
/*
* Initialize brcms_c_info default values ...
* may get overrides later in this function
*/
static void brcms_c_info_init(struct brcms_c_info *wlc, int unit)
{
int i;
/* Save our copy of the chanspec */
wlc->chanspec = ch20mhz_chspec(1);
/* various 802.11g modes */
wlc->shortslot = false;
wlc->shortslot_override = BRCMS_SHORTSLOT_AUTO;
brcms_c_protection_upd(wlc, BRCMS_PROT_G_OVR, BRCMS_PROTECTION_AUTO);
brcms_c_protection_upd(wlc, BRCMS_PROT_G_SPEC, false);
brcms_c_protection_upd(wlc, BRCMS_PROT_N_CFG_OVR,
BRCMS_PROTECTION_AUTO);
brcms_c_protection_upd(wlc, BRCMS_PROT_N_CFG, BRCMS_N_PROTECTION_OFF);
brcms_c_protection_upd(wlc, BRCMS_PROT_N_NONGF_OVR,
BRCMS_PROTECTION_AUTO);
brcms_c_protection_upd(wlc, BRCMS_PROT_N_NONGF, false);
brcms_c_protection_upd(wlc, BRCMS_PROT_N_PAM_OVR, AUTO);
brcms_c_protection_upd(wlc, BRCMS_PROT_OVERLAP,
BRCMS_PROTECTION_CTL_OVERLAP);
/* 802.11g draft 4.0 NonERP elt advertisement */
wlc->include_legacy_erp = true;
wlc->stf->ant_rx_ovr = ANT_RX_DIV_DEF;
wlc->stf->txant = ANT_TX_DEF;
wlc->prb_resp_timeout = BRCMS_PRB_RESP_TIMEOUT;
wlc->usr_fragthresh = DOT11_DEFAULT_FRAG_LEN;
for (i = 0; i < NFIFO; i++)
wlc->fragthresh[i] = DOT11_DEFAULT_FRAG_LEN;
wlc->RTSThresh = DOT11_DEFAULT_RTS_LEN;
/* default rate fallback retry limits */
wlc->SFBL = RETRY_SHORT_FB;
wlc->LFBL = RETRY_LONG_FB;
/* default mac retry limits */
wlc->SRL = RETRY_SHORT_DEF;
wlc->LRL = RETRY_LONG_DEF;
/* WME QoS mode is Auto by default */
wlc->pub->_ampdu = AMPDU_AGG_HOST;
}
static uint brcms_c_attach_module(struct brcms_c_info *wlc)
{
uint err = 0;
uint unit;
unit = wlc->pub->unit;
wlc->asi = brcms_c_antsel_attach(wlc);
if (wlc->asi == NULL) {
wiphy_err(wlc->wiphy, "wl%d: attach: antsel_attach "
"failed\n", unit);
err = 44;
goto fail;
}
wlc->ampdu = brcms_c_ampdu_attach(wlc);
if (wlc->ampdu == NULL) {
wiphy_err(wlc->wiphy, "wl%d: attach: ampdu_attach "
"failed\n", unit);
err = 50;
goto fail;
}
if ((brcms_c_stf_attach(wlc) != 0)) {
wiphy_err(wlc->wiphy, "wl%d: attach: stf_attach "
"failed\n", unit);
err = 68;
goto fail;
}
fail:
return err;
}
struct brcms_pub *brcms_c_pub(struct brcms_c_info *wlc)
{
return wlc->pub;
}
/* low level attach
* run backplane attach, init nvram
* run phy attach
* initialize software state for each core and band
* put the whole chip in reset(driver down state), no clock
*/
static int brcms_b_attach(struct brcms_c_info *wlc, struct bcma_device *core,
uint unit, bool piomode)
{
struct brcms_hardware *wlc_hw;
uint err = 0;
uint j;
bool wme = false;
struct shared_phy_params sha_params;
struct wiphy *wiphy = wlc->wiphy;
struct pci_dev *pcidev = core->bus->host_pci;
struct ssb_sprom *sprom = &core->bus->sprom;
if (core->bus->hosttype == BCMA_HOSTTYPE_PCI)
brcms_dbg_info(core, "wl%d: vendor 0x%x device 0x%x\n", unit,
pcidev->vendor,
pcidev->device);
else
brcms_dbg_info(core, "wl%d: vendor 0x%x device 0x%x\n", unit,
core->bus->boardinfo.vendor,
core->bus->boardinfo.type);
wme = true;
wlc_hw = wlc->hw;
wlc_hw->wlc = wlc;
wlc_hw->unit = unit;
wlc_hw->band = wlc_hw->bandstate[0];
wlc_hw->_piomode = piomode;
/* populate struct brcms_hardware with default values */
brcms_b_info_init(wlc_hw);
/*
* Do the hardware portion of the attach. Also initialize software
* state that depends on the particular hardware we are running.
*/
wlc_hw->sih = ai_attach(core->bus);
if (wlc_hw->sih == NULL) {
wiphy_err(wiphy, "wl%d: brcms_b_attach: si_attach failed\n",
unit);
err = 11;
goto fail;
}
/* verify again the device is supported */
if (!brcms_c_chipmatch(core)) {
wiphy_err(wiphy, "wl%d: brcms_b_attach: Unsupported device\n",
unit);
err = 12;
goto fail;
}
if (core->bus->hosttype == BCMA_HOSTTYPE_PCI) {
wlc_hw->vendorid = pcidev->vendor;
wlc_hw->deviceid = pcidev->device;
} else {
wlc_hw->vendorid = core->bus->boardinfo.vendor;
wlc_hw->deviceid = core->bus->boardinfo.type;
}
wlc_hw->d11core = core;
wlc_hw->corerev = core->id.rev;
/* validate chip, chiprev and corerev */
if (!brcms_c_isgoodchip(wlc_hw)) {
err = 13;
goto fail;
}
/* initialize power control registers */
ai_clkctl_init(wlc_hw->sih);
/* request fastclock and force fastclock for the rest of attach
* bring the d11 core out of reset.
* For PMU chips, the first wlc_clkctl_clk is no-op since core-clk
* is still false; But it will be called again inside wlc_corereset,
* after d11 is out of reset.
*/
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
brcms_b_corereset(wlc_hw, BRCMS_USE_COREFLAGS);
if (!brcms_b_validate_chip_access(wlc_hw)) {
wiphy_err(wiphy, "wl%d: brcms_b_attach: validate_chip_access "
"failed\n", unit);
err = 14;
goto fail;
}
/* get the board rev, used just below */
j = sprom->board_rev;
/* promote srom boardrev of 0xFF to 1 */
if (j == BOARDREV_PROMOTABLE)
j = BOARDREV_PROMOTED;
wlc_hw->boardrev = (u16) j;
if (!brcms_c_validboardtype(wlc_hw)) {
wiphy_err(wiphy, "wl%d: brcms_b_attach: Unsupported Broadcom "
"board type (0x%x)" " or revision level (0x%x)\n",
unit, ai_get_boardtype(wlc_hw->sih),
wlc_hw->boardrev);
err = 15;
goto fail;
}
wlc_hw->sromrev = sprom->revision;
wlc_hw->boardflags = sprom->boardflags_lo + (sprom->boardflags_hi << 16);
wlc_hw->boardflags2 = sprom->boardflags2_lo + (sprom->boardflags2_hi << 16);
if (wlc_hw->boardflags & BFL_NOPLLDOWN)
brcms_b_pllreq(wlc_hw, true, BRCMS_PLLREQ_SHARED);
/* check device id(srom, nvram etc.) to set bands */
if (wlc_hw->deviceid == BCM43224_D11N_ID ||
wlc_hw->deviceid == BCM43224_D11N_ID_VEN1 ||
wlc_hw->deviceid == BCM43224_CHIP_ID)
/* Dualband boards */
wlc_hw->_nbands = 2;
else
wlc_hw->_nbands = 1;
if ((ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM43225))
wlc_hw->_nbands = 1;
/* BMAC_NOTE: remove init of pub values when brcms_c_attach()
* unconditionally does the init of these values
*/
wlc->vendorid = wlc_hw->vendorid;
wlc->deviceid = wlc_hw->deviceid;
wlc->pub->sih = wlc_hw->sih;
wlc->pub->corerev = wlc_hw->corerev;
wlc->pub->sromrev = wlc_hw->sromrev;
wlc->pub->boardrev = wlc_hw->boardrev;
wlc->pub->boardflags = wlc_hw->boardflags;
wlc->pub->boardflags2 = wlc_hw->boardflags2;
wlc->pub->_nbands = wlc_hw->_nbands;
wlc_hw->physhim = wlc_phy_shim_attach(wlc_hw, wlc->wl, wlc);
if (wlc_hw->physhim == NULL) {
wiphy_err(wiphy, "wl%d: brcms_b_attach: wlc_phy_shim_attach "
"failed\n", unit);
err = 25;
goto fail;
}
/* pass all the parameters to wlc_phy_shared_attach in one struct */
sha_params.sih = wlc_hw->sih;
sha_params.physhim = wlc_hw->physhim;
sha_params.unit = unit;
sha_params.corerev = wlc_hw->corerev;
sha_params.vid = wlc_hw->vendorid;
sha_params.did = wlc_hw->deviceid;
sha_params.chip = ai_get_chip_id(wlc_hw->sih);
sha_params.chiprev = ai_get_chiprev(wlc_hw->sih);
sha_params.chippkg = ai_get_chippkg(wlc_hw->sih);
sha_params.sromrev = wlc_hw->sromrev;
sha_params.boardtype = ai_get_boardtype(wlc_hw->sih);
sha_params.boardrev = wlc_hw->boardrev;
sha_params.boardflags = wlc_hw->boardflags;
sha_params.boardflags2 = wlc_hw->boardflags2;
/* alloc and save pointer to shared phy state area */
wlc_hw->phy_sh = wlc_phy_shared_attach(&sha_params);
if (!wlc_hw->phy_sh) {
err = 16;
goto fail;
}
/* initialize software state for each core and band */
for (j = 0; j < wlc_hw->_nbands; j++) {
/*
* band0 is always 2.4Ghz
* band1, if present, is 5Ghz
*/
brcms_c_setxband(wlc_hw, j);
wlc_hw->band->bandunit = j;
wlc_hw->band->bandtype = j ? BRCM_BAND_5G : BRCM_BAND_2G;
wlc->band->bandunit = j;
wlc->band->bandtype = j ? BRCM_BAND_5G : BRCM_BAND_2G;
wlc->core->coreidx = core->core_index;
wlc_hw->machwcap = bcma_read32(core, D11REGOFFS(machwcap));
wlc_hw->machwcap_backup = wlc_hw->machwcap;
/* init tx fifo size */
WARN_ON((wlc_hw->corerev - XMTFIFOTBL_STARTREV) < 0 ||
(wlc_hw->corerev - XMTFIFOTBL_STARTREV) >
ARRAY_SIZE(xmtfifo_sz));
wlc_hw->xmtfifo_sz =
xmtfifo_sz[(wlc_hw->corerev - XMTFIFOTBL_STARTREV)];
WARN_ON(!wlc_hw->xmtfifo_sz[0]);
/* Get a phy for this band */
wlc_hw->band->pi =
wlc_phy_attach(wlc_hw->phy_sh, core,
wlc_hw->band->bandtype,
wlc->wiphy);
if (wlc_hw->band->pi == NULL) {
wiphy_err(wiphy, "wl%d: brcms_b_attach: wlc_phy_"
"attach failed\n", unit);
err = 17;
goto fail;
}
wlc_phy_machwcap_set(wlc_hw->band->pi, wlc_hw->machwcap);
wlc_phy_get_phyversion(wlc_hw->band->pi, &wlc_hw->band->phytype,
&wlc_hw->band->phyrev,
&wlc_hw->band->radioid,
&wlc_hw->band->radiorev);
wlc_hw->band->abgphy_encore =
wlc_phy_get_encore(wlc_hw->band->pi);
wlc->band->abgphy_encore = wlc_phy_get_encore(wlc_hw->band->pi);
wlc_hw->band->core_flags =
wlc_phy_get_coreflags(wlc_hw->band->pi);
/* verify good phy_type & supported phy revision */
if (BRCMS_ISNPHY(wlc_hw->band)) {
if (NCONF_HAS(wlc_hw->band->phyrev))
goto good_phy;
else
goto bad_phy;
} else if (BRCMS_ISLCNPHY(wlc_hw->band)) {
if (LCNCONF_HAS(wlc_hw->band->phyrev))
goto good_phy;
else
goto bad_phy;
} else {
bad_phy:
wiphy_err(wiphy, "wl%d: brcms_b_attach: unsupported "
"phy type/rev (%d/%d)\n", unit,
wlc_hw->band->phytype, wlc_hw->band->phyrev);
err = 18;
goto fail;
}
good_phy:
/*
* BMAC_NOTE: wlc->band->pi should not be set below and should
* be done in the high level attach. However we can not make
* that change until all low level access is changed to
* wlc_hw->band->pi. Instead do the wlc->band->pi init below,
* keeping wlc_hw->band->pi as well for incremental update of
* low level fns, and cut over low only init when all fns
* updated.
*/
wlc->band->pi = wlc_hw->band->pi;
wlc->band->phytype = wlc_hw->band->phytype;
wlc->band->phyrev = wlc_hw->band->phyrev;
wlc->band->radioid = wlc_hw->band->radioid;
wlc->band->radiorev = wlc_hw->band->radiorev;
brcms_dbg_info(core, "wl%d: phy %u/%u radio %x/%u\n", unit,
wlc->band->phytype, wlc->band->phyrev,
wlc->band->radioid, wlc->band->radiorev);
/* default contention windows size limits */
wlc_hw->band->CWmin = APHY_CWMIN;
wlc_hw->band->CWmax = PHY_CWMAX;
if (!brcms_b_attach_dmapio(wlc, j, wme)) {
err = 19;
goto fail;
}
}
/* disable core to match driver "down" state */
brcms_c_coredisable(wlc_hw);
/* Match driver "down" state */
bcma_host_pci_down(wlc_hw->d11core->bus);
/* turn off pll and xtal to match driver "down" state */
brcms_b_xtal(wlc_hw, OFF);
/* *******************************************************************
* The hardware is in the DOWN state at this point. D11 core
* or cores are in reset with clocks off, and the board PLLs
* are off if possible.
*
* Beyond this point, wlc->sbclk == false and chip registers
* should not be touched.
