blob: e659907567ba748bab17e0b18ccb601dd0e6e295 [file] [log] [blame]
/*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* (C) Copyright 2002
* David Mueller, ELSOFT AG, <d.mueller@elsoft.ch>
*
* (C) Copyright 2003
* Texas Instruments, <www.ti.com>
* Kshitij Gupta <Kshitij@ti.com>
*
* (C) Copyright 2004
* ARM Ltd.
* Philippe Robin, <philippe.robin@arm.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#ifdef CONFIG_PCI
#include <pci.h>
#endif
DECLARE_GLOBAL_DATA_PTR;
void flash__init (void);
void ether__init (void);
void peripheral_power_enable (void);
#if defined(CONFIG_SHOW_BOOT_PROGRESS)
void show_boot_progress(int progress)
{
printf("Boot reached stage %d\n", progress);
}
#endif
#define COMP_MODE_ENABLE ((unsigned int)0x0000EAEF)
static inline void delay (unsigned long loops)
{
__asm__ volatile ("1:\n"
"subs %0, %1, #1\n"
"bne 1b":"=r" (loops):"0" (loops));
}
/*
* Miscellaneous platform dependent initialisations
*/
int board_init (void)
{
/* arch number of Integrator Board */
gd->bd->bi_arch_number = MACH_TYPE_INTEGRATOR;
/* adress of boot parameters */
gd->bd->bi_boot_params = 0x00000100;
gd->flags = 0;
#ifdef CONFIG_CM_REMAP
extern void cm_remap(void);
cm_remap(); /* remaps writeable memory to 0x00000000 */
#endif
icache_enable ();
flash__init ();
return 0;
}
int misc_init_r (void)
{
#ifdef CONFIG_PCI
pci_init();
#endif
setenv("verify", "n");
return (0);
}
/*
* Initialize PCI Devices, report devices found.
*/
#ifdef CONFIG_PCI
#ifndef CONFIG_PCI_PNP
static struct pci_config_table pci_integrator_config_table[] = {
{ PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 0x0f, PCI_ANY_ID,
pci_cfgfunc_config_device, { PCI_ENET0_IOADDR,
PCI_ENET0_MEMADDR,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER }},
{ }
};
#endif
/* V3 access routines */
#define _V3Write16(o,v) (*(volatile unsigned short *)(PCI_V3_BASE + (unsigned int)(o)) = (unsigned short)(v))
#define _V3Read16(o) (*(volatile unsigned short *)(PCI_V3_BASE + (unsigned int)(o)))
#define _V3Write32(o,v) (*(volatile unsigned int *)(PCI_V3_BASE + (unsigned int)(o)) = (unsigned int)(v))
#define _V3Read32(o) (*(volatile unsigned int *)(PCI_V3_BASE + (unsigned int)(o)))
/* Compute address necessary to access PCI config space for the given */
/* bus and device. */
#define PCI_CONFIG_ADDRESS( __bus, __devfn, __offset ) ({ \
unsigned int __address, __devicebit; \
unsigned short __mapaddress; \
unsigned int __dev = PCI_DEV (__devfn); /* FIXME to check!! (slot?) */ \
\
if (__bus == 0) { \
/* local bus segment so need a type 0 config cycle */ \
/* build the PCI configuration "address" with one-hot in A31-A11 */ \
__address = PCI_CONFIG_BASE; \
__address |= ((__devfn & 0x07) << 8); \
__address |= __offset & 0xFF; \
__mapaddress = 0x000A; /* 101=>config cycle, 0=>A1=A0=0 */ \
__devicebit = (1 << (__dev + 11)); \
\
if ((__devicebit & 0xFF000000) != 0) { \
/* high order bits are handled by the MAP register */ \
__mapaddress |= (__devicebit >> 16); \
} else { \
/* low order bits handled directly in the address */ \
__address |= __devicebit; \
} \
} else { /* bus !=0 */ \
/* not the local bus segment so need a type 1 config cycle */ \
