| /* |
| LzmaDecodeSize.c |
| LZMA Decoder (optimized for Size version) |
| |
| LZMA SDK 4.40 Copyright (c) 1999-2006 Igor Pavlov (2006-05-01) |
| http://www.7-zip.org/ |
| |
| LZMA SDK is licensed under two licenses: |
| 1) GNU Lesser General Public License (GNU LGPL) |
| 2) Common Public License (CPL) |
| It means that you can select one of these two licenses and |
| follow rules of that license. |
| |
| SPECIAL EXCEPTION: |
| Igor Pavlov, as the author of this code, expressly permits you to |
| statically or dynamically link your code (or bind by name) to the |
| interfaces of this file without subjecting your linked code to the |
| terms of the CPL or GNU LGPL. Any modifications or additions |
| to this file, however, are subject to the LGPL or CPL terms. |
| */ |
| |
| #include "LzmaDecode.h" |
| |
| #define kNumTopBits 24 |
| #define kTopValue ((UInt32)1 << kNumTopBits) |
| |
| #define kNumBitModelTotalBits 11 |
| #define kBitModelTotal (1 << kNumBitModelTotalBits) |
| #define kNumMoveBits 5 |
| |
| typedef struct _CRangeDecoder |
| { |
| const Byte *Buffer; |
| const Byte *BufferLim; |
| UInt32 Range; |
| UInt32 Code; |
| #ifdef _LZMA_IN_CB |
| ILzmaInCallback *InCallback; |
| int Result; |
| #endif |
| int ExtraBytes; |
| } CRangeDecoder; |
| |
| Byte RangeDecoderReadByte(CRangeDecoder *rd) |
| { |
| if (rd->Buffer == rd->BufferLim) |
| { |
| #ifdef _LZMA_IN_CB |
| SizeT size; |
| rd->Result = rd->InCallback->Read(rd->InCallback, &rd->Buffer, &size); |
| rd->BufferLim = rd->Buffer + size; |
| if (size == 0) |
| #endif |
| { |
| rd->ExtraBytes = 1; |
| return 0xFF; |
| } |
| } |
| return (*rd->Buffer++); |
| } |
| |
| /* #define ReadByte (*rd->Buffer++) */ |
| #define ReadByte (RangeDecoderReadByte(rd)) |
| |
| void RangeDecoderInit(CRangeDecoder *rd |
| #ifndef _LZMA_IN_CB |
| , const Byte *stream, SizeT bufferSize |
| #endif |
| ) |
| { |
| int i; |
| #ifdef _LZMA_IN_CB |
| rd->Buffer = rd->BufferLim = 0; |
| #else |
| rd->Buffer = stream; |
| rd->BufferLim = stream + bufferSize; |
| #endif |
| rd->ExtraBytes = 0; |
| rd->Code = 0; |
| rd->Range = (0xFFFFFFFF); |
| for(i = 0; i < 5; i++) |
| rd->Code = (rd->Code << 8) | ReadByte; |
| } |
| |
| #define RC_INIT_VAR UInt32 range = rd->Range; UInt32 code = rd->Code; |
| #define RC_FLUSH_VAR rd->Range = range; rd->Code = code; |
| #define RC_NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | ReadByte; } |
| |
| UInt32 RangeDecoderDecodeDirectBits(CRangeDecoder *rd, int numTotalBits) |
| { |
| RC_INIT_VAR |
| UInt32 result = 0; |
| int i; |
| for (i = numTotalBits; i != 0; i--) |
| { |
| /* UInt32 t; */ |
| range >>= 1; |
| |
| result <<= 1; |
| if (code >= range) |
| { |
| code -= range; |
| result |= 1; |
| } |
| /* |
| t = (code - range) >> 31; |
| t &= 1; |
| code -= range & (t - 1); |
| result = (result + result) | (1 - t); |
| */ |
| RC_NORMALIZE |
| } |
| RC_FLUSH_VAR |
| return result; |
| } |
| |
| int RangeDecoderBitDecode(CProb *prob, CRangeDecoder *rd) |
| { |
| UInt32 bound = (rd->Range >> kNumBitModelTotalBits) * *prob; |
| if (rd->Code < bound) |
| { |
| rd->Range = bound; |
| *prob += (kBitModelTotal - *prob) >> kNumMoveBits; |
| if (rd->Range < kTopValue) |
| { |
| rd->Code = (rd->Code << 8) | ReadByte; |
| rd->Range <<= 8; |
| } |
| return 0; |
| } |
| else |
| { |