*********************************************************************
*/
/* init etheraddr state variables */
brcms_c_get_macaddr(wlc_hw, wlc_hw->etheraddr);
if (is_broadcast_ether_addr(wlc_hw->etheraddr) ||
is_zero_ether_addr(wlc_hw->etheraddr)) {
wiphy_err(wiphy, "wl%d: brcms_b_attach: bad macaddr\n",
unit);
err = 22;
goto fail;
}
brcms_dbg_info(wlc_hw->d11core, "deviceid 0x%x nbands %d board 0x%x\n",
wlc_hw->deviceid, wlc_hw->_nbands,
ai_get_boardtype(wlc_hw->sih));
return err;
fail:
wiphy_err(wiphy, "wl%d: brcms_b_attach: failed with err %d\n", unit,
err);
return err;
}
static bool brcms_c_attach_stf_ant_init(struct brcms_c_info *wlc)
{
int aa;
uint unit;
int bandtype;
struct ssb_sprom *sprom = &wlc->hw->d11core->bus->sprom;
unit = wlc->pub->unit;
bandtype = wlc->band->bandtype;
/* get antennas available */
if (bandtype == BRCM_BAND_5G)
aa = sprom->ant_available_a;
else
aa = sprom->ant_available_bg;
if ((aa < 1) || (aa > 15)) {
wiphy_err(wlc->wiphy, "wl%d: %s: Invalid antennas available in"
" srom (0x%x), using 3\n", unit, __func__, aa);
aa = 3;
}
/* reset the defaults if we have a single antenna */
if (aa == 1) {
wlc->stf->ant_rx_ovr = ANT_RX_DIV_FORCE_0;
wlc->stf->txant = ANT_TX_FORCE_0;
} else if (aa == 2) {
wlc->stf->ant_rx_ovr = ANT_RX_DIV_FORCE_1;
wlc->stf->txant = ANT_TX_FORCE_1;
} else {
}
/* Compute Antenna Gain */
if (bandtype == BRCM_BAND_5G)
wlc->band->antgain = sprom->antenna_gain.a1;
else
wlc->band->antgain = sprom->antenna_gain.a0;
return true;
}
static void brcms_c_bss_default_init(struct brcms_c_info *wlc)
{
u16 chanspec;
struct brcms_band *band;
struct brcms_bss_info *bi = wlc->default_bss;
/* init default and target BSS with some sane initial values */
memset(bi, 0, sizeof(*bi));
bi->beacon_period = BEACON_INTERVAL_DEFAULT;
/* fill the default channel as the first valid channel
* starting from the 2G channels
*/
chanspec = ch20mhz_chspec(1);
wlc->home_chanspec = bi->chanspec = chanspec;
/* find the band of our default channel */
band = wlc->band;
if (wlc->pub->_nbands > 1 &&
band->bandunit != chspec_bandunit(chanspec))
band = wlc->bandstate[OTHERBANDUNIT(wlc)];
/* init bss rates to the band specific default rate set */
brcms_c_rateset_default(&bi->rateset, NULL, band->phytype,
band->bandtype, false, BRCMS_RATE_MASK_FULL,
(bool) (wlc->pub->_n_enab & SUPPORT_11N),
brcms_chspec_bw(chanspec), wlc->stf->txstreams);
if (wlc->pub->_n_enab & SUPPORT_11N)
bi->flags |= BRCMS_BSS_HT;
}
static void brcms_c_update_mimo_band_bwcap(struct brcms_c_info *wlc, u8 bwcap)
{
uint i;
struct brcms_band *band;
for (i = 0; i < wlc->pub->_nbands; i++) {
band = wlc->bandstate[i];
if (band->bandtype == BRCM_BAND_5G) {
if ((bwcap == BRCMS_N_BW_40ALL)
|| (bwcap == BRCMS_N_BW_20IN2G_40IN5G))
band->mimo_cap_40 = true;
else
band->mimo_cap_40 = false;
} else {
if (bwcap == BRCMS_N_BW_40ALL)
band->mimo_cap_40 = true;
else
band->mimo_cap_40 = false;
}
}
}
static void brcms_c_timers_deinit(struct brcms_c_info *wlc)
{
/* free timer state */
if (wlc->wdtimer) {
brcms_free_timer(wlc->wdtimer);
wlc->wdtimer = NULL;
}
if (wlc->radio_timer) {
brcms_free_timer(wlc->radio_timer);
wlc->radio_timer = NULL;
}
}
static void brcms_c_detach_module(struct brcms_c_info *wlc)
{
if (wlc->asi) {
brcms_c_antsel_detach(wlc->asi);
wlc->asi = NULL;
}
if (wlc->ampdu) {
brcms_c_ampdu_detach(wlc->ampdu);
wlc->ampdu = NULL;
}
brcms_c_stf_detach(wlc);
}
/*
* low level detach
*/
static void brcms_b_detach(struct brcms_c_info *wlc)
{
uint i;
struct brcms_hw_band *band;
struct brcms_hardware *wlc_hw = wlc->hw;
brcms_b_detach_dmapio(wlc_hw);
band = wlc_hw->band;
for (i = 0; i < wlc_hw->_nbands; i++) {
if (band->pi) {
/* Detach this band's phy */
wlc_phy_detach(band->pi);
band->pi = NULL;
}
band = wlc_hw->bandstate[OTHERBANDUNIT(wlc)];
}
/* Free shared phy state */
kfree(wlc_hw->phy_sh);
wlc_phy_shim_detach(wlc_hw->physhim);
if (wlc_hw->sih) {
ai_detach(wlc_hw->sih);
wlc_hw->sih = NULL;
}
}
/*
* Return a count of the number of driver callbacks still pending.
*
* General policy is that brcms_c_detach can only dealloc/free software states.
* It can NOT touch hardware registers since the d11core may be in reset and
* clock may not be available.
* One exception is sb register access, which is possible if crystal is turned
* on after "down" state, driver should avoid software timer with the exception
* of radio_monitor.
*/
uint brcms_c_detach(struct brcms_c_info *wlc)
{
uint callbacks;
if (wlc == NULL)
return 0;
brcms_b_detach(wlc);
/* delete software timers */
callbacks = 0;
if (!brcms_c_radio_monitor_stop(wlc))
callbacks++;
brcms_c_channel_mgr_detach(wlc->cmi);
brcms_c_timers_deinit(wlc);
brcms_c_detach_module(wlc);
brcms_c_detach_mfree(wlc);
return callbacks;
}
/* update state that depends on the current value of "ap" */
static void brcms_c_ap_upd(struct brcms_c_info *wlc)
{
/* STA-BSS; short capable */
wlc->PLCPHdr_override = BRCMS_PLCP_SHORT;
}
/* Initialize just the hardware when coming out of POR or S3/S5 system states */
static void brcms_b_hw_up(struct brcms_hardware *wlc_hw)
{
if (wlc_hw->wlc->pub->hw_up)
return;
brcms_dbg_info(wlc_hw->d11core, "wl%d\n", wlc_hw->unit);
/*
* Enable pll and xtal, initialize the power control registers,
* and force fastclock for the remainder of brcms_c_up().
*/
brcms_b_xtal(wlc_hw, ON);
ai_clkctl_init(wlc_hw->sih);
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
/*
* TODO: test suspend/resume
*
* AI chip doesn't restore bar0win2 on
* hibernation/resume, need sw fixup
*/
/*
* Inform phy that a POR reset has occurred so
* it does a complete phy init
*/
wlc_phy_por_inform(wlc_hw->band->pi);
wlc_hw->ucode_loaded = false;
wlc_hw->wlc->pub->hw_up = true;
if ((wlc_hw->boardflags & BFL_FEM)
&& (ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM4313)) {
if (!
(wlc_hw->boardrev >= 0x1250
&& (wlc_hw->boardflags & BFL_FEM_BT)))
ai_epa_4313war(wlc_hw->sih);
}
}
static int brcms_b_up_prep(struct brcms_hardware *wlc_hw)
{
brcms_dbg_info(wlc_hw->d11core, "wl%d\n", wlc_hw->unit);
/*
* Enable pll and xtal, initialize the power control registers,
* and force fastclock for the remainder of brcms_c_up().
*/
brcms_b_xtal(wlc_hw, ON);
ai_clkctl_init(wlc_hw->sih);
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
/*
* Configure pci/pcmcia here instead of in brcms_c_attach()
* to allow mfg hotswap: down, hotswap (chip power cycle), up.
*/
bcma_host_pci_irq_ctl(wlc_hw->d11core->bus, wlc_hw->d11core,
true);
/*
* Need to read the hwradio status here to cover the case where the
* system is loaded with the hw radio disabled. We do not want to
* bring the driver up in this case.
*/
if (brcms_b_radio_read_hwdisabled(wlc_hw)) {
/* put SB PCI in down state again */
bcma_host_pci_down(wlc_hw->d11core->bus);
brcms_b_xtal(wlc_hw, OFF);
return -ENOMEDIUM;
}
bcma_host_pci_up(wlc_hw->d11core->bus);
/* reset the d11 core */
brcms_b_corereset(wlc_hw, BRCMS_USE_COREFLAGS);
return 0;
}
static int brcms_b_up_finish(struct brcms_hardware *wlc_hw)
{
wlc_hw->up = true;
wlc_phy_hw_state_upd(wlc_hw->band->pi, true);
/* FULLY enable dynamic power control and d11 core interrupt */
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC);
brcms_intrson(wlc_hw->wlc->wl);
return 0;
}
/*
* Write WME tunable parameters for retransmit/max rate
* from wlc struct to ucode
*/
static void brcms_c_wme_retries_write(struct brcms_c_info *wlc)
{
int ac;
/* Need clock to do this */
if (!wlc->clk)
return;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
brcms_b_write_shm(wlc->hw, M_AC_TXLMT_ADDR(ac),
wlc->wme_retries[ac]);
}
/* make interface operational */
int brcms_c_up(struct brcms_c_info *wlc)
{
struct ieee80211_channel *ch;
brcms_dbg_info(wlc->hw->d11core, "wl%d\n", wlc->pub->unit);
/* HW is turned off so don't try to access it */
if (wlc->pub->hw_off || brcms_deviceremoved(wlc))
return -ENOMEDIUM;
if (!wlc->pub->hw_up) {
brcms_b_hw_up(wlc->hw);
wlc->pub->hw_up = true;
}
if ((wlc->pub->boardflags & BFL_FEM)
&& (ai_get_chip_id(wlc->hw->sih) == BCMA_CHIP_ID_BCM4313)) {
if (wlc->pub->boardrev >= 0x1250
&& (wlc->pub->boardflags & BFL_FEM_BT))
brcms_b_mhf(wlc->hw, MHF5, MHF5_4313_GPIOCTRL,
MHF5_4313_GPIOCTRL, BRCM_BAND_ALL);
else
brcms_b_mhf(wlc->hw, MHF4, MHF4_EXTPA_ENABLE,
MHF4_EXTPA_ENABLE, BRCM_BAND_ALL);
}
/*
* Need to read the hwradio status here to cover the case where the
* system is loaded with the hw radio disabled. We do not want to bring
* the driver up in this case. If radio is disabled, abort up, lower
* power, start radio timer and return 0(for NDIS) don't call
* radio_update to avoid looping brcms_c_up.
*
* brcms_b_up_prep() returns either 0 or -BCME_RADIOOFF only
*/
if (!wlc->pub->radio_disabled) {
int status = brcms_b_up_prep(wlc->hw);
if (status == -ENOMEDIUM) {
if (!mboolisset
(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE)) {
struct brcms_bss_cfg *bsscfg = wlc->bsscfg;
mboolset(wlc->pub->radio_disabled,
WL_RADIO_HW_DISABLE);
if (bsscfg->type == BRCMS_TYPE_STATION ||
bsscfg->type == BRCMS_TYPE_ADHOC)
brcms_err(wlc->hw->d11core,
"wl%d: up: rfdisable -> "
"bsscfg_disable()\n",
wlc->pub->unit);
}
}
}
if (wlc->pub->radio_disabled) {
brcms_c_radio_monitor_start(wlc);
return 0;
}
/* brcms_b_up_prep has done brcms_c_corereset(). so clk is on, set it */
wlc->clk = true;
brcms_c_radio_monitor_stop(wlc);
/* Set EDCF hostflags */
brcms_b_mhf(wlc->hw, MHF1, MHF1_EDCF, MHF1_EDCF, BRCM_BAND_ALL);
brcms_init(wlc->wl);
wlc->pub->up = true;
if (wlc->bandinit_pending) {
ch = wlc->pub->ieee_hw->conf.chandef.chan;
brcms_c_suspend_mac_and_wait(wlc);
brcms_c_set_chanspec(wlc, ch20mhz_chspec(ch->hw_value));
wlc->bandinit_pending = false;
brcms_c_enable_mac(wlc);
}
brcms_b_up_finish(wlc->hw);
/* Program the TX wme params with the current settings */
brcms_c_wme_retries_write(wlc);
/* start one second watchdog timer */
brcms_add_timer(wlc->wdtimer, TIMER_INTERVAL_WATCHDOG, true);
wlc->WDarmed = true;
/* ensure antenna config is up to date */
brcms_c_stf_phy_txant_upd(wlc);
/* ensure LDPC config is in sync */
brcms_c_ht_update_ldpc(wlc, wlc->stf->ldpc);
return 0;
}
static uint brcms_c_down_del_timer(struct brcms_c_info *wlc)
{
uint callbacks = 0;
return callbacks;
}
static int brcms_b_bmac_down_prep(struct brcms_hardware *wlc_hw)
{
bool dev_gone;
uint callbacks = 0;
if (!wlc_hw->up)
return callbacks;
dev_gone = brcms_deviceremoved(wlc_hw->wlc);
/* disable interrupts */
if (dev_gone)
wlc_hw->wlc->macintmask = 0;
else {
/* now disable interrupts */
brcms_intrsoff(wlc_hw->wlc->wl);
/* ensure we're running on the pll clock again */
brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
}
/* down phy at the last of this stage */
callbacks += wlc_phy_down(wlc_hw->band->pi);
return callbacks;
}
static int brcms_b_down_finish(struct brcms_hardware *wlc_hw)
{
uint callbacks = 0;
bool dev_gone;
if (!wlc_hw->up)
return callbacks;
wlc_hw->up = false;
wlc_phy_hw_state_upd(wlc_hw->band->pi, false);
dev_gone = brcms_deviceremoved(wlc_hw->wlc);
if (dev_gone) {
wlc_hw->sbclk = false;
wlc_hw->clk = false;
wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false);
/* reclaim any posted packets */
brcms_c_flushqueues(wlc_hw->wlc);
} else {
/* Reset and disable the core */
if (bcma_core_is_enabled(wlc_hw->d11core)) {
if (bcma_read32(wlc_hw->d11core,
D11REGOFFS(maccontrol)) & MCTL_EN_MAC)
brcms_c_suspend_mac_and_wait(wlc_hw->wlc);
callbacks += brcms_reset(wlc_hw->wlc->wl);
brcms_c_coredisable(wlc_hw);
}
/* turn off primary xtal and pll */
if (!wlc_hw->noreset) {
bcma_host_pci_down(wlc_hw->d11core->bus);
brcms_b_xtal(wlc_hw, OFF);
}
}
return callbacks;
}
/*
* Mark the interface nonoperational, stop the software mechanisms,
* disable the hardware, free any transient buffer state.
* Return a count of the number of driver callbacks still pending.