/* A31-A24 are don't care (so clear to 0) */ \
__mapaddress = 0x000B; /* 101=>config cycle, 1=>A1&A0 from PCI_CFG */ \
__address = PCI_CONFIG_BASE; \
__address |= ((__bus & 0xFF) << 16); /* bits 23..16 = bus number */ \
__address |= ((__dev & 0x1F) << 11); /* bits 15..11 = device number */ \
__address |= ((__devfn & 0x07) << 8); /* bits 10..8 = function number */ \
__address |= __offset & 0xFF; /* bits 7..0 = register number */ \
} \
_V3Write16 (V3_LB_MAP1, __mapaddress); \
__address; \
})
/* _V3OpenConfigWindow - open V3 configuration window */
#define _V3OpenConfigWindow() { \
/* Set up base0 to see all 512Mbytes of memory space (not */ \
/* prefetchable), this frees up base1 for re-use by configuration*/ \
/* memory */ \
\
_V3Write32 (V3_LB_BASE0, ((INTEGRATOR_PCI_BASE & 0xFFF00000) | \
0x90 | V3_LB_BASE_M_ENABLE)); \
/* Set up base1 to point into configuration space, note that MAP1 */ \
/* register is set up by pciMakeConfigAddress(). */ \
\
_V3Write32 (V3_LB_BASE1, ((CPU_PCI_CNFG_ADRS & 0xFFF00000) | \
0x40 | V3_LB_BASE_M_ENABLE)); \
}
/* _V3CloseConfigWindow - close V3 configuration window */
#define _V3CloseConfigWindow() { \
/* Reassign base1 for use by prefetchable PCI memory */ \
_V3Write32 (V3_LB_BASE1, (((INTEGRATOR_PCI_BASE + 0x10000000) & 0xFFF00000) \
| 0x84 | V3_LB_BASE_M_ENABLE)); \
_V3Write16 (V3_LB_MAP1, \
(((INTEGRATOR_PCI_BASE + 0x10000000) & 0xFFF00000) >> 16) | 0x0006); \
\
/* And shrink base0 back to a 256M window (NOTE: MAP0 already correct) */ \
\
_V3Write32 (V3_LB_BASE0, ((INTEGRATOR_PCI_BASE & 0xFFF00000) | \
0x80 | V3_LB_BASE_M_ENABLE)); \
}
static int pci_integrator_read_byte (struct pci_controller *hose, pci_dev_t dev,
int offset, unsigned char *val)
{
_V3OpenConfigWindow ();
*val = *(volatile unsigned char *) PCI_CONFIG_ADDRESS (PCI_BUS (dev),
PCI_FUNC (dev),
offset);
_V3CloseConfigWindow ();
return 0;
}
static int pci_integrator_read__word (struct pci_controller *hose,
pci_dev_t dev, int offset,
unsigned short *val)
{
_V3OpenConfigWindow ();
*val = *(volatile unsigned short *) PCI_CONFIG_ADDRESS (PCI_BUS (dev),
PCI_FUNC (dev),
offset);
_V3CloseConfigWindow ();
return 0;
}
static int pci_integrator_read_dword (struct pci_controller *hose,
pci_dev_t dev, int offset,
unsigned int *val)
{
_V3OpenConfigWindow ();
*val = *(volatile unsigned short *) PCI_CONFIG_ADDRESS (PCI_BUS (dev),
PCI_FUNC (dev),
offset);
*val |= (*(volatile unsigned int *)
PCI_CONFIG_ADDRESS (PCI_BUS (dev), PCI_FUNC (dev),
(offset + 2))) << 16;
_V3CloseConfigWindow ();
return 0;
}
static int pci_integrator_write_byte (struct pci_controller *hose,
pci_dev_t dev, int offset,
unsigned char val)
{
_V3OpenConfigWindow ();
*(volatile unsigned char *) PCI_CONFIG_ADDRESS (PCI_BUS (dev),
PCI_FUNC (dev),
offset) = val;
_V3CloseConfigWindow ();
return 0;
}
static int pci_integrator_write_word (struct pci_controller *hose,
pci_dev_t dev, int offset,
unsigned short val)
{
_V3OpenConfigWindow ();
*(volatile unsigned short *) PCI_CONFIG_ADDRESS (PCI_BUS (dev),
PCI_FUNC (dev),
offset) = val;
_V3CloseConfigWindow ();
return 0;
}
static int pci_integrator_write_dword (struct pci_controller *hose,
