blob: 96529677b251d2b6588c024118739b5fdc0ae19f [file] [log] [blame]
/*
* (C) Copyright 2001
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com
*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* MII Utilities
*/
#include <common.h>
#include <command.h>
#ifdef CONFIG_ATH_NAND_BR
#include <nand.h>
#endif
#ifndef COMPRESSED_UBOOT
#if (CONFIG_COMMANDS & CFG_CMD_MII)
#include <miiphy.h>
#ifdef CONFIG_TERSE_MII
/*
* Display values from last command.
*/
uint last_op;
uint last_addr;
uint last_data;
uint last_reg;
/*
* MII device/info/read/write
*
* Syntax:
* mii device {devname}
* mii info {addr}
* mii read {addr} {reg}
* mii write {addr} {reg} {data}
*/
int do_mii (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
char op;
unsigned char addr, reg;
unsigned short data;
int rcode = 0;
char *devname;
#if defined(CONFIG_8xx) || defined(CONFIG_MCF52x2)
mii_init ();
#endif
/*
* We use the last specified parameters, unless new ones are
* entered.
*/
op = last_op;
addr = last_addr;
data = last_data;
reg = last_reg;
if ((flag & CMD_FLAG_REPEAT) == 0) {
op = argv[1][0];
if (argc >= 3)
addr = simple_strtoul (argv[2], NULL, 16);
if (argc >= 4)
reg = simple_strtoul (argv[3], NULL, 16);
if (argc >= 5)
data = simple_strtoul (argv[4], NULL, 16);
}
/* use current device */
devname = miiphy_get_current_dev();
/*
* check device/read/write/list.
*/
if (op == 'i') {
unsigned char j, start, end;
unsigned int oui;
unsigned char model;
unsigned char rev;
/*
* Look for any and all PHYs. Valid addresses are 0..31.
*/
if (argc >= 3) {
start = addr; end = addr + 1;
} else {
start = 0; end = 31;
}
for (j = start; j < end; j++) {
if (miiphy_info (devname, j, &oui, &model, &rev) == 0) {
printf ("PHY 0x%02X: "
"OUI = 0x%04X, "
"Model = 0x%02X, "
"Rev = 0x%02X, "
"%3dbaseT, %s\n",
j, oui, model, rev,
miiphy_speed (devname, j),
(miiphy_duplex (devname, j) == FULL)
? "FDX" : "HDX");
} else {
puts ("Error reading info from the PHY\n");
}
}
} else if (op == 'r') {
if (miiphy_read (devname, addr, reg, &data) < 0) {
puts ("Error reading from the PHY\n");
rcode = 1;
} else {
printf ("%04X\n", data & 0x0000FFFF);
}
} else if (op == 'w') {
if (miiphy_write (devname, addr, reg, data) != 0) {
puts ("Error writing to the PHY\n");
rcode = 1;
}
} else if (op == 'd') {
if (argc == 2)
miiphy_listdev ();
else
miiphy_set_current_dev (argv[2]);
} else {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Save the parameters for repeats.