*/
uint brcms_c_down(struct brcms_c_info *wlc)
{
uint callbacks = 0;
int i;
bool dev_gone = false;
brcms_dbg_info(wlc->hw->d11core, "wl%d\n", wlc->pub->unit);
/* check if we are already in the going down path */
if (wlc->going_down) {
brcms_err(wlc->hw->d11core,
"wl%d: %s: Driver going down so return\n",
wlc->pub->unit, __func__);
return 0;
}
if (!wlc->pub->up)
return callbacks;
wlc->going_down = true;
callbacks += brcms_b_bmac_down_prep(wlc->hw);
dev_gone = brcms_deviceremoved(wlc);
/* Call any registered down handlers */
for (i = 0; i < BRCMS_MAXMODULES; i++) {
if (wlc->modulecb[i].down_fn)
callbacks +=
wlc->modulecb[i].down_fn(wlc->modulecb[i].hdl);
}
/* cancel the watchdog timer */
if (wlc->WDarmed) {
if (!brcms_del_timer(wlc->wdtimer))
callbacks++;
wlc->WDarmed = false;
}
/* cancel all other timers */
callbacks += brcms_c_down_del_timer(wlc);
wlc->pub->up = false;
wlc_phy_mute_upd(wlc->band->pi, false, PHY_MUTE_ALL);
callbacks += brcms_b_down_finish(wlc->hw);
/* brcms_b_down_finish has done brcms_c_coredisable(). so clk is off */
wlc->clk = false;
wlc->going_down = false;
return callbacks;
}
/* Set the current gmode configuration */
int brcms_c_set_gmode(struct brcms_c_info *wlc, u8 gmode, bool config)
{
int ret = 0;
uint i;
struct brcms_c_rateset rs;
/* Default to 54g Auto */
/* Advertise and use shortslot (-1/0/1 Auto/Off/On) */
s8 shortslot = BRCMS_SHORTSLOT_AUTO;
bool shortslot_restrict = false; /* Restrict association to stations
* that support shortslot
*/
bool ofdm_basic = false; /* Make 6, 12, and 24 basic rates */
/* Advertise and use short preambles (-1/0/1 Auto/Off/On) */
int preamble = BRCMS_PLCP_LONG;
bool preamble_restrict = false; /* Restrict association to stations
* that support short preambles
*/
struct brcms_band *band;
/* if N-support is enabled, allow Gmode set as long as requested
* Gmode is not GMODE_LEGACY_B
*/
if ((wlc->pub->_n_enab & SUPPORT_11N) && gmode == GMODE_LEGACY_B)
return -ENOTSUPP;
/* verify that we are dealing with 2G band and grab the band pointer */
if (wlc->band->bandtype == BRCM_BAND_2G)
band = wlc->band;
else if ((wlc->pub->_nbands > 1) &&
(wlc->bandstate[OTHERBANDUNIT(wlc)]->bandtype == BRCM_BAND_2G))
band = wlc->bandstate[OTHERBANDUNIT(wlc)];
else
return -EINVAL;
/* update configuration value */
if (config)
brcms_c_protection_upd(wlc, BRCMS_PROT_G_USER, gmode);
/* Clear rateset override */
memset(&rs, 0, sizeof(rs));
switch (gmode) {
case GMODE_LEGACY_B:
shortslot = BRCMS_SHORTSLOT_OFF;
brcms_c_rateset_copy(&gphy_legacy_rates, &rs);
break;
case GMODE_LRS:
break;
case GMODE_AUTO:
/* Accept defaults */
break;
case GMODE_ONLY:
ofdm_basic = true;
preamble = BRCMS_PLCP_SHORT;
preamble_restrict = true;
break;
case GMODE_PERFORMANCE:
shortslot = BRCMS_SHORTSLOT_ON;
shortslot_restrict = true;
ofdm_basic = true;
preamble = BRCMS_PLCP_SHORT;
preamble_restrict = true;
break;
default:
/* Error */
brcms_err(wlc->hw->d11core, "wl%d: %s: invalid gmode %d\n",
wlc->pub->unit, __func__, gmode);
return -ENOTSUPP;
}
band->gmode = gmode;
wlc->shortslot_override = shortslot;
/* Use the default 11g rateset */
if (!rs.count)
brcms_c_rateset_copy(&cck_ofdm_rates, &rs);
if (ofdm_basic) {
for (i = 0; i < rs.count; i++) {
if (rs.rates[i] == BRCM_RATE_6M
|| rs.rates[i] == BRCM_RATE_12M
|| rs.rates[i] == BRCM_RATE_24M)
rs.rates[i] |= BRCMS_RATE_FLAG;
}
}
/* Set default bss rateset */
wlc->default_bss->rateset.count = rs.count;
memcpy(wlc->default_bss->rateset.rates, rs.rates,
sizeof(wlc->default_bss->rateset.rates));
return ret;
}
int brcms_c_set_nmode(struct brcms_c_info *wlc)
{
uint i;
s32 nmode = AUTO;
if (wlc->stf->txstreams == WL_11N_3x3)
nmode = WL_11N_3x3;
else
nmode = WL_11N_2x2;
/* force GMODE_AUTO if NMODE is ON */
brcms_c_set_gmode(wlc, GMODE_AUTO, true);
if (nmode == WL_11N_3x3)
wlc->pub->_n_enab = SUPPORT_HT;
else
wlc->pub->_n_enab = SUPPORT_11N;
wlc->default_bss->flags |= BRCMS_BSS_HT;
/* add the mcs rates to the default and hw ratesets */
brcms_c_rateset_mcs_build(&wlc->default_bss->rateset,
wlc->stf->txstreams);
for (i = 0; i < wlc->pub->_nbands; i++)
memcpy(wlc->bandstate[i]->hw_rateset.mcs,
wlc->default_bss->rateset.mcs, MCSSET_LEN);
return 0;
}
static int
brcms_c_set_internal_rateset(struct brcms_c_info *wlc,
struct brcms_c_rateset *rs_arg)
{
struct brcms_c_rateset rs, new;
uint bandunit;
memcpy(&rs, rs_arg, sizeof(struct brcms_c_rateset));
/* check for bad count value */
if ((rs.count == 0) || (rs.count > BRCMS_NUMRATES))
return -EINVAL;
/* try the current band */
bandunit = wlc->band->bandunit;
memcpy(&new, &rs, sizeof(struct brcms_c_rateset));
if (brcms_c_rate_hwrs_filter_sort_validate
(&new, &wlc->bandstate[bandunit]->hw_rateset, true,
wlc->stf->txstreams))
goto good;
/* try the other band */
if (brcms_is_mband_unlocked(wlc)) {
bandunit = OTHERBANDUNIT(wlc);
memcpy(&new, &rs, sizeof(struct brcms_c_rateset));
if (brcms_c_rate_hwrs_filter_sort_validate(&new,
&wlc->
bandstate[bandunit]->
hw_rateset, true,
wlc->stf->txstreams))
goto good;
}
return -EBADE;
good:
/* apply new rateset */
memcpy(&wlc->default_bss->rateset, &new,
sizeof(struct brcms_c_rateset));
memcpy(&wlc->bandstate[bandunit]->defrateset, &new,
sizeof(struct brcms_c_rateset));
return 0;
}
static void brcms_c_ofdm_rateset_war(struct brcms_c_info *wlc)
{
u8 r;
bool war = false;
if (wlc->pub->associated)
r = wlc->bsscfg->current_bss->rateset.rates[0];
else
r = wlc->default_bss->rateset.rates[0];
wlc_phy_ofdm_rateset_war(wlc->band->pi, war);
}
int brcms_c_set_channel(struct brcms_c_info *wlc, u16 channel)
{
u16 chspec = ch20mhz_chspec(channel);
if (channel < 0 || channel > MAXCHANNEL)
return -EINVAL;
if (!brcms_c_valid_chanspec_db(wlc->cmi, chspec))
return -EINVAL;
if (!wlc->pub->up && brcms_is_mband_unlocked(wlc)) {
if (wlc->band->bandunit != chspec_bandunit(chspec))
wlc->bandinit_pending = true;
else
wlc->bandinit_pending = false;
}
wlc->default_bss->chanspec = chspec;
/* brcms_c_BSSinit() will sanitize the rateset before
* using it.. */
if (wlc->pub->up && (wlc_phy_chanspec_get(wlc->band->pi) != chspec)) {
brcms_c_set_home_chanspec(wlc, chspec);
brcms_c_suspend_mac_and_wait(wlc);
brcms_c_set_chanspec(wlc, chspec);
brcms_c_enable_mac(wlc);
}
return 0;
}
int brcms_c_set_rate_limit(struct brcms_c_info *wlc, u16 srl, u16 lrl)
{
int ac;
if (srl < 1 || srl > RETRY_SHORT_MAX ||
lrl < 1 || lrl > RETRY_SHORT_MAX)
return -EINVAL;
wlc->SRL = srl;
wlc->LRL = lrl;
brcms_b_retrylimit_upd(wlc->hw, wlc->SRL, wlc->LRL);
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
wlc->wme_retries[ac] = SFIELD(wlc->wme_retries[ac],
EDCF_SHORT, wlc->SRL);
wlc->wme_retries[ac] = SFIELD(wlc->wme_retries[ac],
EDCF_LONG, wlc->LRL);
}
brcms_c_wme_retries_write(wlc);
return 0;
}
void brcms_c_get_current_rateset(struct brcms_c_info *wlc,
struct brcm_rateset *currs)
{
struct brcms_c_rateset *rs;
if (wlc->pub->associated)
rs = &wlc->bsscfg->current_bss->rateset;
else
rs = &wlc->default_bss->rateset;
/* Copy only legacy rateset section */
currs->count = rs->count;
memcpy(&currs->rates, &rs->rates, rs->count);
}
int brcms_c_set_rateset(struct brcms_c_info *wlc, struct brcm_rateset *rs)
{
struct brcms_c_rateset internal_rs;
int bcmerror;
if (rs->count > BRCMS_NUMRATES)
return -ENOBUFS;
memset(&internal_rs, 0, sizeof(internal_rs));
/* Copy only legacy rateset section */
internal_rs.count = rs->count;
memcpy(&internal_rs.rates, &rs->rates, internal_rs.count);
/* merge rateset coming in with the current mcsset */
if (wlc->pub->_n_enab & SUPPORT_11N) {
struct brcms_bss_info *mcsset_bss;
if (wlc->pub->associated)
mcsset_bss = wlc->bsscfg->current_bss;
else
mcsset_bss = wlc->default_bss;
memcpy(internal_rs.mcs, &mcsset_bss->rateset.mcs[0],
MCSSET_LEN);
}
bcmerror = brcms_c_set_internal_rateset(wlc, &internal_rs);
if (!bcmerror)
brcms_c_ofdm_rateset_war(wlc);
return bcmerror;
}
static void brcms_c_time_lock(struct brcms_c_info *wlc)
{
bcma_set32(wlc->hw->d11core, D11REGOFFS(maccontrol), MCTL_TBTTHOLD);
/* Commit the write */
bcma_read32(wlc->hw->d11core, D11REGOFFS(maccontrol));
}
static void brcms_c_time_unlock(struct brcms_c_info *wlc)
{
bcma_mask32(wlc->hw->d11core, D11REGOFFS(maccontrol), ~MCTL_TBTTHOLD);
/* Commit the write */
bcma_read32(wlc->hw->d11core, D11REGOFFS(maccontrol));
}
int brcms_c_set_beacon_period(struct brcms_c_info *wlc, u16 period)
{
u32 bcnint_us;
if (period == 0)
return -EINVAL;
wlc->default_bss->beacon_period = period;
bcnint_us = period << 10;
brcms_c_time_lock(wlc);
bcma_write32(wlc->hw->d11core, D11REGOFFS(tsf_cfprep),
(bcnint_us << CFPREP_CBI_SHIFT));
bcma_write32(wlc->hw->d11core, D11REGOFFS(tsf_cfpstart), bcnint_us);
brcms_c_time_unlock(wlc);
return 0;
}
u16 brcms_c_get_phy_type(struct brcms_c_info *wlc, int phyidx)
{
return wlc->band->phytype;
}
void brcms_c_set_shortslot_override(struct brcms_c_info *wlc, s8 sslot_override)
{
wlc->shortslot_override = sslot_override;
/*
* shortslot is an 11g feature, so no more work if we are
* currently on the 5G band
*/
if (wlc->band->bandtype == BRCM_BAND_5G)
return;
if (wlc->pub->up && wlc->pub->associated) {
/* let watchdog or beacon processing update shortslot */
} else if (wlc->pub->up) {
/* unassociated shortslot is off */
brcms_c_switch_shortslot(wlc, false);
} else {
/* driver is down, so just update the brcms_c_info
* value */
if (wlc->shortslot_override == BRCMS_SHORTSLOT_AUTO)
wlc->shortslot = false;
else
wlc->shortslot =
(wlc->shortslot_override ==
BRCMS_SHORTSLOT_ON);
}
}
/*
* register watchdog and down handlers.
*/
int brcms_c_module_register(struct brcms_pub *pub,
const char *name, struct brcms_info *hdl,
int (*d_fn)(void *handle))
{
struct brcms_c_info *wlc = (struct brcms_c_info *) pub->wlc;
int i;
/* find an empty entry and just add, no duplication check! */
for (i = 0; i < BRCMS_MAXMODULES; i++) {
if (wlc->modulecb[i].name[0] == '\0') {
strncpy(wlc->modulecb[i].name, name,
sizeof(wlc->modulecb[i].name) - 1);
wlc->modulecb[i].hdl = hdl;
wlc->modulecb[i].down_fn = d_fn;
return 0;
}
}
return -ENOSR;
}
/* unregister module callbacks */
int brcms_c_module_unregister(struct brcms_pub *pub, const char *name,
struct brcms_info *hdl)
{
struct brcms_c_info *wlc = (struct brcms_c_info *) pub->wlc;
int i;
if (wlc == NULL)
return -ENODATA;
for (i = 0; i < BRCMS_MAXMODULES; i++) {
if (!strcmp(wlc->modulecb[i].name, name) &&
(wlc->modulecb[i].hdl == hdl)) {
memset(&wlc->modulecb[i], 0, sizeof(wlc->modulecb[i]));
return 0;
}
}
/* table not found! */
return -ENODATA;
}
static bool brcms_c_chipmatch_pci(struct bcma_device *core)
{
struct pci_dev *pcidev = core->bus->host_pci;
u16 vendor = pcidev->vendor;
u16 device = pcidev->device;
if (vendor != PCI_VENDOR_ID_BROADCOM) {
pr_err("unknown vendor id %04x\n", vendor);
return false;
}
if (device == BCM43224_D11N_ID_VEN1 || device == BCM43224_CHIP_ID)
return true;
if ((device == BCM43224_D11N_ID) || (device == BCM43225_D11N2G_ID))
return true;
if (device == BCM4313_D11N2G_ID || device == BCM4313_CHIP_ID)
return true;
if ((device == BCM43236_D11N_ID) || (device == BCM43236_D11N2G_ID))
return true;
pr_err("unknown device id %04x\n", device);
return false;
}
static bool brcms_c_chipmatch_soc(struct bcma_device *core)
{
struct bcma_chipinfo *chipinfo = &core->bus->chipinfo;
if (chipinfo->id == BCMA_CHIP_ID_BCM4716)
return true;
pr_err("unknown chip id %04x\n", chipinfo->id);
return false;
}
bool brcms_c_chipmatch(struct bcma_device *core)
{
switch (core->bus->hosttype) {
case BCMA_HOSTTYPE_PCI:
return brcms_c_chipmatch_pci(core);
case BCMA_HOSTTYPE_SOC:
return brcms_c_chipmatch_soc(core);
default:
pr_err("unknown host type: %i\n", core->bus->hosttype);
return false;
}
}
u16 brcms_b_rate_shm_offset(struct brcms_hardware *wlc_hw, u8 rate)
{
u16 table_ptr;
u8 phy_rate, index;
/* get the phy specific rate encoding for the PLCP SIGNAL field */
if (is_ofdm_rate(rate))
table_ptr = M_RT_DIRMAP_A;
else
table_ptr = M_RT_DIRMAP_B;
/* for a given rate, the LS-nibble of the PLCP SIGNAL field is
* the index into the rate table.
*/
phy_rate = rate_info[rate] & BRCMS_RATE_MASK;
index = phy_rate & 0xf;
/* Find the SHM pointer to the rate table entry by looking in the
* Direct-map Table
*/
return 2 * brcms_b_read_shm(wlc_hw, table_ptr + (index * 2));
}
/*
* bcmc_fid_generate:
* Generate frame ID for a BCMC packet. The frag field is not used
* for MC frames so is used as part of the sequence number.
*/
static inline u16
bcmc_fid_generate(struct brcms_c_info *wlc, struct brcms_bss_cfg *bsscfg,
struct d11txh *txh)
{
u16 frameid;
frameid = le16_to_cpu(txh->TxFrameID) & ~(TXFID_SEQ_MASK |
TXFID_QUEUE_MASK);
frameid |=
(((wlc->
mc_fid_counter++) << TXFID_SEQ_SHIFT) & TXFID_SEQ_MASK) |
TX_BCMC_FIFO;
return frameid;
}
static uint
brcms_c_calc_ack_time(struct brcms_c_info *wlc, u32 rspec,
u8 preamble_type)
{
uint dur = 0;
/*
* Spec 9.6: ack rate is the highest rate in BSSBasicRateSet that
* is less than or equal to the rate of the immediately previous
* frame in the FES
*/
rspec = brcms_basic_rate(wlc, rspec);
/* ACK frame len == 14 == 2(fc) + 2(dur) + 6(ra) + 4(fcs) */
dur =
brcms_c_calc_frame_time(wlc, rspec, preamble_type,
(DOT11_ACK_LEN + FCS_LEN));
return dur;
}
static uint
brcms_c_calc_cts_time(struct brcms_c_info *wlc, u32 rspec,
u8 preamble_type)
{
return brcms_c_calc_ack_time(wlc, rspec, preamble_type);
}
static uint
brcms_c_calc_ba_time(struct brcms_c_info *wlc, u32 rspec,
u8 preamble_type)
{
/*
* Spec 9.6: ack rate is the highest rate in BSSBasicRateSet that
* is less than or equal to the rate of the immediately previous
* frame in the FES
*/
rspec = brcms_basic_rate(wlc, rspec);
/* BA len == 32 == 16(ctl hdr) + 4(ba len) + 8(bitmap) + 4(fcs) */
return brcms_c_calc_frame_time(wlc, rspec, preamble_type,
(DOT11_BA_LEN + DOT11_BA_BITMAP_LEN +
FCS_LEN));
}
/* brcms_c_compute_frame_dur()
*
* Calculate the 802.11 MAC header DUR field for MPDU
* DUR for a single frame = 1 SIFS + 1 ACK
* DUR for a frame with following frags = 3 SIFS + 2 ACK + next frag time
*
* rate MPDU rate in unit of 500kbps
* next_frag_len next MPDU length in bytes
* preamble_type use short/GF or long/MM PLCP header
*/
static u16
brcms_c_compute_frame_dur(struct brcms_c_info *wlc, u32 rate,
u8 preamble_type, uint next_frag_len)
{
u16 dur, sifs;
sifs = get_sifs(wlc->band);
dur = sifs;
dur += (u16) brcms_c_calc_ack_time(wlc, rate, preamble_type);
if (next_frag_len) {
/* Double the current DUR to get 2 SIFS + 2 ACKs */
dur *= 2;
/* add another SIFS and the frag time */
dur += sifs;
dur +=
(u16) brcms_c_calc_frame_time(wlc, rate, preamble_type,
next_frag_len);
}
return dur;
}
/* The opposite of brcms_c_calc_frame_time */
static uint
brcms_c_calc_frame_len(struct brcms_c_info *wlc, u32 ratespec,
u8 preamble_type, uint dur)
{
uint nsyms, mac_len, Ndps, kNdps;
uint rate = rspec2rate(ratespec);
if (is_mcs_rate(ratespec)) {
uint mcs = ratespec & RSPEC_RATE_MASK;
int tot_streams = mcs_2_txstreams(mcs) + rspec_stc(ratespec);
dur -= PREN_PREAMBLE + (tot_streams * PREN_PREAMBLE_EXT);
/* payload calculation matches that of regular ofdm */
if (wlc->band->bandtype == BRCM_BAND_2G)
dur -= DOT11_OFDM_SIGNAL_EXTENSION;
/* kNdbps = kbps * 4 */
kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec),
rspec_issgi(ratespec)) * 4;
nsyms = dur / APHY_SYMBOL_TIME;
mac_len =
((nsyms * kNdps) -
((APHY_SERVICE_NBITS + APHY_TAIL_NBITS) * 1000)) / 8000;
} else if (is_ofdm_rate(ratespec)) {
dur -= APHY_PREAMBLE_TIME;
dur -= APHY_SIGNAL_TIME;
/* Ndbps = Mbps * 4 = rate(500Kbps) * 2 */
Ndps = rate * 2;
nsyms = dur / APHY_SYMBOL_TIME;
mac_len =
((nsyms * Ndps) -
(APHY_SERVICE_NBITS + APHY_TAIL_NBITS)) / 8;
} else {
if (preamble_type & BRCMS_SHORT_PREAMBLE)
dur -= BPHY_PLCP_SHORT_TIME;
else
dur -= BPHY_PLCP_TIME;
mac_len = dur * rate;
/* divide out factor of 2 in rate (1/2 mbps) */
mac_len = mac_len / 8 / 2;
}
return mac_len;
}
/*
* Return true if the specified rate is supported by the specified band.