| rd->Range -= bound; |
| rd->Code -= bound; |
| *prob -= (*prob) >> kNumMoveBits; |
| if (rd->Range < kTopValue) |
| { |
| rd->Code = (rd->Code << 8) | ReadByte; |
| rd->Range <<= 8; |
| } |
| return 1; |
| } |
| } |
| |
| #define RC_GET_BIT2(prob, mi, A0, A1) \ |
| UInt32 bound = (range >> kNumBitModelTotalBits) * *prob; \ |
| if (code < bound) \ |
| { A0; range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; mi <<= 1; } \ |
| else \ |
| { A1; range -= bound; code -= bound; *prob -= (*prob) >> kNumMoveBits; mi = (mi + mi) + 1; } \ |
| RC_NORMALIZE |
| |
| #define RC_GET_BIT(prob, mi) RC_GET_BIT2(prob, mi, ; , ;) |
| |
| int RangeDecoderBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd) |
| { |
| int mi = 1; |
| int i; |
| #ifdef _LZMA_LOC_OPT |
| RC_INIT_VAR |
| #endif |
| for(i = numLevels; i != 0; i--) |
| { |
| #ifdef _LZMA_LOC_OPT |
| CProb *prob = probs + mi; |
| RC_GET_BIT(prob, mi) |
| #else |
| mi = (mi + mi) + RangeDecoderBitDecode(probs + mi, rd); |
| #endif |
| } |
| #ifdef _LZMA_LOC_OPT |
| RC_FLUSH_VAR |
| #endif |
| return mi - (1 << numLevels); |
| } |
| |
| int RangeDecoderReverseBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd) |
| { |
| int mi = 1; |
| int i; |
| int symbol = 0; |
| #ifdef _LZMA_LOC_OPT |
| RC_INIT_VAR |
| #endif |
| for(i = 0; i < numLevels; i++) |
| { |
| #ifdef _LZMA_LOC_OPT |
| CProb *prob = probs + mi; |
| RC_GET_BIT2(prob, mi, ; , symbol |= (1 << i)) |
| #else |
| int bit = RangeDecoderBitDecode(probs + mi, rd); |
| mi = mi + mi + bit; |
| symbol |= (bit << i); |
| #endif |
| } |
| #ifdef _LZMA_LOC_OPT |
| RC_FLUSH_VAR |
| #endif |
| return symbol; |
| } |
| |
| Byte LzmaLiteralDecode(CProb *probs, CRangeDecoder *rd) |
| { |
| int symbol = 1; |
| #ifdef _LZMA_LOC_OPT |
| RC_INIT_VAR |
| #endif |
| do |
| { |
| #ifdef _LZMA_LOC_OPT |
| CProb *prob = probs + symbol; |
| RC_GET_BIT(prob, symbol) |
| #else |
| symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd); |
| #endif |
| } |
| while (symbol < 0x100); |
| #ifdef _LZMA_LOC_OPT |
| RC_FLUSH_VAR |
| #endif |
| return symbol; |
| } |
| |
| Byte LzmaLiteralDecodeMatch(CProb *probs, CRangeDecoder *rd, Byte matchByte) |
| { |
| int symbol = 1; |
| #ifdef _LZMA_LOC_OPT |
| RC_INIT_VAR |
| #endif |
| do |
| { |
| int bit; |
| int matchBit = (matchByte >> 7) & 1; |
| matchByte <<= 1; |
| #ifdef _LZMA_LOC_OPT |
| { |
| CProb *prob = probs + 0x100 + (matchBit << 8) + symbol; |
| RC_GET_BIT2(prob, symbol, bit = 0, bit = 1) |
| } |
| #else |
| bit = RangeDecoderBitDecode(probs + 0x100 + (matchBit << 8) + symbol, rd); |
| symbol = (symbol << 1) | bit; |
| #endif |
| if (matchBit != bit) |
| { |
| while (symbol < 0x100) |
| { |
| #ifdef _LZMA_LOC_OPT |
| CProb *prob = probs + symbol; |
| RC_GET_BIT(prob, symbol) |
| #else |
| symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd); |
| #endif |
| } |
| break; |
| } |
| } |
| while (symbol < 0x100); |
| #ifdef _LZMA_LOC_OPT |
| RC_FLUSH_VAR |
| #endif |
| return symbol; |
| } |
| |
| #define kNumPosBitsMax 4 |
| #define kNumPosStatesMax (1 << kNumPosBitsMax) |
| |
| #define kLenNumLowBits 3 |
| #define kLenNumLowSymbols (1 << kLenNumLowBits) |
| #define kLenNumMidBits 3 |
| #define kLenNumMidSymbols (1 << kLenNumMidBits) |
| #define kLenNumHighBits 8 |
| #define kLenNumHighSymbols (1 << kLenNumHighBits) |