*/
last_op = op;
last_addr = addr;
last_data = data;
last_reg = reg;
return rcode;
}
/***************************************************/
U_BOOT_CMD(
mii, 5, 1, do_mii,
"mii - MII utility commands\n",
"device - list available devices\n"
"mii device <devname> - set current device\n"
"mii info <addr> - display MII PHY info\n"
"mii read <addr> <reg> - read MII PHY <addr> register <reg>\n"
"mii write <addr> <reg> <data> - write MII PHY <addr> register <reg>\n"
);
#else /* ! CONFIG_TERSE_MII ================================================= */
typedef struct _MII_reg_desc_t {
ushort regno;
char * name;
} MII_reg_desc_t;
MII_reg_desc_t reg_0_5_desc_tbl[] = {
{ 0, "PHY control register" },
{ 1, "PHY status register" },
{ 2, "PHY ID 1 register" },
{ 3, "PHY ID 2 register" },
{ 4, "Autonegotiation advertisement register" },
{ 5, "Autonegotiation partner abilities register" },
};
typedef struct _MII_field_desc_t {
ushort hi;
ushort lo;
ushort mask;
char * name;
} MII_field_desc_t;
MII_field_desc_t reg_0_desc_tbl[] = {
{ 15, 15, 0x01, "reset" },
{ 14, 14, 0x01, "loopback" },
{ 13, 6, 0x81, "speed selection" }, /* special */
{ 12, 12, 0x01, "A/N enable" },
{ 11, 11, 0x01, "power-down" },
{ 10, 10, 0x01, "isolate" },
{ 9, 9, 0x01, "restart A/N" },
{ 8, 8, 0x01, "duplex" }, /* special */
{ 7, 7, 0x01, "collision test enable" },
{ 5, 0, 0x3f, "(reserved)" }
};
MII_field_desc_t reg_1_desc_tbl[] = {
{ 15, 15, 0x01, "100BASE-T4 able" },
{ 14, 14, 0x01, "100BASE-X full duplex able" },
{ 13, 13, 0x01, "100BASE-X half duplex able" },
{ 12, 12, 0x01, "10 Mbps full duplex able" },
{ 11, 11, 0x01, "10 Mbps half duplex able" },
{ 10, 10, 0x01, "100BASE-T2 full duplex able" },
{ 9, 9, 0x01, "100BASE-T2 half duplex able" },
{ 8, 8, 0x01, "extended status" },
{ 7, 7, 0x01, "(reserved)" },
{ 6, 6, 0x01, "MF preamble suppression" },
{ 5, 5, 0x01, "A/N complete" },
{ 4, 4, 0x01, "remote fault" },
{ 3, 3, 0x01, "A/N able" },
{ 2, 2, 0x01, "link status" },
{ 1, 1, 0x01, "jabber detect" },
{ 0, 0, 0x01, "extended capabilities" },
};
MII_field_desc_t reg_2_desc_tbl[] = {
{ 15, 0, 0xffff, "OUI portion" },
};
MII_field_desc_t reg_3_desc_tbl[] = {
{ 15, 10, 0x3f, "OUI portion" },
{ 9, 4, 0x3f, "manufacturer part number" },
{ 3, 0, 0x0f, "manufacturer rev. number" },
};
MII_field_desc_t reg_4_desc_tbl[] = {
{ 15, 15, 0x01, "next page able" },
{ 14, 14, 0x01, "reserved" },
{ 13, 13, 0x01, "remote fault" },
{ 12, 12, 0x01, "reserved" },
{ 11, 11, 0x01, "asymmetric pause" },
{ 10, 10, 0x01, "pause enable" },
{ 9, 9, 0x01, "100BASE-T4 able" },
{ 8, 8, 0x01, "100BASE-TX full duplex able" },
{ 7, 7, 0x01, "100BASE-TX able" },
{ 6, 6, 0x01, "10BASE-T full duplex able" },
{ 5, 5, 0x01, "10BASE-T able" },
{ 4, 0, 0x1f, "xxx to do" },
};
MII_field_desc_t reg_5_desc_tbl[] = {
{ 15, 15, 0x01, "next page able" },
{ 14, 14, 0x01, "acknowledge" },
{ 13, 13, 0x01, "remote fault" },
{ 12, 12, 0x01, "(reserved)" },
{ 11, 11, 0x01, "asymmetric pause able" },
{ 10, 10, 0x01, "pause able" },
{ 9, 9, 0x01, "100BASE-T4 able" },
{ 8, 8, 0x01, "100BASE-X full duplex able" },
{ 7, 7, 0x01, "100BASE-TX able" },