* BRCM_BAND_AUTO indicates the current band.
*/
static bool brcms_c_valid_rate(struct brcms_c_info *wlc, u32 rspec, int band,
bool verbose)
{
struct brcms_c_rateset *hw_rateset;
uint i;
if ((band == BRCM_BAND_AUTO) || (band == wlc->band->bandtype))
hw_rateset = &wlc->band->hw_rateset;
else if (wlc->pub->_nbands > 1)
hw_rateset = &wlc->bandstate[OTHERBANDUNIT(wlc)]->hw_rateset;
else
/* other band specified and we are a single band device */
return false;
/* check if this is a mimo rate */
if (is_mcs_rate(rspec)) {
if ((rspec & RSPEC_RATE_MASK) >= MCS_TABLE_SIZE)
goto error;
return isset(hw_rateset->mcs, (rspec & RSPEC_RATE_MASK));
}
for (i = 0; i < hw_rateset->count; i++)
if (hw_rateset->rates[i] == rspec2rate(rspec))
return true;
error:
if (verbose)
brcms_err(wlc->hw->d11core, "wl%d: valid_rate: rate spec 0x%x "
"not in hw_rateset\n", wlc->pub->unit, rspec);
return false;
}
static u32
mac80211_wlc_set_nrate(struct brcms_c_info *wlc, struct brcms_band *cur_band,
u32 int_val)
{
struct bcma_device *core = wlc->hw->d11core;
u8 stf = (int_val & NRATE_STF_MASK) >> NRATE_STF_SHIFT;
u8 rate = int_val & NRATE_RATE_MASK;
u32 rspec;
bool ismcs = ((int_val & NRATE_MCS_INUSE) == NRATE_MCS_INUSE);
bool issgi = ((int_val & NRATE_SGI_MASK) >> NRATE_SGI_SHIFT);
bool override_mcs_only = ((int_val & NRATE_OVERRIDE_MCS_ONLY)
== NRATE_OVERRIDE_MCS_ONLY);
int bcmerror = 0;
if (!ismcs)
return (u32) rate;
/* validate the combination of rate/mcs/stf is allowed */
if ((wlc->pub->_n_enab & SUPPORT_11N) && ismcs) {
/* mcs only allowed when nmode */
if (stf > PHY_TXC1_MODE_SDM) {
brcms_err(core, "wl%d: %s: Invalid stf\n",
wlc->pub->unit, __func__);
bcmerror = -EINVAL;
goto done;
}
/* mcs 32 is a special case, DUP mode 40 only */
if (rate == 32) {
if (!CHSPEC_IS40(wlc->home_chanspec) ||
((stf != PHY_TXC1_MODE_SISO)
&& (stf != PHY_TXC1_MODE_CDD))) {
brcms_err(core, "wl%d: %s: Invalid mcs 32\n",
wlc->pub->unit, __func__);
bcmerror = -EINVAL;
goto done;
}
/* mcs > 7 must use stf SDM */
} else if (rate > HIGHEST_SINGLE_STREAM_MCS) {
/* mcs > 7 must use stf SDM */
if (stf != PHY_TXC1_MODE_SDM) {
brcms_dbg_mac80211(core, "wl%d: enabling "
"SDM mode for mcs %d\n",
wlc->pub->unit, rate);
stf = PHY_TXC1_MODE_SDM;
}
} else {
/*
* MCS 0-7 may use SISO, CDD, and for
* phy_rev >= 3 STBC
*/
if ((stf > PHY_TXC1_MODE_STBC) ||
(!BRCMS_STBC_CAP_PHY(wlc)
&& (stf == PHY_TXC1_MODE_STBC))) {
brcms_err(core, "wl%d: %s: Invalid STBC\n",
wlc->pub->unit, __func__);
bcmerror = -EINVAL;
goto done;
}
}
} else if (is_ofdm_rate(rate)) {
if ((stf != PHY_TXC1_MODE_CDD) && (stf != PHY_TXC1_MODE_SISO)) {
brcms_err(core, "wl%d: %s: Invalid OFDM\n",
wlc->pub->unit, __func__);
bcmerror = -EINVAL;
goto done;
}
} else if (is_cck_rate(rate)) {
if ((cur_band->bandtype != BRCM_BAND_2G)
|| (stf != PHY_TXC1_MODE_SISO)) {
brcms_err(core, "wl%d: %s: Invalid CCK\n",
wlc->pub->unit, __func__);
bcmerror = -EINVAL;
goto done;
}
} else {
brcms_err(core, "wl%d: %s: Unknown rate type\n",
wlc->pub->unit, __func__);
bcmerror = -EINVAL;
goto done;
}
/* make sure multiple antennae are available for non-siso rates */
if ((stf != PHY_TXC1_MODE_SISO) && (wlc->stf->txstreams == 1)) {
brcms_err(core, "wl%d: %s: SISO antenna but !SISO "
"request\n", wlc->pub->unit, __func__);
bcmerror = -EINVAL;
goto done;
}
rspec = rate;
if (ismcs) {
rspec |= RSPEC_MIMORATE;
/* For STBC populate the STC field of the ratespec */
if (stf == PHY_TXC1_MODE_STBC) {
u8 stc;
stc = 1; /* Nss for single stream is always 1 */
rspec |= (stc << RSPEC_STC_SHIFT);
}
}
rspec |= (stf << RSPEC_STF_SHIFT);
if (override_mcs_only)
rspec |= RSPEC_OVERRIDE_MCS_ONLY;
if (issgi)
rspec |= RSPEC_SHORT_GI;
if ((rate != 0)
&& !brcms_c_valid_rate(wlc, rspec, cur_band->bandtype, true))
return rate;
return rspec;
done:
return rate;
}
/*
* Compute PLCP, but only requires actual rate and length of pkt.
* Rate is given in the driver standard multiple of 500 kbps.
* le is set for 11 Mbps rate if necessary.
* Broken out for PRQ.
*/
static void brcms_c_cck_plcp_set(struct brcms_c_info *wlc, int rate_500,
uint length, u8 *plcp)
{
u16 usec = 0;
u8 le = 0;
switch (rate_500) {
case BRCM_RATE_1M:
usec = length << 3;
break;
case BRCM_RATE_2M:
usec = length << 2;
break;
case BRCM_RATE_5M5:
usec = (length << 4) / 11;
if ((length << 4) - (usec * 11) > 0)
usec++;
break;
case BRCM_RATE_11M:
usec = (length << 3) / 11;
if ((length << 3) - (usec * 11) > 0) {
usec++;
if ((usec * 11) - (length << 3) >= 8)
le = D11B_PLCP_SIGNAL_LE;
}
break;
default:
brcms_err(wlc->hw->d11core,
"brcms_c_cck_plcp_set: unsupported rate %d\n",
rate_500);
rate_500 = BRCM_RATE_1M;
usec = length << 3;
break;
}
/* PLCP signal byte */
plcp[0] = rate_500 * 5; /* r (500kbps) * 5 == r (100kbps) */
/* PLCP service byte */
plcp[1] = (u8) (le | D11B_PLCP_SIGNAL_LOCKED);
/* PLCP length u16, little endian */
plcp[2] = usec & 0xff;
plcp[3] = (usec >> 8) & 0xff;
/* PLCP CRC16 */
plcp[4] = 0;
plcp[5] = 0;
}
/* Rate: 802.11 rate code, length: PSDU length in octets */
static void brcms_c_compute_mimo_plcp(u32 rspec, uint length, u8 *plcp)
{
u8 mcs = (u8) (rspec & RSPEC_RATE_MASK);
plcp[0] = mcs;
if (rspec_is40mhz(rspec) || (mcs == 32))
plcp[0] |= MIMO_PLCP_40MHZ;
BRCMS_SET_MIMO_PLCP_LEN(plcp, length);
plcp[3] = rspec_mimoplcp3(rspec); /* rspec already holds this byte */
plcp[3] |= 0x7; /* set smoothing, not sounding ppdu & reserved */
plcp[4] = 0; /* number of extension spatial streams bit 0 & 1 */
plcp[5] = 0;
}
/* Rate: 802.11 rate code, length: PSDU length in octets */
static void
brcms_c_compute_ofdm_plcp(u32 rspec, u32 length, u8 *plcp)
{
u8 rate_signal;
u32 tmp = 0;
int rate = rspec2rate(rspec);
/*
* encode rate per 802.11a-1999 sec 17.3.4.1, with lsb
* transmitted first
*/
rate_signal = rate_info[rate] & BRCMS_RATE_MASK;
memset(plcp, 0, D11_PHY_HDR_LEN);
D11A_PHY_HDR_SRATE((struct ofdm_phy_hdr *) plcp, rate_signal);
tmp = (length & 0xfff) << 5;
plcp[2] |= (tmp >> 16) & 0xff;
plcp[1] |= (tmp >> 8) & 0xff;
plcp[0] |= tmp & 0xff;
}
/* Rate: 802.11 rate code, length: PSDU length in octets */
static void brcms_c_compute_cck_plcp(struct brcms_c_info *wlc, u32 rspec,
uint length, u8 *plcp)
{
int rate = rspec2rate(rspec);
brcms_c_cck_plcp_set(wlc, rate, length, plcp);
}
static void
brcms_c_compute_plcp(struct brcms_c_info *wlc, u32 rspec,
uint length, u8 *plcp)
{
if (is_mcs_rate(rspec))
brcms_c_compute_mimo_plcp(rspec, length, plcp);
else if (is_ofdm_rate(rspec))
brcms_c_compute_ofdm_plcp(rspec, length, plcp);
else
brcms_c_compute_cck_plcp(wlc, rspec, length, plcp);
}
/* brcms_c_compute_rtscts_dur()
*
* Calculate the 802.11 MAC header DUR field for an RTS or CTS frame
* DUR for normal RTS/CTS w/ frame = 3 SIFS + 1 CTS + next frame time + 1 ACK
* DUR for CTS-TO-SELF w/ frame = 2 SIFS + next frame time + 1 ACK
*
* cts cts-to-self or rts/cts
* rts_rate rts or cts rate in unit of 500kbps
* rate next MPDU rate in unit of 500kbps
* frame_len next MPDU frame length in bytes
*/
u16
brcms_c_compute_rtscts_dur(struct brcms_c_info *wlc, bool cts_only,
u32 rts_rate,
u32 frame_rate, u8 rts_preamble_type,
u8 frame_preamble_type, uint frame_len, bool ba)
{
u16 dur, sifs;
sifs = get_sifs(wlc->band);
if (!cts_only) {
/* RTS/CTS */
dur = 3 * sifs;
dur +=
(u16) brcms_c_calc_cts_time(wlc, rts_rate,
rts_preamble_type);
} else {
/* CTS-TO-SELF */
dur = 2 * sifs;
}
dur +=
(u16) brcms_c_calc_frame_time(wlc, frame_rate, frame_preamble_type,
frame_len);
if (ba)
dur +=
(u16) brcms_c_calc_ba_time(wlc, frame_rate,
BRCMS_SHORT_PREAMBLE);
else
dur +=
(u16) brcms_c_calc_ack_time(wlc, frame_rate,
frame_preamble_type);
return dur;
}
static u16 brcms_c_phytxctl1_calc(struct brcms_c_info *wlc, u32 rspec)
{
u16 phyctl1 = 0;
u16 bw;
if (BRCMS_ISLCNPHY(wlc->band)) {
bw = PHY_TXC1_BW_20MHZ;
} else {
bw = rspec_get_bw(rspec);
/* 10Mhz is not supported yet */
if (bw < PHY_TXC1_BW_20MHZ) {
brcms_err(wlc->hw->d11core, "phytxctl1_calc: bw %d is "
"not supported yet, set to 20L\n", bw);
bw = PHY_TXC1_BW_20MHZ;
}
}
if (is_mcs_rate(rspec)) {
uint mcs = rspec & RSPEC_RATE_MASK;
/* bw, stf, coding-type is part of rspec_phytxbyte2 returns */
phyctl1 = rspec_phytxbyte2(rspec);
/* set the upper byte of phyctl1 */
phyctl1 |= (mcs_table[mcs].tx_phy_ctl3 << 8);
} else if (is_cck_rate(rspec) && !BRCMS_ISLCNPHY(wlc->band)
&& !BRCMS_ISSSLPNPHY(wlc->band)) {
/*
* In CCK mode LPPHY overloads OFDM Modulation bits with CCK
* Data Rate. Eventually MIMOPHY would also be converted to
* this format
*/
/* 0 = 1Mbps; 1 = 2Mbps; 2 = 5.5Mbps; 3 = 11Mbps */
phyctl1 = (bw | (rspec_stf(rspec) << PHY_TXC1_MODE_SHIFT));
} else { /* legacy OFDM/CCK */
s16 phycfg;
/* get the phyctl byte from rate phycfg table */
phycfg = brcms_c_rate_legacy_phyctl(rspec2rate(rspec));
if (phycfg == -1) {
brcms_err(wlc->hw->d11core, "phytxctl1_calc: wrong "
"legacy OFDM/CCK rate\n");
phycfg = 0;
}
/* set the upper byte of phyctl1 */
phyctl1 =
(bw | (phycfg << 8) |
(rspec_stf(rspec) << PHY_TXC1_MODE_SHIFT));
}
return phyctl1;
}
/*
* Add struct d11txh, struct cck_phy_hdr.
