blob: 50c0bce458510797be4a93796885257994858317 [file] [log] [blame]
/* PFE performance monitoring functions */
#include "pfe_ctrl_hal.h"
#include "pfe_perfmon.h"
static TIMER_ENTRY cpumon_timer;
u32 CLASS_DMEM_SH2(cpu_ticks[2]);
u32 TMU_DMEM_SH2(cpu_ticks[2]);
u32 UTIL_DMEM_SH2(cpu_ticks[2]);
#define compute_active_pct(total_ticks, active_ticks) ((active_ticks * 100 + (total_ticks >> 1)) / total_ticks)
static void cpumon_timer_handler(void)
{
int id;
u32 dmem_addr;
u32 ticks[2];
u32 total, active;
struct pfe_ctrl *ctrl = &pfe->ctrl;
struct pfe_cpumon *cpumon = &pfe->cpumon;
// Process class PE's
total = active = 0;
dmem_addr = virt_to_class_dmem(&class_cpu_ticks[0]);
for (id = CLASS0_ID; id <= CLASS_MAX_ID; id++)
{
cpumon->cpu_usage_pct[id] = 0;
if (pe_sync_stop(ctrl, (1 << id)) < 0)
continue;
ticks[0] = be32_to_cpu(pe_dmem_read(id, dmem_addr, 4));
ticks[1] = be32_to_cpu(pe_dmem_read(id, dmem_addr + 4, 4));
pe_dmem_write(id, 0, dmem_addr, 4);
pe_dmem_write(id, 0, dmem_addr + 4, 4);
pe_start(ctrl, (1 << id));
ticks[0] >>= 8; // divide both values by 256, so multiply by 100 won't overflow
ticks[1] >>= 8;
total += ticks[0];
active += ticks[1];
if (ticks[0] != 0)
cpumon->cpu_usage_pct[id] = compute_active_pct(ticks[0], ticks[1]);
}
if (total != 0)
cpumon->class_usage_pct = compute_active_pct(total, active);
else
cpumon->class_usage_pct = 0;
// Process TMU PE's
total = active = 0;
dmem_addr = virt_to_tmu_dmem(&tmu_cpu_ticks[0]);
for (id = TMU0_ID; id <= TMU_MAX_ID; id++)
{
cpumon->cpu_usage_pct[id] = 0;
if (pe_sync_stop(ctrl, (1 << id)) < 0)
continue;
ticks[0] = be32_to_cpu(pe_dmem_read(id, dmem_addr, 4));
ticks[1] = be32_to_cpu(pe_dmem_read(id, dmem_addr + 4, 4));
pe_dmem_write(id, 0, dmem_addr, 4);
pe_dmem_write(id, 0, dmem_addr + 4, 4);
pe_start(ctrl, (1 << id));
if (id == TMU0_ID) { int x=0; if (++x == 10){x=0; printk("total=%x, active=%x\n",ticks[0],ticks[1]);}} //zzz
ticks[0] >>= 8; // divide both values by 256, so multiply by 100 won't overflow
ticks[1] >>= 8;
if (ticks[0] != 0)
cpumon->cpu_usage_pct[id] = compute_active_pct(ticks[0], ticks[1]);
}
// Process Util PE
dmem_addr = virt_to_util_dmem(&util_cpu_ticks[0]);
cpumon->cpu_usage_pct[UTIL_ID] = 0;
if (pe_sync_stop(ctrl, (1 << UTIL_ID)) < 0)
return;
ticks[0] = be32_to_cpu(pe_dmem_read(UTIL_ID, dmem_addr, 4));
ticks[1] = be32_to_cpu(pe_dmem_read(UTIL_ID, dmem_addr + 4, 4));
pe_dmem_write(UTIL_ID, 0, dmem_addr, 4);
pe_dmem_write(UTIL_ID, 0, dmem_addr + 4, 4);
pe_start(ctrl, (1 << UTIL_ID));
ticks[0] >>= 8; // divide both values by 256, so multiply by 100 won't overflow
ticks[1] >>= 8;
if (ticks[0] != 0)
cpumon->cpu_usage_pct[UTIL_ID] = compute_active_pct(ticks[0], ticks[1]);
}
static int pfe_cpumon_init(struct pfe *pfe)
{
timer_init(&cpumon_timer, cpumon_timer_handler);
timer_add(&cpumon_timer, CT_CPUMON_INTERVAL);
return 0;
}
static void pfe_cpumon_exit(struct pfe *pfe)
{
timer_del(&cpumon_timer);
}
/*********************************************************************************/
// Memory monitor functions
void * pfe_kmalloc(size_t size, int flags)
{
struct pfe_memmon *memmon = &pfe->memmon;
void *ptr;
ptr = kmalloc(size, flags);
if (ptr)
memmon->kernel_memory_allocated += ksize(ptr);
return ptr;
}
void * pfe_kzalloc(size_t size, int flags)
{
struct pfe_memmon *memmon = &pfe->memmon;
void *ptr;
ptr = kzalloc(size, flags);
if (ptr)
memmon->kernel_memory_allocated += ksize(ptr);
return ptr;
}
void pfe_kfree(void *ptr)
{
struct pfe_memmon *memmon = &pfe->memmon;
memmon->kernel_memory_allocated -= ksize(ptr);
kfree(ptr);
}
static int pfe_memmon_init(struct pfe *pfe)
{
return 0;
}
static void pfe_memmon_exit(struct pfe *pfe)
{
}
/*********************************************************************************/
int pfe_perfmon_init(struct pfe *pfe)
{
pfe_cpumon_init(pfe);
pfe_memmon_init(pfe);
return 0;
}
void pfe_perfmon_exit(struct pfe *pfe)
{
pfe_cpumon_exit(pfe);
pfe_memmon_exit(pfe);
}