| |
| #define LenChoice 0 |
| #define LenChoice2 (LenChoice + 1) |
| #define LenLow (LenChoice2 + 1) |
| #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits)) |
| #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits)) |
| #define kNumLenProbs (LenHigh + kLenNumHighSymbols) |
| |
| int LzmaLenDecode(CProb *p, CRangeDecoder *rd, int posState) |
| { |
| if(RangeDecoderBitDecode(p + LenChoice, rd) == 0) |
| return RangeDecoderBitTreeDecode(p + LenLow + |
| (posState << kLenNumLowBits), kLenNumLowBits, rd); |
| if(RangeDecoderBitDecode(p + LenChoice2, rd) == 0) |
| return kLenNumLowSymbols + RangeDecoderBitTreeDecode(p + LenMid + |
| (posState << kLenNumMidBits), kLenNumMidBits, rd); |
| return kLenNumLowSymbols + kLenNumMidSymbols + |
| RangeDecoderBitTreeDecode(p + LenHigh, kLenNumHighBits, rd); |
| } |
| |
| #define kNumStates 12 |
| #define kNumLitStates 7 |
| |
| #define kStartPosModelIndex 4 |
| #define kEndPosModelIndex 14 |
| #define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) |
| |
| #define kNumPosSlotBits 6 |
| #define kNumLenToPosStates 4 |
| |
| #define kNumAlignBits 4 |
| #define kAlignTableSize (1 << kNumAlignBits) |
| |
| #define kMatchMinLen 2 |
| |
| #define IsMatch 0 |
| #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax)) |
| #define IsRepG0 (IsRep + kNumStates) |
| #define IsRepG1 (IsRepG0 + kNumStates) |
| #define IsRepG2 (IsRepG1 + kNumStates) |
| #define IsRep0Long (IsRepG2 + kNumStates) |
| #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax)) |
| #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits)) |
| #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex) |
| #define LenCoder (Align + kAlignTableSize) |
| #define RepLenCoder (LenCoder + kNumLenProbs) |
| #define Literal (RepLenCoder + kNumLenProbs) |
| |
| #if Literal != LZMA_BASE_SIZE |
| StopCompilingDueBUG |
| #endif |
| |
| int LzmaDecodeProperties(CLzmaProperties *propsRes, const unsigned char *propsData, int size) |
| { |
| unsigned char prop0; |
| if (size < LZMA_PROPERTIES_SIZE) |
| return LZMA_RESULT_DATA_ERROR; |
| prop0 = propsData[0]; |
| if (prop0 >= (9 * 5 * 5)) |
| return LZMA_RESULT_DATA_ERROR; |
| { |
| for (propsRes->pb = 0; prop0 >= (9 * 5); propsRes->pb++, prop0 -= (9 * 5)); |
| for (propsRes->lp = 0; prop0 >= 9; propsRes->lp++, prop0 -= 9); |
| propsRes->lc = prop0; |
| /* |
| unsigned char remainder = (unsigned char)(prop0 / 9); |
| propsRes->lc = prop0 % 9; |
| propsRes->pb = remainder / 5; |
| propsRes->lp = remainder % 5; |
| */ |
| } |
| |
| #ifdef _LZMA_OUT_READ |
| { |
| int i; |
| propsRes->DictionarySize = 0; |
| for (i = 0; i < 4; i++) |
| propsRes->DictionarySize += (UInt32)(propsData[1 + i]) << (i * 8); |
| if (propsRes->DictionarySize == 0) |
| propsRes->DictionarySize = 1; |
| } |
| #endif |
| return LZMA_RESULT_OK; |
| } |
| |
| #define kLzmaStreamWasFinishedId (-1) |
| |
| int LzmaDecode(CLzmaDecoderState *vs, |
| #ifdef _LZMA_IN_CB |
| ILzmaInCallback *InCallback, |
| #else |
| const unsigned char *inStream, SizeT inSize, SizeT *inSizeProcessed, |
| #endif |
| unsigned char *outStream, SizeT outSize, SizeT *outSizeProcessed) |
| { |
| CProb *p = vs->Probs; |
| SizeT nowPos = 0; |
| Byte previousByte = 0; |
| UInt32 posStateMask = (1 << (vs->Properties.pb)) - 1; |
| UInt32 literalPosMask = (1 << (vs->Properties.lp)) - 1; |