{ 6, 6, 0x01, "10BASE-T full duplex able" },
{ 5, 5, 0x01, "10BASE-T able" },
{ 4, 0, 0x1f, "xxx to do" },
};
#define DESC0LEN (sizeof(reg_0_desc_tbl)/sizeof(reg_0_desc_tbl[0]))
#define DESC1LEN (sizeof(reg_1_desc_tbl)/sizeof(reg_1_desc_tbl[0]))
#define DESC2LEN (sizeof(reg_2_desc_tbl)/sizeof(reg_2_desc_tbl[0]))
#define DESC3LEN (sizeof(reg_3_desc_tbl)/sizeof(reg_3_desc_tbl[0]))
#define DESC4LEN (sizeof(reg_4_desc_tbl)/sizeof(reg_4_desc_tbl[0]))
#define DESC5LEN (sizeof(reg_5_desc_tbl)/sizeof(reg_5_desc_tbl[0]))
typedef struct _MII_field_desc_and_len_t {
MII_field_desc_t * pdesc;
ushort len;
} MII_field_desc_and_len_t;
MII_field_desc_and_len_t desc_and_len_tbl[] = {
{ reg_0_desc_tbl, DESC0LEN },
{ reg_1_desc_tbl, DESC1LEN },
{ reg_2_desc_tbl, DESC2LEN },
{ reg_3_desc_tbl, DESC3LEN },
{ reg_4_desc_tbl, DESC4LEN },
{ reg_5_desc_tbl, DESC5LEN },
};
static void dump_reg(
ushort regval,
MII_reg_desc_t * prd,
MII_field_desc_and_len_t * pdl);
static int special_field(
ushort regno,
MII_field_desc_t * pdesc,
ushort regval);
void MII_dump_0_to_5(
ushort regvals[6],
uchar reglo,
uchar reghi)
{
ulong i;
for (i = 0; i < 6; i++) {
if ((reglo <= i) && (i <= reghi))
dump_reg(regvals[i], &reg_0_5_desc_tbl[i],
&desc_and_len_tbl[i]);
}
}
static void dump_reg(
ushort regval,
MII_reg_desc_t * prd,
MII_field_desc_and_len_t * pdl)
{
ulong i;
ushort mask_in_place;
MII_field_desc_t * pdesc;
printf("%u. (%04hx) -- %s --\n",
prd->regno, regval, prd->name);
for (i = 0; i < pdl->len; i++) {
pdesc = &pdl->pdesc[i];
mask_in_place = pdesc->mask << pdesc->lo;
printf(" (%04hx:%04hx) %u.",
mask_in_place,
regval & mask_in_place,
prd->regno);
if (special_field(prd->regno, pdesc, regval)) {
}
else {
if (pdesc->hi == pdesc->lo)
printf("%2u ", pdesc->lo);
else
printf("%2u-%2u", pdesc->hi, pdesc->lo);
printf(" = %5u %s",
(regval & mask_in_place) >> pdesc->lo,
pdesc->name);
}
printf("\n");
}
printf("\n");
}
/* Special fields:
** 0.6,13
** 0.8
** 2.15-0
** 3.15-0
** 4.4-0
** 5.4-0
*/
static int special_field(
ushort regno,
MII_field_desc_t * pdesc,
ushort regval)
{
if ((regno == 0) && (pdesc->lo == 6)) {
ushort speed_bits = regval & PHY_BMCR_SPEED_MASK;
printf("%2u,%2u = b%u%u speed selection = %s Mbps",
6, 13,
(regval >> 6) & 1,
(regval >> 13) & 1,
speed_bits == PHY_BMCR_1000_MBPS ? "1000" :
speed_bits == PHY_BMCR_100_MBPS ? "100" :
speed_bits == PHY_BMCR_10_MBPS ? "10" :
"???");
return 1;
}
else if ((regno == 0) && (pdesc->lo == 8)) {
printf("%2u = %5u duplex = %s",
pdesc->lo,
(regval >> pdesc->lo) & 1,
((regval >> pdesc->lo) & 1) ? "full" : "half");
return 1;
}
else if ((regno == 4) && (pdesc->lo == 0)) {
ushort sel_bits = (regval >> pdesc->lo) & pdesc->mask;
printf("%2u-%2u = %5u selector = %s",
pdesc->hi, pdesc->lo, sel_bits,
sel_bits == PHY_ANLPAR_PSB_802_3 ?
"IEEE 802.3" :
sel_bits == PHY_ANLPAR_PSB_802_9 ?
"IEEE 802.9 ISLAN-16T" :
"???");
return 1;
}
else if ((regno == 5) && (pdesc->lo == 0)) {
ushort sel_bits = (regval >> pdesc->lo) & pdesc->mask;
printf("%2u-%2u = %u selector = %s",
pdesc->hi, pdesc->lo, sel_bits,
sel_bits == PHY_ANLPAR_PSB_802_3 ?
"IEEE 802.3" :
sel_bits == PHY_ANLPAR_PSB_802_9 ?