pci_dev_t dev, int offset,
unsigned int val)
{
_V3OpenConfigWindow ();
*(volatile unsigned short *) PCI_CONFIG_ADDRESS (PCI_BUS (dev),
PCI_FUNC (dev),
offset) = (val & 0xFFFF);
*(volatile unsigned short *) PCI_CONFIG_ADDRESS (PCI_BUS (dev),
PCI_FUNC (dev),
(offset + 2)) = ((val >> 16) & 0xFFFF);
_V3CloseConfigWindow ();
return 0;
}
/******************************
* PCI initialisation
******************************/
struct pci_controller integrator_hose = {
#ifndef CONFIG_PCI_PNP
config_table: pci_integrator_config_table,
#endif
};
void pci_init_board (void)
{
volatile int i, j;
struct pci_controller *hose = &integrator_hose;
/* setting this register will take the V3 out of reset */
*(volatile unsigned int *) (INTEGRATOR_SC_PCIENABLE) = 1;
/* wait a few usecs to settle the device and the PCI bus */
for (i = 0; i < 100; i++)
j = i + 1;
/* Now write the Base I/O Address Word to V3_BASE + 0x6C */
*(volatile unsigned short *) (V3_BASE + V3_LB_IO_BASE) =
(unsigned short) (V3_BASE >> 16);
do {
*(volatile unsigned char *) (V3_BASE + V3_MAIL_DATA) = 0xAA;
*(volatile unsigned char *) (V3_BASE + V3_MAIL_DATA + 4) =
0x55;
} while (*(volatile unsigned char *) (V3_BASE + V3_MAIL_DATA) != 0xAA
|| *(volatile unsigned char *) (V3_BASE + V3_MAIL_DATA +
4) != 0x55);
/* Make sure that V3 register access is not locked, if it is, unlock it */
if ((*(volatile unsigned short *) (V3_BASE + V3_SYSTEM) &
V3_SYSTEM_M_LOCK)
== V3_SYSTEM_M_LOCK)
*(volatile unsigned short *) (V3_BASE + V3_SYSTEM) = 0xA05F;
/* Ensure that the slave accesses from PCI are disabled while we */
/* setup windows */
*(volatile unsigned short *) (V3_BASE + V3_PCI_CMD) &=
~(V3_COMMAND_M_MEM_EN | V3_COMMAND_M_IO_EN);
/* Clear RST_OUT to 0; keep the PCI bus in reset until we've finished */
*(volatile unsigned short *) (V3_BASE + V3_SYSTEM) &=
~V3_SYSTEM_M_RST_OUT;
/* Make all accesses from PCI space retry until we're ready for them */
*(volatile unsigned short *) (V3_BASE + V3_PCI_CFG) |=
V3_PCI_CFG_M_RETRY_EN;
/* Set up any V3 PCI Configuration Registers that we absolutely have to */
/* LB_CFG controls Local Bus protocol. */
/* Enable LocalBus byte strobes for READ accesses too. */
/* set bit 7 BE_IMODE and bit 6 BE_OMODE */
*(volatile unsigned short *) (V3_BASE + V3_LB_CFG) |= 0x0C0;
/* PCI_CMD controls overall PCI operation. */
/* Enable PCI bus master. */
*(volatile unsigned short *) (V3_BASE + V3_PCI_CMD) |= 0x04;
/* PCI_MAP0 controls where the PCI to CPU memory window is on Local Bus */
*(volatile unsigned int *) (V3_BASE + V3_PCI_MAP0) =
(INTEGRATOR_BOOT_ROM_BASE) | (V3_PCI_MAP_M_ADR_SIZE_512M |
V3_PCI_MAP_M_REG_EN |
V3_PCI_MAP_M_ENABLE);
/* PCI_BASE0 is the PCI address of the start of the window */
*(volatile unsigned int *) (V3_BASE + V3_PCI_BASE0) =
INTEGRATOR_BOOT_ROM_BASE;
/* PCI_MAP1 is LOCAL address of the start of the window */
*(volatile unsigned int *) (V3_BASE + V3_PCI_MAP1) =
(INTEGRATOR_HDR0_SDRAM_BASE) | (V3_PCI_MAP_M_ADR_SIZE_1024M |
V3_PCI_MAP_M_REG_EN |
V3_PCI_MAP_M_ENABLE);
/* PCI_BASE1 is the PCI address of the start of the window */
*(volatile unsigned int *) (V3_BASE + V3_PCI_BASE1) =