*
* 'p' data must start with 802.11 MAC header
* 'p' must allow enough bytes of local headers to be "pushed" onto the packet
*
* headroom == D11_PHY_HDR_LEN + D11_TXH_LEN (D11_TXH_LEN is now 104 bytes)
*
*/
static u16
brcms_c_d11hdrs_mac80211(struct brcms_c_info *wlc, struct ieee80211_hw *hw,
struct sk_buff *p, struct scb *scb, uint frag,
uint nfrags, uint queue, uint next_frag_len)
{
struct ieee80211_hdr *h;
struct d11txh *txh;
u8 *plcp, plcp_fallback[D11_PHY_HDR_LEN];
int len, phylen, rts_phylen;
u16 mch, phyctl, xfts, mainrates;
u16 seq = 0, mcl = 0, status = 0, frameid = 0;
u32 rspec[2] = { BRCM_RATE_1M, BRCM_RATE_1M };
u32 rts_rspec[2] = { BRCM_RATE_1M, BRCM_RATE_1M };
bool use_rts = false;
bool use_cts = false;
bool use_rifs = false;
bool short_preamble[2] = { false, false };
u8 preamble_type[2] = { BRCMS_LONG_PREAMBLE, BRCMS_LONG_PREAMBLE };
u8 rts_preamble_type[2] = { BRCMS_LONG_PREAMBLE, BRCMS_LONG_PREAMBLE };
u8 *rts_plcp, rts_plcp_fallback[D11_PHY_HDR_LEN];
struct ieee80211_rts *rts = NULL;
bool qos;
uint ac;
bool hwtkmic = false;
u16 mimo_ctlchbw = PHY_TXC1_BW_20MHZ;
#define ANTCFG_NONE 0xFF
u8 antcfg = ANTCFG_NONE;
u8 fbantcfg = ANTCFG_NONE;
uint phyctl1_stf = 0;
u16 durid = 0;
struct ieee80211_tx_rate *txrate[2];
int k;
struct ieee80211_tx_info *tx_info;
bool is_mcs;
u16 mimo_txbw;
u8 mimo_preamble_type;
/* locate 802.11 MAC header */
h = (struct ieee80211_hdr *)(p->data);
qos = ieee80211_is_data_qos(h->frame_control);
/* compute length of frame in bytes for use in PLCP computations */
len = p->len;
phylen = len + FCS_LEN;
/* Get tx_info */
tx_info = IEEE80211_SKB_CB(p);
/* add PLCP */
plcp = skb_push(p, D11_PHY_HDR_LEN);
/* add Broadcom tx descriptor header */
txh = (struct d11txh *) skb_push(p, D11_TXH_LEN);
memset(txh, 0, D11_TXH_LEN);
/* setup frameid */
if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
/* non-AP STA should never use BCMC queue */
if (queue == TX_BCMC_FIFO) {
brcms_err(wlc->hw->d11core,
"wl%d: %s: ASSERT queue == TX_BCMC!\n",
wlc->pub->unit, __func__);
frameid = bcmc_fid_generate(wlc, NULL, txh);
} else {
/* Increment the counter for first fragment */
if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
scb->seqnum[p->priority]++;
/* extract fragment number from frame first */
seq = le16_to_cpu(h->seq_ctrl) & FRAGNUM_MASK;
seq |= (scb->seqnum[p->priority] << SEQNUM_SHIFT);
h->seq_ctrl = cpu_to_le16(seq);
frameid = ((seq << TXFID_SEQ_SHIFT) & TXFID_SEQ_MASK) |
(queue & TXFID_QUEUE_MASK);
}
}
frameid |= queue & TXFID_QUEUE_MASK;
/* set the ignpmq bit for all pkts tx'd in PS mode and for beacons */
if (ieee80211_is_beacon(h->frame_control))
mcl |= TXC_IGNOREPMQ;
txrate[0] = tx_info->control.rates;
txrate[1] = txrate[0] + 1;
/*
* if rate control algorithm didn't give us a fallback
* rate, use the primary rate
*/
if (txrate[1]->idx < 0)
txrate[1] = txrate[0];
for (k = 0; k < hw->max_rates; k++) {
is_mcs = txrate[k]->flags & IEEE80211_TX_RC_MCS ? true : false;
if (!is_mcs) {
if ((txrate[k]->idx >= 0)
&& (txrate[k]->idx <
hw->wiphy->bands[tx_info->band]->n_bitrates)) {
rspec[k] =
hw->wiphy->bands[tx_info->band]->
bitrates[txrate[k]->idx].hw_value;
short_preamble[k] =
txrate[k]->
flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE ?
true : false;
} else {
rspec[k] = BRCM_RATE_1M;
}
} else {
rspec[k] = mac80211_wlc_set_nrate(wlc, wlc->band,
NRATE_MCS_INUSE | txrate[k]->idx);
}
/*
* Currently only support same setting for primay and
* fallback rates. Unify flags for each rate into a
* single value for the frame
*/
use_rts |=
txrate[k]->
flags & IEEE80211_TX_RC_USE_RTS_CTS ? true : false;
use_cts |=
txrate[k]->
flags & IEEE80211_TX_RC_USE_CTS_PROTECT ? true : false;
/*
* (1) RATE:
* determine and validate primary rate
* and fallback rates
*/
if (!rspec_active(rspec[k])) {
rspec[k] = BRCM_RATE_1M;
} else {
if (!is_multicast_ether_addr(h->addr1)) {
/* set tx antenna config */
brcms_c_antsel_antcfg_get(wlc->asi, false,
false, 0, 0, &antcfg, &fbantcfg);
}
}
}
phyctl1_stf = wlc->stf->ss_opmode;
if (wlc->pub->_n_enab & SUPPORT_11N) {
for (k = 0; k < hw->max_rates; k++) {
/*
* apply siso/cdd to single stream mcs's or ofdm
* if rspec is auto selected
*/
if (((is_mcs_rate(rspec[k]) &&
is_single_stream(rspec[k] & RSPEC_RATE_MASK)) ||
is_ofdm_rate(rspec[k]))
&& ((rspec[k] & RSPEC_OVERRIDE_MCS_ONLY)
|| !(rspec[k] & RSPEC_OVERRIDE))) {
rspec[k] &= ~(RSPEC_STF_MASK | RSPEC_STC_MASK);
/* For SISO MCS use STBC if possible */
if (is_mcs_rate(rspec[k])
&& BRCMS_STF_SS_STBC_TX(wlc, scb)) {
u8 stc;
/* Nss for single stream is always 1 */
stc = 1;
rspec[k] |= (PHY_TXC1_MODE_STBC <<
RSPEC_STF_SHIFT) |
(stc << RSPEC_STC_SHIFT);
} else
rspec[k] |=
(phyctl1_stf << RSPEC_STF_SHIFT);
}
/*
* Is the phy configured to use 40MHZ frames? If
* so then pick the desired txbw
*/
if (brcms_chspec_bw(wlc->chanspec) == BRCMS_40_MHZ) {
/* default txbw is 20in40 SB */
mimo_ctlchbw = mimo_txbw =
CHSPEC_SB_UPPER(wlc_phy_chanspec_get(
wlc->band->pi))
? PHY_TXC1_BW_20MHZ_UP : PHY_TXC1_BW_20MHZ;
if (is_mcs_rate(rspec[k])) {
/* mcs 32 must be 40b/w DUP */
if ((rspec[k] & RSPEC_RATE_MASK)
== 32) {
mimo_txbw =
PHY_TXC1_BW_40MHZ_DUP;
/* use override */
} else if (wlc->mimo_40txbw != AUTO)
mimo_txbw = wlc->mimo_40txbw;
/* else check if dst is using 40 Mhz */
else if (scb->flags & SCB_IS40)
mimo_txbw = PHY_TXC1_BW_40MHZ;
} else if (is_ofdm_rate(rspec[k])) {
if (wlc->ofdm_40txbw != AUTO)
mimo_txbw = wlc->ofdm_40txbw;
} else if (wlc->cck_40txbw != AUTO) {
mimo_txbw = wlc->cck_40txbw;
}
} else {
/*
* mcs32 is 40 b/w only.
* This is possible for probe packets on
* a STA during SCAN
*/
if ((rspec[k] & RSPEC_RATE_MASK) == 32)
/* mcs 0 */
rspec[k] = RSPEC_MIMORATE;
mimo_txbw = PHY_TXC1_BW_20MHZ;
}
/* Set channel width */
rspec[k] &= ~RSPEC_BW_MASK;
if ((k == 0) || ((k > 0) && is_mcs_rate(rspec[k])))
rspec[k] |= (mimo_txbw << RSPEC_BW_SHIFT);
else
rspec[k] |= (mimo_ctlchbw << RSPEC_BW_SHIFT);
/* Disable short GI, not supported yet */
rspec[k] &= ~RSPEC_SHORT_GI;
mimo_preamble_type = BRCMS_MM_PREAMBLE;
if (txrate[k]->flags & IEEE80211_TX_RC_GREEN_FIELD)
mimo_preamble_type = BRCMS_GF_PREAMBLE;
if ((txrate[k]->flags & IEEE80211_TX_RC_MCS)
&& (!is_mcs_rate(rspec[k]))) {
brcms_warn(wlc->hw->d11core,
"wl%d: %s: IEEE80211_TX_RC_MCS != is_mcs_rate(rspec)\n",
wlc->pub->unit, __func__);
}
if (is_mcs_rate(rspec[k])) {
preamble_type[k] = mimo_preamble_type;
/*
* if SGI is selected, then forced mm
* for single stream
*/
if ((rspec[k] & RSPEC_SHORT_GI)
&& is_single_stream(rspec[k] &
RSPEC_RATE_MASK))
preamble_type[k] = BRCMS_MM_PREAMBLE;
}
/* should be better conditionalized */
if (!is_mcs_rate(rspec[0])
&& (tx_info->control.rates[0].
flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
preamble_type[k] = BRCMS_SHORT_PREAMBLE;
}
} else {
for (k = 0; k < hw->max_rates; k++) {
/* Set ctrlchbw as 20Mhz */
rspec[k] &= ~RSPEC_BW_MASK;
rspec[k] |= (PHY_TXC1_BW_20MHZ << RSPEC_BW_SHIFT);
/* for nphy, stf of ofdm frames must follow policies */
if (BRCMS_ISNPHY(wlc->band) && is_ofdm_rate(rspec[k])) {
rspec[k] &= ~RSPEC_STF_MASK;
rspec[k] |= phyctl1_stf << RSPEC_STF_SHIFT;
}
}
}
/* Reset these for use with AMPDU's */
txrate[0]->count = 0;
txrate[1]->count = 0;
/* (2) PROTECTION, may change rspec */
if ((ieee80211_is_data(h->frame_control) ||
ieee80211_is_mgmt(h->frame_control)) &&
(phylen > wlc->RTSThresh) && !is_multicast_ether_addr(h->addr1))
use_rts = true;
/* (3) PLCP: determine PLCP header and MAC duration,
* fill struct d11txh */
brcms_c_compute_plcp(wlc, rspec[0], phylen, plcp);
brcms_c_compute_plcp(wlc, rspec[1], phylen, plcp_fallback);
memcpy(&txh->FragPLCPFallback,
plcp_fallback, sizeof(txh->FragPLCPFallback));
/* Length field now put in CCK FBR CRC field */
if (is_cck_rate(rspec[1])) {
txh->FragPLCPFallback[4] = phylen & 0xff;
txh->FragPLCPFallback[5] = (phylen & 0xff00) >> 8;
}
/* MIMO-RATE: need validation ?? */
mainrates = is_ofdm_rate(rspec[0]) ?
D11A_PHY_HDR_GRATE((struct ofdm_phy_hdr *) plcp) :
plcp[0];
/* DUR field for main rate */
if (!ieee80211_is_pspoll(h->frame_control) &&
!is_multicast_ether_addr(h->addr1) && !use_rifs) {
durid =
brcms_c_compute_frame_dur(wlc, rspec[0], preamble_type[0],
next_frag_len);
h->duration_id = cpu_to_le16(durid);
} else if (use_rifs) {
/* NAV protect to end of next max packet size */
durid =
(u16) brcms_c_calc_frame_time(wlc, rspec[0],
preamble_type[0],
DOT11_MAX_FRAG_LEN);
durid += RIFS_11N_TIME;
h->duration_id = cpu_to_le16(durid);
}
/* DUR field for fallback rate */
if (ieee80211_is_pspoll(h->frame_control))
txh->FragDurFallback = h->duration_id;
else if (is_multicast_ether_addr(h->addr1) || use_rifs)
txh->FragDurFallback = 0;
else {
durid = brcms_c_compute_frame_dur(wlc, rspec[1],
preamble_type[1], next_frag_len);
txh->FragDurFallback = cpu_to_le16(durid);
}
/* (4) MAC-HDR: MacTxControlLow */
if (frag == 0)
mcl |= TXC_STARTMSDU;
if (!is_multicast_ether_addr(h->addr1))
mcl |= TXC_IMMEDACK;
if (wlc->band->bandtype == BRCM_BAND_5G)
mcl |= TXC_FREQBAND_5G;
if (CHSPEC_IS40(wlc_phy_chanspec_get(wlc->band->pi)))
mcl |= TXC_BW_40;
/* set AMIC bit if using hardware TKIP MIC */
if (hwtkmic)
mcl |= TXC_AMIC;
txh->MacTxControlLow = cpu_to_le16(mcl);
/* MacTxControlHigh */
mch = 0;
/* Set fallback rate preamble type */
if ((preamble_type[1] == BRCMS_SHORT_PREAMBLE) ||
(preamble_type[1] == BRCMS_GF_PREAMBLE)) {
if (rspec2rate(rspec[1]) != BRCM_RATE_1M)
mch |= TXC_PREAMBLE_DATA_FB_SHORT;
}
/* MacFrameControl */
memcpy(&txh->MacFrameControl, &h->frame_control, sizeof(u16));
txh->TxFesTimeNormal = cpu_to_le16(0);
txh->TxFesTimeFallback = cpu_to_le16(0);
/* TxFrameRA */
memcpy(&txh->TxFrameRA, &h->addr1, ETH_ALEN);
/* TxFrameID */
txh->TxFrameID = cpu_to_le16(frameid);
/*
* TxStatus, Note the case of recreating the first frag of a suppressed
* frame then we may need to reset the retry cnt's via the status reg
*/
txh->TxStatus = cpu_to_le16(status);
/*
* extra fields for ucode AMPDU aggregation, the new fields are added to
* the END of previous structure so that it's compatible in driver.
*/
txh->MaxNMpdus = cpu_to_le16(0);
txh->MaxABytes_MRT = cpu_to_le16(0);
txh->MaxABytes_FBR = cpu_to_le16(0);
txh->MinMBytes = cpu_to_le16(0);
/* (5) RTS/CTS: determine RTS/CTS PLCP header and MAC duration,
* furnish struct d11txh */
/* RTS PLCP header and RTS frame */
if (use_rts || use_cts) {
if (use_rts && use_cts)
use_cts = false;
for (k = 0; k < 2; k++) {
rts_rspec[k] = brcms_c_rspec_to_rts_rspec(wlc, rspec[k],
false,
mimo_ctlchbw);
}
if (!is_ofdm_rate(rts_rspec[0]) &&
!((rspec2rate(rts_rspec[0]) == BRCM_RATE_1M) ||
(wlc->PLCPHdr_override == BRCMS_PLCP_LONG))) {
rts_preamble_type[0] = BRCMS_SHORT_PREAMBLE;
mch |= TXC_PREAMBLE_RTS_MAIN_SHORT;
}
if (!is_ofdm_rate(rts_rspec[1]) &&
!((rspec2rate(rts_rspec[1]) == BRCM_RATE_1M) ||
(wlc->PLCPHdr_override == BRCMS_PLCP_LONG))) {
rts_preamble_type[1] = BRCMS_SHORT_PREAMBLE;
mch |= TXC_PREAMBLE_RTS_FB_SHORT;
}
/* RTS/CTS additions to MacTxControlLow */
if (use_cts) {
txh->MacTxControlLow |= cpu_to_le16(TXC_SENDCTS);
} else {
txh->MacTxControlLow |= cpu_to_le16(TXC_SENDRTS);
txh->MacTxControlLow |= cpu_to_le16(TXC_LONGFRAME);
}
/* RTS PLCP header */
rts_plcp = txh->RTSPhyHeader;
if (use_cts)
rts_phylen = DOT11_CTS_LEN + FCS_LEN;
else
rts_phylen = DOT11_RTS_LEN + FCS_LEN;
brcms_c_compute_plcp(wlc, rts_rspec[0], rts_phylen, rts_plcp);
/* fallback rate version of RTS PLCP header */
brcms_c_compute_plcp(wlc, rts_rspec[1], rts_phylen,
rts_plcp_fallback);
memcpy(&txh->RTSPLCPFallback, rts_plcp_fallback,
sizeof(txh->RTSPLCPFallback));
/* RTS frame fields... */
rts = (struct ieee80211_rts *)&txh->rts_frame;
durid = brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec[0],
rspec[0], rts_preamble_type[0],
preamble_type[0], phylen, false);
rts->duration = cpu_to_le16(durid);
/* fallback rate version of RTS DUR field */
durid = brcms_c_compute_rtscts_dur(wlc, use_cts,
rts_rspec[1], rspec[1],
rts_preamble_type[1],
preamble_type[1], phylen, false);
txh->RTSDurFallback = cpu_to_le16(durid);
if (use_cts) {
rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_CTS);
memcpy(&rts->ra, &h->addr2, ETH_ALEN);
} else {
rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_RTS);
memcpy(&rts->ra, &h->addr1, 2 * ETH_ALEN);
}
/* mainrate
* low 8 bits: main frag rate/mcs,
* high 8 bits: rts/cts rate/mcs
*/
mainrates |= (is_ofdm_rate(rts_rspec[0]) ?