"IEEE 802.9 ISLAN-16T" :
"???");
return 1;
}
return 0;
}
char last_op[2];
uint last_data;
uint last_addr_lo;
uint last_addr_hi;
uint last_reg_lo;
uint last_reg_hi;
static void extract_range(
char * input,
unsigned char * plo,
unsigned char * phi)
{
char * end;
*plo = simple_strtoul(input, &end, 16);
if (*end == '-') {
end++;
*phi = simple_strtoul(end, NULL, 16);
}
else {
*phi = *plo;
}
}
/* ---------------------------------------------------------------- */
int do_mii (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
char op[2];
unsigned char addrlo, addrhi, reglo, reghi;
unsigned char addr, reg;
unsigned short data;
int rcode = 0;
char *devname;
#ifdef CONFIG_8xx
mii_init ();
#endif
/*
* We use the last specified parameters, unless new ones are
* entered.
*/
op[0] = last_op[0];
op[1] = last_op[1];
addrlo = last_addr_lo;
addrhi = last_addr_hi;
reglo = last_reg_lo;
reghi = last_reg_hi;
data = last_data;
if ((flag & CMD_FLAG_REPEAT) == 0) {
op[0] = argv[1][0];
if (strlen(argv[1]) > 1)
op[1] = argv[1][1];
else
op[1] = '\0';
if (argc >= 3)
extract_range(argv[2], &addrlo, &addrhi);
if (argc >= 4)
extract_range(argv[3], &reglo, &reghi);
if (argc >= 5)
data = simple_strtoul (argv[4], NULL, 16);
}
/* use current device */
devname = miiphy_get_current_dev();
/*
* check info/read/write.
*/
if (op[0] == 'i') {
unsigned char j, start, end;
unsigned int oui;
unsigned char model;
unsigned char rev;
/*
* Look for any and all PHYs. Valid addresses are 0..31.
*/
if (argc >= 3) {
start = addrlo; end = addrhi;
} else {
start = 0; end = 31;
}
for (j = start; j <= end; j++) {
if (miiphy_info (devname, j, &oui, &model, &rev) == 0) {
printf("PHY 0x%02X: "
"OUI = 0x%04X, "
"Model = 0x%02X, "
"Rev = 0x%02X, "
"%3dbaseT, %s\n",
j, oui, model, rev,
miiphy_speed (devname, j),
(miiphy_duplex (devname, j) == FULL)
? "FDX" : "HDX");
} else {
puts ("Error reading info from the PHY\n");
}
}
} else if (op[0] == 'r') {
for (addr = addrlo; addr <= addrhi; addr++) {
for (reg = reglo; reg <= reghi; reg++) {
data = 0xffff;
if (miiphy_read (devname, addr, reg, &data) < 0) {
printf(
"Error reading from the PHY addr=%02x reg=%02x\n",
addr, reg);
rcode = 1;
} else {
if ((addrlo != addrhi) || (reglo != reghi))
printf("addr=%02x reg=%02x data=",
(uint)addr, (uint)reg);
printf("%04X\n", data & 0x0000FFFF);
}
}
if ((addrlo != addrhi) && (reglo != reghi))
printf("\n");
}
} else if (op[0] == 'w') {
for (addr = addrlo; addr <= addrhi; addr++) {
for (reg = reglo; reg <= reghi; reg++) {
if (miiphy_write (devname, addr, reg, data) != 0) {
printf("Error writing to the PHY addr=%02x reg=%02x\n",
addr, reg);
rcode = 1;
}
}
}
} else if (strncmp(op, "du", 2) == 0) {
ushort regs[6];
int ok = 1;
if ((reglo > 5) || (reghi > 5)) {
printf(
"The MII dump command only formats the "
"standard MII registers, 0-5.\n");
return 1;
}
for (addr = addrlo; addr <= addrhi; addr++) {
for (reg = reglo; reg < reghi + 1; reg++) {
if (miiphy_read(devname, addr, reg, &regs[reg]) < 0) {
ok = 0;
printf(
"Error reading from the PHY addr=%02x reg=%02x\n",
addr, reg);
rcode = 1;
}
}
if (ok)
MII_dump_0_to_5(regs, reglo, reghi);
printf("\n");
}
} else if (strncmp(op, "de", 2) == 0) {
if (argc == 2)
miiphy_listdev ();
else
miiphy_set_current_dev (argv[2]);
} else {
printf("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Save the parameters for repeats.