INTEGRATOR_HDR0_SDRAM_BASE;
/* Set up the windows from local bus memory into PCI configuration, */
/* I/O and Memory. */
/* PCI I/O, LB_BASE2 and LB_MAP2 are used exclusively for this. */
*(volatile unsigned short *) (V3_BASE + V3_LB_BASE2) =
((CPU_PCI_IO_ADRS >> 24) << 8) | V3_LB_BASE_M_ENABLE;
*(volatile unsigned short *) (V3_BASE + V3_LB_MAP2) = 0;
/* PCI Configuration, use LB_BASE1/LB_MAP1. */
/* PCI Memory use LB_BASE0/LB_MAP0 and LB_BASE1/LB_MAP1 */
/* Map first 256Mbytes as non-prefetchable via BASE0/MAP0 */
/* (INTEGRATOR_PCI_BASE == PCI_MEM_BASE) */
*(volatile unsigned int *) (V3_BASE + V3_LB_BASE0) =
INTEGRATOR_PCI_BASE | (0x80 | V3_LB_BASE_M_ENABLE);
*(volatile unsigned short *) (V3_BASE + V3_LB_MAP0) =
((INTEGRATOR_PCI_BASE >> 20) << 0x4) | 0x0006;
/* Map second 256 Mbytes as prefetchable via BASE1/MAP1 */
*(volatile unsigned int *) (V3_BASE + V3_LB_BASE1) =
INTEGRATOR_PCI_BASE | (0x84 | V3_LB_BASE_M_ENABLE);
*(volatile unsigned short *) (V3_BASE + V3_LB_MAP1) =
(((INTEGRATOR_PCI_BASE + 0x10000000) >> 20) << 4) | 0x0006;
/* Allow accesses to PCI Configuration space */
/* and set up A1, A0 for type 1 config cycles */
*(volatile unsigned short *) (V3_BASE + V3_PCI_CFG) =
((*(volatile unsigned short *) (V3_BASE + V3_PCI_CFG)) &
~(V3_PCI_CFG_M_RETRY_EN | V3_PCI_CFG_M_AD_LOW1)) |
V3_PCI_CFG_M_AD_LOW0;
/* now we can allow in PCI MEMORY accesses */
*(volatile unsigned short *) (V3_BASE + V3_PCI_CMD) =
(*(volatile unsigned short *) (V3_BASE + V3_PCI_CMD)) |
V3_COMMAND_M_MEM_EN;
/* Set RST_OUT to take the PCI bus is out of reset, PCI devices can */
/* initialise and lock the V3 system register so that no one else */
/* can play with it */
*(volatile unsigned short *) (V3_BASE + V3_SYSTEM) =
(*(volatile unsigned short *) (V3_BASE + V3_SYSTEM)) |
V3_SYSTEM_M_RST_OUT;
*(volatile unsigned short *) (V3_BASE + V3_SYSTEM) =
(*(volatile unsigned short *) (V3_BASE + V3_SYSTEM)) |
V3_SYSTEM_M_LOCK;
/*
* Register the hose
*/
hose->first_busno = 0;
hose->last_busno = 0xff;
/* System memory space */
pci_set_region (hose->regions + 0,
0x00000000, 0x40000000, 0x01000000,
PCI_REGION_MEM | PCI_REGION_MEMORY);
/* PCI Memory - config space */
pci_set_region (hose->regions + 1,
0x00000000, 0x62000000, 0x01000000, PCI_REGION_MEM);
/* PCI V3 regs */
pci_set_region (hose->regions + 2,
0x00000000, 0x61000000, 0x00080000, PCI_REGION_MEM);
/* PCI I/O space */
pci_set_region (hose->regions + 3,
0x00000000, 0x60000000, 0x00010000, PCI_REGION_IO);
pci_set_ops (hose,
pci_integrator_read_byte,
pci_integrator_read__word,
pci_integrator_read_dword,
pci_integrator_write_byte,
pci_integrator_write_word, pci_integrator_write_dword);
hose->region_count = 4;
pci_register_hose (hose);
pciauto_config_init (hose);
pciauto_config_device (hose, 0);
hose->last_busno = pci_hose_scan (hose);
}
#endif
/******************************
Routine:
Description:
******************************/
void flash__init (void)
{
}
/*************************************************************
Routine:ether__init
Description: take the Ethernet controller out of reset and wait
for the EEPROM load to complete.