D11A_PHY_HDR_GRATE(
(struct ofdm_phy_hdr *) rts_plcp) :
rts_plcp[0]) << 8;
} else {
memset(txh->RTSPhyHeader, 0, D11_PHY_HDR_LEN);
memset(&txh->rts_frame, 0, sizeof(struct ieee80211_rts));
memset(txh->RTSPLCPFallback, 0, sizeof(txh->RTSPLCPFallback));
txh->RTSDurFallback = 0;
}
#ifdef SUPPORT_40MHZ
/* add null delimiter count */
if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && is_mcs_rate(rspec))
txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM] =
brcm_c_ampdu_null_delim_cnt(wlc->ampdu, scb, rspec, phylen);
#endif
/*
* Now that RTS/RTS FB preamble types are updated, write
* the final value
*/
txh->MacTxControlHigh = cpu_to_le16(mch);
/*
* MainRates (both the rts and frag plcp rates have
* been calculated now)
*/
txh->MainRates = cpu_to_le16(mainrates);
/* XtraFrameTypes */
xfts = frametype(rspec[1], wlc->mimoft);
xfts |= (frametype(rts_rspec[0], wlc->mimoft) << XFTS_RTS_FT_SHIFT);
xfts |= (frametype(rts_rspec[1], wlc->mimoft) << XFTS_FBRRTS_FT_SHIFT);
xfts |= CHSPEC_CHANNEL(wlc_phy_chanspec_get(wlc->band->pi)) <<
XFTS_CHANNEL_SHIFT;
txh->XtraFrameTypes = cpu_to_le16(xfts);
/* PhyTxControlWord */
phyctl = frametype(rspec[0], wlc->mimoft);
if ((preamble_type[0] == BRCMS_SHORT_PREAMBLE) ||
(preamble_type[0] == BRCMS_GF_PREAMBLE)) {
if (rspec2rate(rspec[0]) != BRCM_RATE_1M)
phyctl |= PHY_TXC_SHORT_HDR;
}
/* phytxant is properly bit shifted */
phyctl |= brcms_c_stf_d11hdrs_phyctl_txant(wlc, rspec[0]);
txh->PhyTxControlWord = cpu_to_le16(phyctl);
/* PhyTxControlWord_1 */
if (BRCMS_PHY_11N_CAP(wlc->band)) {
u16 phyctl1 = 0;
phyctl1 = brcms_c_phytxctl1_calc(wlc, rspec[0]);
txh->PhyTxControlWord_1 = cpu_to_le16(phyctl1);
phyctl1 = brcms_c_phytxctl1_calc(wlc, rspec[1]);
txh->PhyTxControlWord_1_Fbr = cpu_to_le16(phyctl1);
if (use_rts || use_cts) {
phyctl1 = brcms_c_phytxctl1_calc(wlc, rts_rspec[0]);
txh->PhyTxControlWord_1_Rts = cpu_to_le16(phyctl1);
phyctl1 = brcms_c_phytxctl1_calc(wlc, rts_rspec[1]);
txh->PhyTxControlWord_1_FbrRts = cpu_to_le16(phyctl1);
}
/*
* For mcs frames, if mixedmode(overloaded with long preamble)
* is going to be set, fill in non-zero MModeLen and/or
* MModeFbrLen it will be unnecessary if they are separated
*/
if (is_mcs_rate(rspec[0]) &&
(preamble_type[0] == BRCMS_MM_PREAMBLE)) {
u16 mmodelen =
brcms_c_calc_lsig_len(wlc, rspec[0], phylen);
txh->MModeLen = cpu_to_le16(mmodelen);
}
if (is_mcs_rate(rspec[1]) &&
(preamble_type[1] == BRCMS_MM_PREAMBLE)) {
u16 mmodefbrlen =
brcms_c_calc_lsig_len(wlc, rspec[1], phylen);
txh->MModeFbrLen = cpu_to_le16(mmodefbrlen);
}
}
ac = skb_get_queue_mapping(p);
if ((scb->flags & SCB_WMECAP) && qos && wlc->edcf_txop[ac]) {
uint frag_dur, dur, dur_fallback;
/* WME: Update TXOP threshold */
if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU) && frag == 0) {
frag_dur =
brcms_c_calc_frame_time(wlc, rspec[0],
preamble_type[0], phylen);
if (rts) {
/* 1 RTS or CTS-to-self frame */
dur =
brcms_c_calc_cts_time(wlc, rts_rspec[0],
rts_preamble_type[0]);
dur_fallback =
brcms_c_calc_cts_time(wlc, rts_rspec[1],
rts_preamble_type[1]);
/* (SIFS + CTS) + SIFS + frame + SIFS + ACK */
dur += le16_to_cpu(rts->duration);
dur_fallback +=
le16_to_cpu(txh->RTSDurFallback);
} else if (use_rifs) {
dur = frag_dur;
dur_fallback = 0;
} else {
/* frame + SIFS + ACK */
dur = frag_dur;
dur +=
brcms_c_compute_frame_dur(wlc, rspec[0],
preamble_type[0], 0);
dur_fallback =
brcms_c_calc_frame_time(wlc, rspec[1],
preamble_type[1],
phylen);
dur_fallback +=
brcms_c_compute_frame_dur(wlc, rspec[1],
preamble_type[1], 0);
}
/* NEED to set TxFesTimeNormal (hard) */
txh->TxFesTimeNormal = cpu_to_le16((u16) dur);
/*
* NEED to set fallback rate version of
* TxFesTimeNormal (hard)
*/
txh->TxFesTimeFallback =
cpu_to_le16((u16) dur_fallback);
/*
* update txop byte threshold (txop minus intraframe
* overhead)
*/
if (wlc->edcf_txop[ac] >= (dur - frag_dur)) {
uint newfragthresh;
newfragthresh =
brcms_c_calc_frame_len(wlc,
rspec[0], preamble_type[0],
(wlc->edcf_txop[ac] -
(dur - frag_dur)));
/* range bound the fragthreshold */
if (newfragthresh < DOT11_MIN_FRAG_LEN)
newfragthresh =
DOT11_MIN_FRAG_LEN;
else if (newfragthresh >
wlc->usr_fragthresh)
newfragthresh =
wlc->usr_fragthresh;
/* update the fragthresh and do txc update */
if (wlc->fragthresh[queue] !=
(u16) newfragthresh)
wlc->fragthresh[queue] =
(u16) newfragthresh;
} else {
brcms_warn(wlc->hw->d11core,
"wl%d: %s txop invalid for rate %d\n",
wlc->pub->unit, fifo_names[queue],
rspec2rate(rspec[0]));
}
if (dur > wlc->edcf_txop[ac])
brcms_warn(wlc->hw->d11core,
"wl%d: %s: %s txop exceeded phylen %d/%d dur %d/%d\n",
wlc->pub->unit, __func__,
fifo_names[queue],
phylen, wlc->fragthresh[queue],
dur, wlc->edcf_txop[ac]);
}
}
return 0;
}
static int brcms_c_tx(struct brcms_c_info *wlc, struct sk_buff *skb)
{
struct dma_pub *dma;
int fifo, ret = -ENOSPC;
struct d11txh *txh;
u16 frameid = INVALIDFID;
fifo = brcms_ac_to_fifo(skb_get_queue_mapping(skb));
dma = wlc->hw->di[fifo];
txh = (struct d11txh *)(skb->data);
if (dma->txavail == 0) {
/*
* We sometimes get a frame from mac80211 after stopping
* the queues. This only ever seems to be a single frame
* and is seems likely to be a race. TX_HEADROOM should
* ensure that we have enough space to handle these stray
* packets, so warn if there isn't. If we're out of space
* in the tx ring and the tx queue isn't stopped then
* we've really got a bug; warn loudly if that happens.
*/
brcms_warn(wlc->hw->d11core,
"Received frame for tx with no space in DMA ring\n");
WARN_ON(!ieee80211_queue_stopped(wlc->pub->ieee_hw,
skb_get_queue_mapping(skb)));
return -ENOSPC;
}
/* When a BC/MC frame is being committed to the BCMC fifo
* via DMA (NOT PIO), update ucode or BSS info as appropriate.
*/
if (fifo == TX_BCMC_FIFO)
frameid = le16_to_cpu(txh->TxFrameID);
/* Commit BCMC sequence number in the SHM frame ID location */
if (frameid != INVALIDFID) {
/*
* To inform the ucode of the last mcast frame posted
* so that it can clear moredata bit
*/
brcms_b_write_shm(wlc->hw, M_BCMC_FID, frameid);
}
ret = brcms_c_txfifo(wlc, fifo, skb);
/*
* The only reason for brcms_c_txfifo to fail is because
* there weren't any DMA descriptors, but we've already
* checked for that. So if it does fail yell loudly.
*/
WARN_ON_ONCE(ret);
return ret;
}
bool brcms_c_sendpkt_mac80211(struct brcms_c_info *wlc, struct sk_buff *sdu,
struct ieee80211_hw *hw)
{
uint fifo;
struct scb *scb = &wlc->pri_scb;
fifo = brcms_ac_to_fifo(skb_get_queue_mapping(sdu));
brcms_c_d11hdrs_mac80211(wlc, hw, sdu, scb, 0, 1, fifo, 0);
if (!brcms_c_tx(wlc, sdu))
return true;
/* packet discarded */
dev_kfree_skb_any(sdu);
return false;
}
int
brcms_c_txfifo(struct brcms_c_info *wlc, uint fifo, struct sk_buff *p)
{
struct dma_pub *dma = wlc->hw->di[fifo];
int ret;
u16 queue;
ret = dma_txfast(wlc, dma, p);
if (ret < 0)
wiphy_err(wlc->wiphy, "txfifo: fatal, toss frames !!!\n");
/*
* Stop queue if DMA ring is full. Reserve some free descriptors,
* as we sometimes receive a frame from mac80211 after the queues
* are stopped.
*/
queue = skb_get_queue_mapping(p);
if (dma->txavail <= TX_HEADROOM && fifo < TX_BCMC_FIFO &&
!ieee80211_queue_stopped(wlc->pub->ieee_hw, queue))
ieee80211_stop_queue(wlc->pub->ieee_hw, queue);
return ret;
}
u32
brcms_c_rspec_to_rts_rspec(struct brcms_c_info *wlc, u32 rspec,
bool use_rspec, u16 mimo_ctlchbw)
{
u32 rts_rspec = 0;
if (use_rspec)
/* use frame rate as rts rate */
rts_rspec = rspec;
else if (wlc->band->gmode && wlc->protection->_g && !is_cck_rate(rspec))
/* Use 11Mbps as the g protection RTS target rate and fallback.
* Use the brcms_basic_rate() lookup to find the best basic rate
* under the target in case 11 Mbps is not Basic.
* 6 and 9 Mbps are not usually selected by rate selection, but
* even if the OFDM rate we are protecting is 6 or 9 Mbps, 11
* is more robust.
*/
rts_rspec = brcms_basic_rate(wlc, BRCM_RATE_11M);
else
/* calculate RTS rate and fallback rate based on the frame rate
* RTS must be sent at a basic rate since it is a
* control frame, sec 9.6 of 802.11 spec
*/
rts_rspec = brcms_basic_rate(wlc, rspec);
if (BRCMS_PHY_11N_CAP(wlc->band)) {
/* set rts txbw to correct side band */
rts_rspec &= ~RSPEC_BW_MASK;
/*
* if rspec/rspec_fallback is 40MHz, then send RTS on both
* 20MHz channel (DUP), otherwise send RTS on control channel
*/
if (rspec_is40mhz(rspec) && !is_cck_rate(rts_rspec))
rts_rspec |= (PHY_TXC1_BW_40MHZ_DUP << RSPEC_BW_SHIFT);
else
rts_rspec |= (mimo_ctlchbw << RSPEC_BW_SHIFT);
/* pick siso/cdd as default for ofdm */
if (is_ofdm_rate(rts_rspec)) {
rts_rspec &= ~RSPEC_STF_MASK;
rts_rspec |= (wlc->stf->ss_opmode << RSPEC_STF_SHIFT);
}
}
return rts_rspec;
}
/* Update beacon listen interval in shared memory */
static void brcms_c_bcn_li_upd(struct brcms_c_info *wlc)
{
/* wake up every DTIM is the default */
if (wlc->bcn_li_dtim == 1)
brcms_b_write_shm(wlc->hw, M_BCN_LI, 0);
else
brcms_b_write_shm(wlc->hw, M_BCN_LI,
(wlc->bcn_li_dtim << 8) | wlc->bcn_li_bcn);
}
static void
brcms_b_read_tsf(struct brcms_hardware *wlc_hw, u32 *tsf_l_ptr,
u32 *tsf_h_ptr)
{
struct bcma_device *core = wlc_hw->d11core;
/* read the tsf timer low, then high to get an atomic read */
*tsf_l_ptr = bcma_read32(core, D11REGOFFS(tsf_timerlow));
*tsf_h_ptr = bcma_read32(core, D11REGOFFS(tsf_timerhigh));
}
/*
* recover 64bit TSF value from the 16bit TSF value in the rx header
* given the assumption that the TSF passed in header is within 65ms
* of the current tsf.
*
* 6 5 4 4 3 2 1
* 3.......6.......8.......0.......2.......4.......6.......8......0
* |<---------- tsf_h ----------->||<--- tsf_l -->||<-RxTSFTime ->|
*
* The RxTSFTime are the lowest 16 bits and provided by the ucode. The
* tsf_l is filled in by brcms_b_recv, which is done earlier in the
* receive call sequence after rx interrupt. Only the higher 16 bits
* are used. Finally, the tsf_h is read from the tsf register.
*/
static u64 brcms_c_recover_tsf64(struct brcms_c_info *wlc,
struct d11rxhdr *rxh)
{
u32 tsf_h, tsf_l;
u16 rx_tsf_0_15, rx_tsf_16_31;
brcms_b_read_tsf(wlc->hw, &tsf_l, &tsf_h);
rx_tsf_16_31 = (u16)(tsf_l >> 16);
rx_tsf_0_15 = rxh->RxTSFTime;
/*
* a greater tsf time indicates the low 16 bits of
* tsf_l wrapped, so decrement the high 16 bits.
*/
if ((u16)tsf_l < rx_tsf_0_15) {
rx_tsf_16_31 -= 1;
if (rx_tsf_16_31 == 0xffff)
tsf_h -= 1;
}
return ((u64)tsf_h << 32) | (((u32)rx_tsf_16_31 << 16) + rx_tsf_0_15);
}
static void
prep_mac80211_status(struct brcms_c_info *wlc, struct d11rxhdr *rxh,
struct sk_buff *p,
struct ieee80211_rx_status *rx_status)
{
int channel;
u32 rspec;
unsigned char *plcp;
/* fill in TSF and flag its presence */
rx_status->mactime = brcms_c_recover_tsf64(wlc, rxh);
rx_status->flag |= RX_FLAG_MACTIME_START;
channel = BRCMS_CHAN_CHANNEL(rxh->RxChan);
rx_status->band =
channel > 14 ? IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ;
rx_status->freq =
ieee80211_channel_to_frequency(channel, rx_status->band);
rx_status->signal = wlc_phy_rssi_compute(wlc->hw->band->pi, rxh);
/* noise */
/* qual */
rx_status->antenna =
(rxh->PhyRxStatus_0 & PRXS0_RXANT_UPSUBBAND) ? 1 : 0;
plcp = p->data;
rspec = brcms_c_compute_rspec(rxh, plcp);
if (is_mcs_rate(rspec)) {
rx_status->rate_idx = rspec & RSPEC_RATE_MASK;
rx_status->flag |= RX_FLAG_HT;
if (rspec_is40mhz(rspec))
rx_status->flag |= RX_FLAG_40MHZ;
} else {
switch (rspec2rate(rspec)) {
case BRCM_RATE_1M:
rx_status->rate_idx = 0;
break;
case BRCM_RATE_2M:
rx_status->rate_idx = 1;
break;
case BRCM_RATE_5M5:
rx_status->rate_idx = 2;
break;
case BRCM_RATE_11M:
rx_status->rate_idx = 3;
break;
case BRCM_RATE_6M:
rx_status->rate_idx = 4;
break;
case BRCM_RATE_9M:
rx_status->rate_idx = 5;
break;
case BRCM_RATE_12M:
rx_status->rate_idx = 6;
break;
case BRCM_RATE_18M:
rx_status->rate_idx = 7;
break;
case BRCM_RATE_24M:
rx_status->rate_idx = 8;
break;
case BRCM_RATE_36M:
rx_status->rate_idx = 9;
break;
case BRCM_RATE_48M:
rx_status->rate_idx = 10;
break;
case BRCM_RATE_54M:
rx_status->rate_idx = 11;
break;
default:
brcms_err(wlc->hw->d11core,
"%s: Unknown rate\n", __func__);
}
/*
* For 5GHz, we should decrease the index as it is
* a subset of the 2.4G rates. See bitrates field
* of brcms_band_5GHz_nphy (in mac80211_if.c).