*/
last_op[0] = op[0];
last_op[1] = op[1];
last_addr_lo = addrlo;
last_addr_hi = addrhi;
last_reg_lo = reglo;
last_reg_hi = reghi;
last_data = data;
return rcode;
}
/***************************************************/
U_BOOT_CMD(
mii, 5, 1, do_mii,
"mii - MII utility commands\n",
"device - list available devices\n"
"mii device <devname> - set current device\n"
"mii info <addr> - display MII PHY info\n"
"mii read <addr> <reg> - read MII PHY <addr> register <reg>\n"
"mii write <addr> <reg> <data> - write MII PHY <addr> register <reg>\n"
"mii dump <addr> <reg> - pretty-print <addr> <reg> (0-5 only)\n"
"Addr and/or reg may be ranges, e.g. 2-7.\n"
);
#endif /* CONFIG_TERSE_MII */
#endif /* CFG_CMD_MII */
#endif /* #ifndef COMPRESSED_UBOOT */
#ifdef BOARDCAL
extern flash_info_t flash_info[]; /* info for FLASH chips */
/**********************************************************************************
** do_mac_setting
**
** This is the executable portion of the progmac command. This will process the
** MAC address strings, and program them into the appropriate flash sector..
**
*/
#ifdef CONFIG_ATH_NAND_BR
#define ATH_NAND_NAND_PART "ath-nand"
unsigned long long
ath_nand_get_cal_offset(const char *ba)
{
char *mtdparts, ch, *pn, *end;
unsigned long long off = 0, size;
mtdparts = strstr(ba, ATH_NAND_NAND_PART);
if (!mtdparts) {
goto bad;
}
mtdparts = strstr(mtdparts, ":");
if (!mtdparts) {
goto bad;
}
end = strstr(mtdparts, " ");
if (!end) {
end = mtdparts + strlen(mtdparts);
}
for (;mtdparts && mtdparts < end;) {
mtdparts ++;
size = simple_strtoul(mtdparts, &mtdparts, 0);
ch = *mtdparts;
switch (ch) {
case 'g': case 'G': size = size * 1024;
case 'm': case 'M': size = size * 1024;
case 'k': case 'K': size = size * 1024;
}
pn = mtdparts + 2;
if (strncmp(pn, ATH_CAL_NAND_PARTITION,
sizeof(ATH_CAL_NAND_PARTITION) - 1) == 0) {
return off;
}
off += size;
mtdparts = strstr(mtdparts, ",");
}
bad:
return ATH_CAL_OFF_INVAL;
}
/**********************************************************************************
** do_mac_setting
**
** This is the executable portion of the progmac command. This will process the
** MAC address strings, and program them into the appropriate flash sector..
**
*/
int do_mac (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
char sectorBuff[256*1024];
int serno;
int product_id;
int ret;
ulong off, size;
nand_info_t *nand;
/*
* caldata partition is of 128k
*
*/
nand = &nand_info[nand_curr_device];
size = nand->erasesize;
/*
* Argv[1] contains the value string. Convert to binary, and
* program the values in flash
*/
serno = simple_strtoul(argv[1],0,10);
/*
* If the serial number is less than 0, or greater than
* 0x1fff, it's out of range
*/
if(serno < 0 || serno > 0x1fff) {
printf("Serno out of range\n",serno);
return 1;
}
if (argc > 2) {
product_id = simple_strtoul(argv[2], 0, 10);
} else {
product_id = ATHEROS_PRODUCT_ID;
}
if(product_id < 0 || product_id > 0x7ff) {
printf("product id out of range %d\n", product_id);
return 1;
}
/*
* Create the 24 bit number that composes the lower 3 bytes of
* the MAC address
*/
serno = 0xFFFFFF & ( (product_id << 13) | (serno & 0x1fff));
/*
* Get the Offset of Caldata partition
*/
off = ath_nand_get_cal_offset(getenv("bootargs"));
if(off == ATH_CAL_OFF_INVAL) {
printf("Invalid CAL offset \n");
return 1;
}
/*
* Get the values from flash, and program into the MAC address
* registers
*/
ret = nand_read(nand, (loff_t)off, &size, (u_char *)sectorBuff);
printf(" %d bytes %s: %s\n", size,
"read", ret ? "ERROR" : "OK");
if(ret != 0 ) {
return 1;
}
/*
* Set the first and second values
*/
sectorBuff[0] = 0x00;
sectorBuff[1] = 0x03;