*************************************************************/
void ether__init (void)
{
}
/******************************
Routine:
Description:
******************************/
int dram_init (void)
{
gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
#ifdef CONFIG_CM_SPD_DETECT
{
extern void dram_query(void);
unsigned long cm_reg_sdram;
unsigned long sdram_shift;
dram_query(); /* Assembler accesses to CM registers */
/* Queries the SPD values */
/* Obtain the SDRAM size from the CM SDRAM register */
cm_reg_sdram = *(volatile ulong *)(CM_BASE + OS_SDRAM);
/* Register SDRAM size
*
* 0xXXXXXXbbb000bb 16 MB
* 0xXXXXXXbbb001bb 32 MB
* 0xXXXXXXbbb010bb 64 MB
* 0xXXXXXXbbb011bb 128 MB
* 0xXXXXXXbbb100bb 256 MB
*
*/
sdram_shift = ((cm_reg_sdram & 0x0000001C)/4)%4;
gd->bd->bi_dram[0].size = 0x01000000 << sdram_shift;
}
#endif /* CM_SPD_DETECT */
return 0;
}
/* The Integrator/AP timer1 is clocked at 24MHz
* can be divided by 16 or 256
* and is a 16-bit counter
*/
/* U-Boot expects a 32 bit timer running at CFG_HZ*/
static ulong timestamp; /* U-Boot ticks since startup */
static ulong total_count = 0; /* Total timer count */
static ulong lastdec; /* Timer reading at last call */
static ulong div_clock = 256; /* Divisor applied to the timer clock */
static ulong div_timer = 1; /* Divisor to convert timer reading
* change to U-Boot ticks
*/
/* CFG_HZ = CFG_HZ_CLOCK/(div_clock * div_timer) */
#define TIMER_LOAD_VAL 0x0000FFFFL
#define READ_TIMER ((*(volatile ulong *)(CFG_TIMERBASE+4)) & 0x0000FFFFL)
/* all function return values in U-Boot ticks i.e. (1/CFG_HZ) sec
* - unless otherwise stated
*/
/* starts a counter
* - the Integrator/AP timer issues an interrupt
* each time it reaches zero
*/
int interrupt_init (void)
{
/* Load timer with initial value */
*(volatile ulong *)(CFG_TIMERBASE + 0) = TIMER_LOAD_VAL;
/* Set timer to be
* enabled 1
* free-running 0
* XX 00
* divider 256 10
* XX 00
*/
*(volatile ulong *)(CFG_TIMERBASE + 8) = 0x00000088;
total_count = 0;
/* init the timestamp and lastdec value */
reset_timer_masked();
div_timer = CFG_HZ_CLOCK / CFG_HZ;
div_timer /= div_clock;
return (0);
}
/*
* timer without interrupts
*/
void reset_timer (void)
{
reset_timer_masked ();
}
ulong get_timer (ulong base_ticks)
{
return get_timer_masked () - base_ticks;
}
void set_timer (ulong ticks)
{
timestamp = ticks;
total_count = ticks * div_timer;
reset_timer_masked();
}
/* delay x useconds */
void udelay (unsigned long usec)
{
ulong tmo, tmp;
/* Convert to U-Boot ticks */
tmo = usec * CFG_HZ;
tmo /= (1000000L);
tmp = get_timer_masked(); /* get current timestamp */
tmo += tmp; /* wake up timestamp */
while (get_timer_masked () < tmo) { /* loop till event */
/*NOP*/;
}
}
void reset_timer_masked (void)
{
/* reset time */
lastdec = READ_TIMER; /* capture current decrementer value */
timestamp = 0; /* start "advancing" time stamp from 0 */
}
/* converts the timer reading to U-Boot ticks */
/* the timestamp is the number of ticks since reset */
/* This routine does not detect wraps unless called regularly
ASSUMES a call at least every 16 seconds to detect every reload */
ulong get_timer_masked (void)
{
ulong now = READ_TIMER; /* current count */
if (now > lastdec) {
/* Must have wrapped */
total_count += lastdec + TIMER_LOAD_VAL + 1 - now;
} else {
total_count += lastdec - now;
}
lastdec = now;
timestamp = total_count/div_timer;
return timestamp;
}
/* waits specified delay value and resets timestamp */
void udelay_masked (unsigned long usec)
{
udelay(usec);
}
/*
* This function is derived from PowerPC code (read timebase as long long).
* On ARM it just returns the timer value.
*/
unsigned long long get_ticks(void)
{
return get_timer(0);
}
/*
* Return the timebase clock frequency
* i.e. how often the timer decrements
*/
ulong get_tbclk (void)
{
return CFG_HZ_CLOCK/div_clock;
}