*/
if (rx_status->band == IEEE80211_BAND_5GHZ)
rx_status->rate_idx -= BRCMS_LEGACY_5G_RATE_OFFSET;
/* Determine short preamble and rate_idx */
if (is_cck_rate(rspec)) {
if (rxh->PhyRxStatus_0 & PRXS0_SHORTH)
rx_status->flag |= RX_FLAG_SHORTPRE;
} else if (is_ofdm_rate(rspec)) {
rx_status->flag |= RX_FLAG_SHORTPRE;
} else {
brcms_err(wlc->hw->d11core, "%s: Unknown modulation\n",
__func__);
}
}
if (plcp3_issgi(plcp[3]))
rx_status->flag |= RX_FLAG_SHORT_GI;
if (rxh->RxStatus1 & RXS_DECERR) {
rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
brcms_err(wlc->hw->d11core, "%s: RX_FLAG_FAILED_PLCP_CRC\n",
__func__);
}
if (rxh->RxStatus1 & RXS_FCSERR) {
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
brcms_err(wlc->hw->d11core, "%s: RX_FLAG_FAILED_FCS_CRC\n",
__func__);
}
}
static void
brcms_c_recvctl(struct brcms_c_info *wlc, struct d11rxhdr *rxh,
struct sk_buff *p)
{
int len_mpdu;
struct ieee80211_rx_status rx_status;
struct ieee80211_hdr *hdr;
memset(&rx_status, 0, sizeof(rx_status));
prep_mac80211_status(wlc, rxh, p, &rx_status);
/* mac header+body length, exclude CRC and plcp header */
len_mpdu = p->len - D11_PHY_HDR_LEN - FCS_LEN;
skb_pull(p, D11_PHY_HDR_LEN);
__skb_trim(p, len_mpdu);
/* unmute transmit */
if (wlc->hw->suspended_fifos) {
hdr = (struct ieee80211_hdr *)p->data;
if (ieee80211_is_beacon(hdr->frame_control))
brcms_b_mute(wlc->hw, false);
}
memcpy(IEEE80211_SKB_RXCB(p), &rx_status, sizeof(rx_status));
ieee80211_rx_irqsafe(wlc->pub->ieee_hw, p);
}
/* calculate frame duration for Mixed-mode L-SIG spoofing, return
* number of bytes goes in the length field
*
* Formula given by HT PHY Spec v 1.13
* len = 3(nsyms + nstream + 3) - 3
*/
u16
brcms_c_calc_lsig_len(struct brcms_c_info *wlc, u32 ratespec,
uint mac_len)
{
uint nsyms, len = 0, kNdps;
if (is_mcs_rate(ratespec)) {
uint mcs = ratespec & RSPEC_RATE_MASK;
int tot_streams = (mcs_2_txstreams(mcs) + 1) +
rspec_stc(ratespec);
/*
* the payload duration calculation matches that
* of regular ofdm
*/
/* 1000Ndbps = kbps * 4 */
kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec),
rspec_issgi(ratespec)) * 4;
if (rspec_stc(ratespec) == 0)
nsyms =
CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
APHY_TAIL_NBITS) * 1000, kNdps);
else
/* STBC needs to have even number of symbols */
nsyms =
2 *
CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
APHY_TAIL_NBITS) * 1000, 2 * kNdps);
/* (+3) account for HT-SIG(2) and HT-STF(1) */
nsyms += (tot_streams + 3);
/*
* 3 bytes/symbol @ legacy 6Mbps rate
* (-3) excluding service bits and tail bits
*/
len = (3 * nsyms) - 3;
}
return (u16) len;
}
static void
brcms_c_mod_prb_rsp_rate_table(struct brcms_c_info *wlc, uint frame_len)
{
const struct brcms_c_rateset *rs_dflt;
struct brcms_c_rateset rs;
u8 rate;
u16 entry_ptr;
u8 plcp[D11_PHY_HDR_LEN];
u16 dur, sifs;
uint i;
sifs = get_sifs(wlc->band);
rs_dflt = brcms_c_rateset_get_hwrs(wlc);
brcms_c_rateset_copy(rs_dflt, &rs);
brcms_c_rateset_mcs_upd(&rs, wlc->stf->txstreams);
/*
* walk the phy rate table and update MAC core SHM
* basic rate table entries
*/
for (i = 0; i < rs.count; i++) {
rate = rs.rates[i] & BRCMS_RATE_MASK;
entry_ptr = brcms_b_rate_shm_offset(wlc->hw, rate);
/* Calculate the Probe Response PLCP for the given rate */
brcms_c_compute_plcp(wlc, rate, frame_len, plcp);
/*
* Calculate the duration of the Probe Response
* frame plus SIFS for the MAC
*/
dur = (u16) brcms_c_calc_frame_time(wlc, rate,
BRCMS_LONG_PREAMBLE, frame_len);
dur += sifs;
/* Update the SHM Rate Table entry Probe Response values */
brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_PLCP_POS,
(u16) (plcp[0] + (plcp[1] << 8)));
brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_PLCP_POS + 2,
(u16) (plcp[2] + (plcp[3] << 8)));
brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_DUR_POS, dur);
}
}
int brcms_c_get_header_len(void)
{
return TXOFF;
}
static void brcms_c_beacon_write(struct brcms_c_info *wlc,
struct sk_buff *beacon, u16 tim_offset,
u16 dtim_period, bool bcn0, bool bcn1)
{
size_t len;
struct ieee80211_tx_info *tx_info;
struct brcms_hardware *wlc_hw = wlc->hw;
struct ieee80211_hw *ieee_hw = brcms_c_pub(wlc)->ieee_hw;
/* Get tx_info */
tx_info = IEEE80211_SKB_CB(beacon);
len = min_t(size_t, beacon->len, BCN_TMPL_LEN);
wlc->bcn_rspec = ieee80211_get_tx_rate(ieee_hw, tx_info)->hw_value;
brcms_c_compute_plcp(wlc, wlc->bcn_rspec,
len + FCS_LEN - D11_PHY_HDR_LEN, beacon->data);
/* "Regular" and 16 MBSS but not for 4 MBSS */
/* Update the phytxctl for the beacon based on the rspec */
brcms_c_beacon_phytxctl_txant_upd(wlc, wlc->bcn_rspec);
if (bcn0) {
/* write the probe response into the template region */
brcms_b_write_template_ram(wlc_hw, T_BCN0_TPL_BASE,
(len + 3) & ~3, beacon->data);
/* write beacon length to SCR */
brcms_b_write_shm(wlc_hw, M_BCN0_FRM_BYTESZ, (u16) len);
}
if (bcn1) {
/* write the probe response into the template region */
brcms_b_write_template_ram(wlc_hw, T_BCN1_TPL_BASE,
(len + 3) & ~3, beacon->data);
/* write beacon length to SCR */
brcms_b_write_shm(wlc_hw, M_BCN1_FRM_BYTESZ, (u16) len);
}
if (tim_offset != 0) {
brcms_b_write_shm(wlc_hw, M_TIMBPOS_INBEACON,
tim_offset + D11B_PHY_HDR_LEN);
brcms_b_write_shm(wlc_hw, M_DOT11_DTIMPERIOD, dtim_period);
} else {
brcms_b_write_shm(wlc_hw, M_TIMBPOS_INBEACON,
len + D11B_PHY_HDR_LEN);
brcms_b_write_shm(wlc_hw, M_DOT11_DTIMPERIOD, 0);
}
}
static void brcms_c_update_beacon_hw(struct brcms_c_info *wlc,
struct sk_buff *beacon, u16 tim_offset,
u16 dtim_period)
{
struct brcms_hardware *wlc_hw = wlc->hw;
struct bcma_device *core = wlc_hw->d11core;
/* Hardware beaconing for this config */
u32 both_valid = MCMD_BCN0VLD | MCMD_BCN1VLD;
/* Check if both templates are in use, if so sched. an interrupt
* that will call back into this routine
*/
if ((bcma_read32(core, D11REGOFFS(maccommand)) & both_valid) == both_valid)
/* clear any previous status */
bcma_write32(core, D11REGOFFS(macintstatus), MI_BCNTPL);
if (wlc->beacon_template_virgin) {
wlc->beacon_template_virgin = false;
brcms_c_beacon_write(wlc, beacon, tim_offset, dtim_period, true,
true);
/* mark beacon0 valid */
bcma_set32(core, D11REGOFFS(maccommand), MCMD_BCN0VLD);
return;
}
/* Check that after scheduling the interrupt both of the
* templates are still busy. if not clear the int. & remask
*/
if ((bcma_read32(core, D11REGOFFS(maccommand)) & both_valid) == both_valid) {
wlc->defmacintmask |= MI_BCNTPL;
return;
}
if (!(bcma_read32(core, D11REGOFFS(maccommand)) & MCMD_BCN0VLD)) {
brcms_c_beacon_write(wlc, beacon, tim_offset, dtim_period, true,
false);
/* mark beacon0 valid */
bcma_set32(core, D11REGOFFS(maccommand), MCMD_BCN0VLD);
return;
}
if (!(bcma_read32(core, D11REGOFFS(maccommand)) & MCMD_BCN1VLD)) {
brcms_c_beacon_write(wlc, beacon, tim_offset, dtim_period,
false, true);
/* mark beacon0 valid */
bcma_set32(core, D11REGOFFS(maccommand), MCMD_BCN1VLD);
return;
}
return;
}
/*
* Update all beacons for the system.
*/
void brcms_c_update_beacon(struct brcms_c_info *wlc)
{
struct brcms_bss_cfg *bsscfg = wlc->bsscfg;
if (wlc->pub->up && (bsscfg->type == BRCMS_TYPE_AP ||
bsscfg->type == BRCMS_TYPE_ADHOC)) {
/* Clear the soft intmask */
wlc->defmacintmask &= ~MI_BCNTPL;
if (!wlc->beacon)
return;
brcms_c_update_beacon_hw(wlc, wlc->beacon,
wlc->beacon_tim_offset,
wlc->beacon_dtim_period);
}
}
void brcms_c_set_new_beacon(struct brcms_c_info *wlc, struct sk_buff *beacon,
u16 tim_offset, u16 dtim_period)
{
if (!beacon)
return;
if (wlc->beacon)
dev_kfree_skb_any(wlc->beacon);
wlc->beacon = beacon;
/* add PLCP */
skb_push(wlc->beacon, D11_PHY_HDR_LEN);
wlc->beacon_tim_offset = tim_offset;
wlc->beacon_dtim_period = dtim_period;
brcms_c_update_beacon(wlc);
}
void brcms_c_set_new_probe_resp(struct brcms_c_info *wlc,
struct sk_buff *probe_resp)
{
if (!probe_resp)
return;
if (wlc->probe_resp)
dev_kfree_skb_any(wlc->probe_resp);
wlc->probe_resp = probe_resp;
/* add PLCP */
skb_push(wlc->probe_resp, D11_PHY_HDR_LEN);
brcms_c_update_probe_resp(wlc, false);
}
void brcms_c_enable_probe_resp(struct brcms_c_info *wlc, bool enable)
{
/*
* prevent ucode from sending probe responses by setting the timeout
* to 1, it can not send it in that time frame.
*/
wlc->prb_resp_timeout = enable ? BRCMS_PRB_RESP_TIMEOUT : 1;
brcms_b_write_shm(wlc->hw, M_PRS_MAXTIME, wlc->prb_resp_timeout);
/* TODO: if (enable) => also deactivate receiving of probe request */
}
/* Write ssid into shared memory */
static void
brcms_c_shm_ssid_upd(struct brcms_c_info *wlc, struct brcms_bss_cfg *cfg)
{
u8 *ssidptr = cfg->SSID;
u16 base = M_SSID;
u8 ssidbuf[IEEE80211_MAX_SSID_LEN];
/* padding the ssid with zero and copy it into shm */
memset(ssidbuf, 0, IEEE80211_MAX_SSID_LEN);
memcpy(ssidbuf, ssidptr, cfg->SSID_len);
brcms_c_copyto_shm(wlc, base, ssidbuf, IEEE80211_MAX_SSID_LEN);
brcms_b_write_shm(wlc->hw, M_SSIDLEN, (u16) cfg->SSID_len);
}
static void
brcms_c_bss_update_probe_resp(struct brcms_c_info *wlc,
struct brcms_bss_cfg *cfg,
struct sk_buff *probe_resp,
bool suspend)
{
int len;
len = min_t(size_t, probe_resp->len, BCN_TMPL_LEN);
if (suspend)
brcms_c_suspend_mac_and_wait(wlc);
/* write the probe response into the template region */
brcms_b_write_template_ram(wlc->hw, T_PRS_TPL_BASE,
(len + 3) & ~3, probe_resp->data);
/* write the length of the probe response frame (+PLCP/-FCS) */
brcms_b_write_shm(wlc->hw, M_PRB_RESP_FRM_LEN, (u16) len);
/* write the SSID and SSID length */
brcms_c_shm_ssid_upd(wlc, cfg);
/*
* Write PLCP headers and durations for probe response frames
* at all rates. Use the actual frame length covered by the
* PLCP header for the call to brcms_c_mod_prb_rsp_rate_table()
* by subtracting the PLCP len and adding the FCS.
*/
brcms_c_mod_prb_rsp_rate_table(wlc,
(u16)len + FCS_LEN - D11_PHY_HDR_LEN);
if (suspend)
brcms_c_enable_mac(wlc);
}
void brcms_c_update_probe_resp(struct brcms_c_info *wlc, bool suspend)
{
struct brcms_bss_cfg *bsscfg = wlc->bsscfg;
/* update AP or IBSS probe responses */
if (wlc->pub->up && (bsscfg->type == BRCMS_TYPE_AP ||
bsscfg->type == BRCMS_TYPE_ADHOC)) {
if (!wlc->probe_resp)
return;
brcms_c_bss_update_probe_resp(wlc, bsscfg, wlc->probe_resp,
suspend);
}
}
int brcms_b_xmtfifo_sz_get(struct brcms_hardware *wlc_hw, uint fifo,
uint *blocks)
{
if (fifo >= NFIFO)
return -EINVAL;
*blocks = wlc_hw->xmtfifo_sz[fifo];
return 0;
}
void
brcms_c_set_addrmatch(struct brcms_c_info *wlc, int match_reg_offset,
const u8 *addr)
{
brcms_b_set_addrmatch(wlc->hw, match_reg_offset, addr);
if (match_reg_offset == RCM_BSSID_OFFSET)
memcpy(wlc->bsscfg->BSSID, addr, ETH_ALEN);
}
/*
* Flag 'scan in progress' to withhold dynamic phy calibration
*/
void brcms_c_scan_start(struct brcms_c_info *wlc)
{
wlc_phy_hold_upd(wlc->band->pi, PHY_HOLD_FOR_SCAN, true);
}
void brcms_c_scan_stop(struct brcms_c_info *wlc)
{
wlc_phy_hold_upd(wlc->band->pi, PHY_HOLD_FOR_SCAN, false);
}
void brcms_c_associate_upd(struct brcms_c_info *wlc, bool state)
{
wlc->pub->associated = state;
}
/*
* When a remote STA/AP is removed by Mac80211, or when it can no longer accept
* AMPDU traffic, packets pending in hardware have to be invalidated so that
* when later on hardware releases them, they can be handled appropriately.
*/
void brcms_c_inval_dma_pkts(struct brcms_hardware *hw,
struct ieee80211_sta *sta,
void (*dma_callback_fn))
{
struct dma_pub *dmah;
int i;
for (i = 0; i < NFIFO; i++) {
dmah = hw->di[i];
if (dmah != NULL)
dma_walk_packets(dmah, dma_callback_fn, sta);
}
}
int brcms_c_get_curband(struct brcms_c_info *wlc)
{
return wlc->band->bandunit;
}
bool brcms_c_tx_flush_completed(struct brcms_c_info *wlc)
{
int i;
/* Kick DMA to send any pending AMPDU */
for (i = 0; i < ARRAY_SIZE(wlc->hw->di); i++)
if (wlc->hw->di[i])
dma_kick_tx(wlc->hw->di[i]);
return !brcms_txpktpendtot(wlc);
}
void brcms_c_set_beacon_listen_interval(struct brcms_c_info *wlc, u8 interval)
{
wlc->bcn_li_bcn = interval;
if (wlc->pub->up)
brcms_c_bcn_li_upd(wlc);
}
u64 brcms_c_tsf_get(struct brcms_c_info *wlc)
{
u32 tsf_h, tsf_l;
u64 tsf;
brcms_b_read_tsf(wlc->hw, &tsf_l, &tsf_h);
tsf = tsf_h;
tsf <<= 32;
tsf |= tsf_l;
return tsf;
}
void brcms_c_tsf_set(struct brcms_c_info *wlc, u64 tsf)
{
u32 tsf_h, tsf_l;
brcms_c_time_lock(wlc);
tsf_l = tsf;
tsf_h = (tsf >> 32);
/* read the tsf timer low, then high to get an atomic read */
bcma_write32(wlc->hw->d11core, D11REGOFFS(tsf_timerlow), tsf_l);
bcma_write32(wlc->hw->d11core, D11REGOFFS(tsf_timerhigh), tsf_h);
brcms_c_time_unlock(wlc);
}
int brcms_c_set_tx_power(struct brcms_c_info *wlc, int txpwr)
{
uint qdbm;
/* Remove override bit and clip to max qdbm value */
qdbm = min_t(uint, txpwr * BRCMS_TXPWR_DB_FACTOR, 0xff);
return wlc_phy_txpower_set(wlc->band->pi, qdbm, false);
}
int brcms_c_get_tx_power(struct brcms_c_info *wlc)
{
uint qdbm;
bool override;
wlc_phy_txpower_get(wlc->band->pi, &qdbm, &override);
/* Return qdbm units */
return (int)(qdbm / BRCMS_TXPWR_DB_FACTOR);
}
/* Process received frames */
/*
* Return true if more frames need to be processed. false otherwise.