sectorBuff[2] = 0x7f;
sectorBuff[3] = 0xFF & (serno >> 16);
sectorBuff[4] = 0xFF & (serno >> 8);
sectorBuff[5] = 0xFF & serno;
/*
* Increment by 1 for the second MAC address
*/
serno++;
memcpy(&sectorBuff[6],&sectorBuff[0],3);
sectorBuff[9] = 0xFF & (serno >> 16);
sectorBuff[10] = 0xFF & (serno >> 8);
sectorBuff[11] = 0xFF & serno;
ret = nand_erase(nand,(loff_t)off, size);
printf(" %d bytes %s: %s\n", size,
"erase", ret ? "ERROR" : "OK");
if(ret != 0 ) {
return 1;
}
ret = nand_write(nand, (loff_t)off, &size, (u_char *)sectorBuff);
printf(" %d bytes %s: %s\n", size,
"write", ret ? "ERROR" : "OK");
if(ret != 0 ) {
return 1;
}
return 0;
}
#else /*CONFIG_ATH_NAND_BR */
int do_mac (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
char sectorBuff[CFG_FLASH_SECTOR_SIZE];
int serno;
int product_id;
/*
* Argv[1] contains the value string. Convert to binary, and
* program the values in flash
*/
serno = simple_strtoul(argv[1],0,10);
/*
* If the serial number is less than 0, or greater than
* 0x1fff, it's out of range
*/
if(serno < 0 || serno > 0x1fff) {
printf("Serno out of range\n",serno);
return 1;
}
if (argc > 2) {
product_id = simple_strtoul(argv[2], 0, 10);
} else {
product_id = ATHEROS_PRODUCT_ID;
}
if(product_id < 0 || product_id > 0x7ff) {
printf("product id out of range %d\n", product_id);
return 1;
}
/*
* Create the 24 bit number that composes the lower 3 bytes of
* the MAC address
*/
serno = 0xFFFFFF & ( (product_id << 13) | (serno & 0x1fff));
/*
* Get the values from flash, and program into the MAC address
* registers
*/
memcpy(sectorBuff,(void *)BOARDCAL, CFG_FLASH_SECTOR_SIZE);
/*
* Set the first and second values
*/
sectorBuff[0] = 0x00;
sectorBuff[1] = 0x03;
sectorBuff[2] = 0x7f;
sectorBuff[3] = 0xFF & (serno >> 16);
sectorBuff[4] = 0xFF & (serno >> 8);
sectorBuff[5] = 0xFF & serno;
/*
* Increment by 1 for the second MAC address
*/
serno++;
memcpy(&sectorBuff[6],&sectorBuff[0],3);
sectorBuff[9] = 0xFF & (serno >> 16);
sectorBuff[10] = 0xFF & (serno >> 8);
sectorBuff[11] = 0xFF & serno;
flash_erase(flash_info,CAL_SECTOR,CAL_SECTOR);
write_buff(flash_info,sectorBuff, BOARDCAL, CFG_FLASH_SECTOR_SIZE);
return 0;
}
#endif /*CONFIG_ATH_NAND_BR */
U_BOOT_CMD(
progmac, 3, 0, do_mac,
"progmac - Set ethernet MAC addresses\n",
"progmac <serno> [<product_id>] - Program the MAC addresses\n"
" <serno> is the value of the last\n"
" 4 digits (decimal) of the serial number.\n"
" Optional parameter <product_id> specifies\n"
" the board's product ID (decimal)\n"
);
#ifdef CONFIG_ATH_NAND_BR
#define SECTOR_BUFF_SIZE 256*1024
#else
#define SECTOR_BUFF_SIZE CFG_FLASH_SECTOR_SIZE
#endif
static int process(char **s, u_char *val)
{
char *p = *s;
u_char x;
if (*p == ':')
p ++;
if (*p >= '0' && *p <= '9')
x = *p - '0';
else if (*p >= 'a' && *p <= 'f')
x = *p - 'a' + 10;
else if (*p >= 'A' && *p <= 'F')
x = *p - 'A' + 10;
else return -1;
x = x << 4;
p ++;
if (*p >= '0' && *p <= '9')
x |= *p - '0';
else if (*p >= 'a' && *p <= 'f')
x |= *p - 'a' + 10;
else if (*p >= 'A' && *p <= 'F')
x |= *p - 'A' + 10;
else return -1;
*s = (p + 1);
*val = x;
return 0;
}
typedef union {
uint8_t b[6];
uint64_t m;
uint32_t w[2];
} ath_mac_addr_t;
static int str_to_mac(char *s, ath_mac_addr_t *m)
{
ath_mac_addr_t mac;
int i;
mac.m = 0;
for (i = 0; i < sizeof(mac.b) && *s; i++) {
if (process(&s, &mac.b[i])) {
return -1;
}
}
if (i != sizeof(mac.b)) {
return -1;
}
printf("%02x:%02x:%02x:%02x:%02x:%02x\n", mac.b[0], mac.b[1], mac.b[2], mac.b[3], mac.b[4], mac.b[5]);
printf("%x %x\n", mac.w[0], mac.w[1]);
*m = mac;
return 0;
}
/**********************************************************************************