* Param 'bound' indicates max. # frames to process before break out.
*/
static void brcms_c_recv(struct brcms_c_info *wlc, struct sk_buff *p)
{
struct d11rxhdr *rxh;
struct ieee80211_hdr *h;
uint len;
bool is_amsdu;
/* frame starts with rxhdr */
rxh = (struct d11rxhdr *) (p->data);
/* strip off rxhdr */
skb_pull(p, BRCMS_HWRXOFF);
/* MAC inserts 2 pad bytes for a4 headers or QoS or A-MSDU subframes */
if (rxh->RxStatus1 & RXS_PBPRES) {
if (p->len < 2) {
brcms_err(wlc->hw->d11core,
"wl%d: recv: rcvd runt of len %d\n",
wlc->pub->unit, p->len);
goto toss;
}
skb_pull(p, 2);
}
h = (struct ieee80211_hdr *)(p->data + D11_PHY_HDR_LEN);
len = p->len;
if (rxh->RxStatus1 & RXS_FCSERR) {
if (!(wlc->filter_flags & FIF_FCSFAIL))
goto toss;
}
/* check received pkt has at least frame control field */
if (len < D11_PHY_HDR_LEN + sizeof(h->frame_control))
goto toss;
/* not supporting A-MSDU */
is_amsdu = rxh->RxStatus2 & RXS_AMSDU_MASK;
if (is_amsdu)
goto toss;
brcms_c_recvctl(wlc, rxh, p);
return;
toss:
brcmu_pkt_buf_free_skb(p);
}
/* Process received frames */
/*
* Return true if more frames need to be processed. false otherwise.
* Param 'bound' indicates max. # frames to process before break out.
*/
static bool
brcms_b_recv(struct brcms_hardware *wlc_hw, uint fifo, bool bound)
{
struct sk_buff *p;
struct sk_buff *next = NULL;
struct sk_buff_head recv_frames;
uint n = 0;
uint bound_limit = bound ? RXBND : -1;
bool morepending = false;
skb_queue_head_init(&recv_frames);
/* gather received frames */
do {
/* !give others some time to run! */
if (n >= bound_limit)
break;
morepending = dma_rx(wlc_hw->di[fifo], &recv_frames);
n++;
} while (morepending);
/* post more rbufs */
dma_rxfill(wlc_hw->di[fifo]);
/* process each frame */
skb_queue_walk_safe(&recv_frames, p, next) {
struct d11rxhdr_le *rxh_le;
struct d11rxhdr *rxh;
skb_unlink(p, &recv_frames);
rxh_le = (struct d11rxhdr_le *)p->data;
rxh = (struct d11rxhdr *)p->data;
/* fixup rx header endianness */
rxh->RxFrameSize = le16_to_cpu(rxh_le->RxFrameSize);
rxh->PhyRxStatus_0 = le16_to_cpu(rxh_le->PhyRxStatus_0);
rxh->PhyRxStatus_1 = le16_to_cpu(rxh_le->PhyRxStatus_1);
rxh->PhyRxStatus_2 = le16_to_cpu(rxh_le->PhyRxStatus_2);
rxh->PhyRxStatus_3 = le16_to_cpu(rxh_le->PhyRxStatus_3);
rxh->PhyRxStatus_4 = le16_to_cpu(rxh_le->PhyRxStatus_4);
rxh->PhyRxStatus_5 = le16_to_cpu(rxh_le->PhyRxStatus_5);
rxh->RxStatus1 = le16_to_cpu(rxh_le->RxStatus1);
rxh->RxStatus2 = le16_to_cpu(rxh_le->RxStatus2);
rxh->RxTSFTime = le16_to_cpu(rxh_le->RxTSFTime);
rxh->RxChan = le16_to_cpu(rxh_le->RxChan);
brcms_c_recv(wlc_hw->wlc, p);
}
return morepending;
}
/* second-level interrupt processing
* Return true if another dpc needs to be re-scheduled. false otherwise.
* Param 'bounded' indicates if applicable loops should be bounded.
*/
bool brcms_c_dpc(struct brcms_c_info *wlc, bool bounded)
{
u32 macintstatus;
struct brcms_hardware *wlc_hw = wlc->hw;
struct bcma_device *core = wlc_hw->d11core;
if (brcms_deviceremoved(wlc)) {
brcms_err(core, "wl%d: %s: dead chip\n", wlc_hw->unit,
__func__);
brcms_down(wlc->wl);
return false;
}
/* grab and clear the saved software intstatus bits */
macintstatus = wlc->macintstatus;
wlc->macintstatus = 0;
brcms_dbg_int(core, "wl%d: macintstatus 0x%x\n",
wlc_hw->unit, macintstatus);
WARN_ON(macintstatus & MI_PRQ); /* PRQ Interrupt in non-MBSS */
/* tx status */
if (macintstatus & MI_TFS) {
bool fatal;
if (brcms_b_txstatus(wlc->hw, bounded, &fatal))
wlc->macintstatus |= MI_TFS;
if (fatal) {
brcms_err(core, "MI_TFS: fatal\n");
goto fatal;
}
}
if (macintstatus & (MI_TBTT | MI_DTIM_TBTT))
brcms_c_tbtt(wlc);
/* ATIM window end */
if (macintstatus & MI_ATIMWINEND) {
brcms_dbg_info(core, "end of ATIM window\n");
bcma_set32(core, D11REGOFFS(maccommand), wlc->qvalid);
wlc->qvalid = 0;
}
/*
* received data or control frame, MI_DMAINT is
* indication of RX_FIFO interrupt
*/
if (macintstatus & MI_DMAINT)
if (brcms_b_recv(wlc_hw, RX_FIFO, bounded))
wlc->macintstatus |= MI_DMAINT;
/* noise sample collected */
if (macintstatus & MI_BG_NOISE)
wlc_phy_noise_sample_intr(wlc_hw->band->pi);
if (macintstatus & MI_GP0) {
brcms_err(core, "wl%d: PSM microcode watchdog fired at %d "
"(seconds). Resetting.\n", wlc_hw->unit, wlc_hw->now);
printk_once("%s : PSM Watchdog, chipid 0x%x, chiprev 0x%x\n",
__func__, ai_get_chip_id(wlc_hw->sih),
ai_get_chiprev(wlc_hw->sih));
brcms_fatal_error(wlc_hw->wlc->wl);
}
/* gptimer timeout */
if (macintstatus & MI_TO)
bcma_write32(core, D11REGOFFS(gptimer), 0);
if (macintstatus & MI_RFDISABLE) {
brcms_dbg_info(core, "wl%d: BMAC Detected a change on the"
" RF Disable Input\n", wlc_hw->unit);
brcms_rfkill_set_hw_state(wlc->wl);
}
/* BCN template is available */
if (macintstatus & MI_BCNTPL)
brcms_c_update_beacon(wlc);
/* it isn't done and needs to be resched if macintstatus is non-zero */
return wlc->macintstatus != 0;
fatal:
brcms_fatal_error(wlc_hw->wlc->wl);
return wlc->macintstatus != 0;
}
void brcms_c_init(struct brcms_c_info *wlc, bool mute_tx)
{
struct bcma_device *core = wlc->hw->d11core;
struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.chandef.chan;
u16 chanspec;
brcms_dbg_info(core, "wl%d\n", wlc->pub->unit);
chanspec = ch20mhz_chspec(ch->hw_value);
brcms_b_init(wlc->hw, chanspec);
/* update beacon listen interval */
brcms_c_bcn_li_upd(wlc);
/* write ethernet address to core */
brcms_c_set_mac(wlc->bsscfg);
brcms_c_set_bssid(wlc->bsscfg);
/* Update tsf_cfprep if associated and up */
if (wlc->pub->associated && wlc->pub->up) {
u32 bi;
/* get beacon period and convert to uS */
bi = wlc->bsscfg->current_bss->beacon_period << 10;
/*
* update since init path would reset
* to default value
*/
bcma_write32(core, D11REGOFFS(tsf_cfprep),
bi << CFPREP_CBI_SHIFT);
/* Update maccontrol PM related bits */
brcms_c_set_ps_ctrl(wlc);
}
brcms_c_bandinit_ordered(wlc, chanspec);
/* init probe response timeout */
brcms_b_write_shm(wlc->hw, M_PRS_MAXTIME, wlc->prb_resp_timeout);
/* init max burst txop (framebursting) */
brcms_b_write_shm(wlc->hw, M_MBURST_TXOP,
(wlc->
_rifs ? (EDCF_AC_VO_TXOP_AP << 5) : MAXFRAMEBURST_TXOP));
/* initialize maximum allowed duty cycle */
brcms_c_duty_cycle_set(wlc, wlc->tx_duty_cycle_ofdm, true, true);
brcms_c_duty_cycle_set(wlc, wlc->tx_duty_cycle_cck, false, true);
/*
* Update some shared memory locations related to
* max AMPDU size allowed to received
*/
brcms_c_ampdu_shm_upd(wlc->ampdu);
/* band-specific inits */
brcms_c_bsinit(wlc);
/* Enable EDCF mode (while the MAC is suspended) */
bcma_set16(core, D11REGOFFS(ifs_ctl), IFS_USEEDCF);
brcms_c_edcf_setparams(wlc, false);
/* read the ucode version if we have not yet done so */
if (wlc->ucode_rev == 0) {
u16 rev;
u16 patch;
rev = brcms_b_read_shm(wlc->hw, M_BOM_REV_MAJOR);
patch = brcms_b_read_shm(wlc->hw, M_BOM_REV_MINOR);
wlc->ucode_rev = (rev << NBITS(u16)) | patch;
snprintf(wlc->wiphy->fw_version,
sizeof(wlc->wiphy->fw_version), "%u.%u", rev, patch);
}
/* ..now really unleash hell (allow the MAC out of suspend) */
brcms_c_enable_mac(wlc);
/* suspend the tx fifos and mute the phy for preism cac time */
if (mute_tx)
brcms_b_mute(wlc->hw, true);
/* enable the RF Disable Delay timer */
bcma_write32(core, D11REGOFFS(rfdisabledly), RFDISABLE_DEFAULT);
/*
* Initialize WME parameters; if they haven't been set by some other
* mechanism (IOVar, etc) then read them from the hardware.
*/
if (GFIELD(wlc->wme_retries[0], EDCF_SHORT) == 0) {
/* Uninitialized; read from HW */
int ac;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
wlc->wme_retries[ac] =
brcms_b_read_shm(wlc->hw, M_AC_TXLMT_ADDR(ac));
}
}
/*
* The common driver entry routine. Error codes should be unique
*/
struct brcms_c_info *
brcms_c_attach(struct brcms_info *wl, struct bcma_device *core, uint unit,
bool piomode, uint *perr)
{
struct brcms_c_info *wlc;
uint err = 0;
uint i, j;
struct brcms_pub *pub;
/* allocate struct brcms_c_info state and its substructures */
wlc = brcms_c_attach_malloc(unit, &err, 0);
if (wlc == NULL)
goto fail;
wlc->wiphy = wl->wiphy;
pub = wlc->pub;
#if defined(DEBUG)
wlc_info_dbg = wlc;
#endif
wlc->band = wlc->bandstate[0];
wlc->core = wlc->corestate;
wlc->wl = wl;
pub->unit = unit;
pub->_piomode = piomode;
wlc->bandinit_pending = false;
wlc->beacon_template_virgin = true;
/* populate struct brcms_c_info with default values */
brcms_c_info_init(wlc, unit);
/* update sta/ap related parameters */
brcms_c_ap_upd(wlc);
/*
* low level attach steps(all hw accesses go
* inside, no more in rest of the attach)
*/
err = brcms_b_attach(wlc, core, unit, piomode);
if (err)
goto fail;
brcms_c_protection_upd(wlc, BRCMS_PROT_N_PAM_OVR, OFF);
pub->phy_11ncapable = BRCMS_PHY_11N_CAP(wlc->band);
/* disable allowed duty cycle */
wlc->tx_duty_cycle_ofdm = 0;
wlc->tx_duty_cycle_cck = 0;
brcms_c_stf_phy_chain_calc(wlc);
/* txchain 1: txant 0, txchain 2: txant 1 */
if (BRCMS_ISNPHY(wlc->band) && (wlc->stf->txstreams == 1))
wlc->stf->txant = wlc->stf->hw_txchain - 1;
/* push to BMAC driver */
wlc_phy_stf_chain_init(wlc->band->pi, wlc->stf->hw_txchain,
wlc->stf->hw_rxchain);
/* pull up some info resulting from the low attach */
for (i = 0; i < NFIFO; i++)
wlc->core->txavail[i] = wlc->hw->txavail[i];
memcpy(&wlc->perm_etheraddr, &wlc->hw->etheraddr, ETH_ALEN);
memcpy(&pub->cur_etheraddr, &wlc->hw->etheraddr, ETH_ALEN);
for (j = 0; j < wlc->pub->_nbands; j++) {
wlc->band = wlc->bandstate[j];
if (!brcms_c_attach_stf_ant_init(wlc)) {
err = 24;
goto fail;
}
/* default contention windows size limits */
wlc->band->CWmin = APHY_CWMIN;
wlc->band->CWmax = PHY_CWMAX;
/* init gmode value */
if (wlc->band->bandtype == BRCM_BAND_2G) {
wlc->band->gmode = GMODE_AUTO;
brcms_c_protection_upd(wlc, BRCMS_PROT_G_USER,
wlc->band->gmode);
}
/* init _n_enab supported mode */
if (BRCMS_PHY_11N_CAP(wlc->band)) {
pub->_n_enab = SUPPORT_11N;
brcms_c_protection_upd(wlc, BRCMS_PROT_N_USER,
((pub->_n_enab ==
SUPPORT_11N) ? WL_11N_2x2 :
WL_11N_3x3));
}
/* init per-band default rateset, depend on band->gmode */
brcms_default_rateset(wlc, &wlc->band->defrateset);
/* fill in hw_rateset */
brcms_c_rateset_filter(&wlc->band->defrateset,
&wlc->band->hw_rateset, false,
BRCMS_RATES_CCK_OFDM, BRCMS_RATE_MASK,
(bool) (wlc->pub->_n_enab & SUPPORT_11N));
}
/*
* update antenna config due to
* wlc->stf->txant/txchain/ant_rx_ovr change
*/
brcms_c_stf_phy_txant_upd(wlc);
/* attach each modules */
err = brcms_c_attach_module(wlc);
if (err != 0)
goto fail;
if (!brcms_c_timers_init(wlc, unit)) {
wiphy_err(wl->wiphy, "wl%d: %s: init_timer failed\n", unit,
__func__);
err = 32;
goto fail;
}
/* depend on rateset, gmode */
wlc->cmi = brcms_c_channel_mgr_attach(wlc);
if (!wlc->cmi) {
wiphy_err(wl->wiphy, "wl%d: %s: channel_mgr_attach failed"
"\n", unit, __func__);
err = 33;
goto fail;
}
/* init default when all parameters are ready, i.e. ->rateset */
brcms_c_bss_default_init(wlc);
/*
* Complete the wlc default state initializations..
*/
wlc->bsscfg->wlc = wlc;
wlc->mimoft = FT_HT;
wlc->mimo_40txbw = AUTO;
wlc->ofdm_40txbw = AUTO;
wlc->cck_40txbw = AUTO;
brcms_c_update_mimo_band_bwcap(wlc, BRCMS_N_BW_20IN2G_40IN5G);
/* Set default values of SGI */
if (BRCMS_SGI_CAP_PHY(wlc)) {
brcms_c_ht_update_sgi_rx(wlc, (BRCMS_N_SGI_20 |
BRCMS_N_SGI_40));
} else if (BRCMS_ISSSLPNPHY(wlc->band)) {
brcms_c_ht_update_sgi_rx(wlc, (BRCMS_N_SGI_20 |
BRCMS_N_SGI_40));
} else {
brcms_c_ht_update_sgi_rx(wlc, 0);
}
brcms_b_antsel_set(wlc->hw, wlc->asi->antsel_avail);
if (perr)
*perr = 0;
return wlc;
fail:
wiphy_err(wl->wiphy, "wl%d: %s: failed with err %d\n",
unit, __func__, err);
if (wlc)
brcms_c_detach(wlc);
if (perr)
*perr = err;
return NULL;
}