** do_mac_setting
**
** This is the executable portion of the progmac command. This will process the
** MAC address strings, and program them into the appropriate flash sector..
**
*/
int do_mac2 (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
char sectorBuff[SECTOR_BUFF_SIZE];
ath_mac_addr_t mac0, mac1;
#ifdef CONFIG_ATH_NAND_BR
int ret;
ulong off, size;
nand_info_t *nand;
/*
* caldata partition is of 128k
*
*/
nand = &nand_info[nand_curr_device];
size = nand->erasesize;
#endif
if (argc < 3) {
printf ("Usage:\n%s\n", cmdtp->usage);
printf ("progmac2 <eth0 mac> <eth1 mac>\n");
return 1;
}
if (str_to_mac(argv[1], &mac0)) {
printf("eth0 mac is invalid\n");
return 1;
}
if (str_to_mac(argv[2], &mac1)) {
printf("eth1 mac is invalid\n");
return 1;
}
#ifdef CONFIG_ATH_NAND_BR
/*
* Get the Offset of Caldata partition
*/
off = ath_nand_get_cal_offset(getenv("bootargs"));
if(off == ATH_CAL_OFF_INVAL) {
printf("Invalid CAL offset \n");
return 1;
}
/*
* Get the values from flash, and program into the MAC address
* registers
*/
ret = nand_read(nand, (loff_t)off, &size, (u_char *)sectorBuff);
printf(" %d bytes %s: %s\n", size,
"read", ret ? "ERROR" : "OK");
if(ret != 0 ) {
return 1;
}
#else
memcpy(sectorBuff,(void *)BOARDCAL, CFG_FLASH_SECTOR_SIZE);
#endif
/*
* Set the MAC0 value
*/
memcpy(&sectorBuff[0],&mac0.b[0],6);
/*
* Set the MAC1 value
*/
memcpy(&sectorBuff[6],&mac1.b[0],6);
#ifdef CONFIG_ATH_NAND_BR
ret = nand_erase(nand,(loff_t)off, size);
printf(" %d bytes %s: %s\n", size,
"erase", ret ? "ERROR" : "OK");
if(ret != 0 ) {
return 1;
}
ret = nand_write(nand, (loff_t)off, &size, (u_char *)sectorBuff);
printf(" %d bytes %s: %s\n", size,
"write", ret ? "ERROR" : "OK");
if(ret != 0 ) {
return 1;
}
#else
flash_erase(flash_info,CAL_SECTOR,CAL_SECTOR);
write_buff(flash_info,sectorBuff, BOARDCAL, CFG_FLASH_SECTOR_SIZE);
#endif
return 0;
}
U_BOOT_CMD(
progmac2, 3, 0, do_mac2,
"progmac2 - Set ethernet MAC addresses\n",
"progmac2 <eth0 mac> <eth1 mac> - Program the MAC addresses\n"
" <eth0 mac> is the eth0 MAC address\n"
" <eth1 mac> is the eth1 MAC address\n"
" MAC address can be in the format\n"
" <aa:bb:cc:dd:ee:ff> or <aabbccddeeff>\n"
);
#endif /* BOARDCAL */