| int lc = vs->Properties.lc; |
| CRangeDecoder rd; |
| |
| #ifdef _LZMA_OUT_READ |
| |
| int state = vs->State; |
| UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3]; |
| int len = vs->RemainLen; |
| UInt32 globalPos = vs->GlobalPos; |
| UInt32 distanceLimit = vs->DistanceLimit; |
| |
| Byte *dictionary = vs->Dictionary; |
| UInt32 dictionarySize = vs->Properties.DictionarySize; |
| UInt32 dictionaryPos = vs->DictionaryPos; |
| |
| Byte tempDictionary[4]; |
| |
| rd.Range = vs->Range; |
| rd.Code = vs->Code; |
| #ifdef _LZMA_IN_CB |
| rd.InCallback = InCallback; |
| rd.Buffer = vs->Buffer; |
| rd.BufferLim = vs->BufferLim; |
| #else |
| rd.Buffer = inStream; |
| rd.BufferLim = inStream + inSize; |
| #endif |
| |
| #ifndef _LZMA_IN_CB |
| *inSizeProcessed = 0; |
| #endif |
| *outSizeProcessed = 0; |
| if (len == kLzmaStreamWasFinishedId) |
| return LZMA_RESULT_OK; |
| |
| if (dictionarySize == 0) |
| { |
| dictionary = tempDictionary; |
| dictionarySize = 1; |
| tempDictionary[0] = vs->TempDictionary[0]; |
| } |
| |
| if (len == kLzmaNeedInitId) |
| { |
| { |
| UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp)); |
| UInt32 i; |
| for (i = 0; i < numProbs; i++) |
| p[i] = kBitModelTotal >> 1; |
| rep0 = rep1 = rep2 = rep3 = 1; |
| state = 0; |
| globalPos = 0; |
| distanceLimit = 0; |
| dictionaryPos = 0; |
| dictionary[dictionarySize - 1] = 0; |
| RangeDecoderInit(&rd |
| #ifndef _LZMA_IN_CB |
| , inStream, inSize |
| #endif |
| ); |
| #ifdef _LZMA_IN_CB |
| if (rd.Result != LZMA_RESULT_OK) |
| return rd.Result; |
| #endif |
| if (rd.ExtraBytes != 0) |
| return LZMA_RESULT_DATA_ERROR; |
| } |
| len = 0; |
| } |
| while(len != 0 && nowPos < outSize) |
| { |
| UInt32 pos = dictionaryPos - rep0; |
| if (pos >= dictionarySize) |
| pos += dictionarySize; |
| outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos]; |
| if (++dictionaryPos == dictionarySize) |
| dictionaryPos = 0; |
| len--; |
| } |
| if (dictionaryPos == 0) |
| previousByte = dictionary[dictionarySize - 1]; |
| else |
| previousByte = dictionary[dictionaryPos - 1]; |
| |
| #ifdef _LZMA_IN_CB |
| rd.Result = LZMA_RESULT_OK; |
| #endif |
| rd.ExtraBytes = 0; |
| |
| #else /* if !_LZMA_OUT_READ */ |
| |
| int state = 0; |
| UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1; |
| int len = 0; |
| |
| #ifndef _LZMA_IN_CB |
| *inSizeProcessed = 0; |
| #endif |
| *outSizeProcessed = 0; |
| |
| { |
| UInt32 i; |
| UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp)); |
| for (i = 0; i < numProbs; i++) |
| p[i] = kBitModelTotal >> 1; |
| } |
| |
| #ifdef _LZMA_IN_CB |
| rd.InCallback = InCallback; |
| #endif |
| RangeDecoderInit(&rd |
| #ifndef _LZMA_IN_CB |
| , inStream, inSize |
| #endif |
| ); |
| |
| #ifdef _LZMA_IN_CB |
| if (rd.Result != LZMA_RESULT_OK) |
| return rd.Result; |
| #endif |
| if (rd.ExtraBytes != 0) |
| return LZMA_RESULT_DATA_ERROR; |
| |
| #endif /* _LZMA_OUT_READ */ |
| |
| |
| while(nowPos < outSize) |
| { |
| int posState = (int)( |
| (nowPos |
| #ifdef _LZMA_OUT_READ |
| + globalPos |
| #endif |
| ) |
| & posStateMask); |
| #ifdef _LZMA_IN_CB |
| if (rd.Result != LZMA_RESULT_OK) |
| return rd.Result; |
| #endif |
| if (rd.ExtraBytes != 0) |
| return LZMA_RESULT_DATA_ERROR; |
| if (RangeDecoderBitDecode(p + IsMatch + (state << kNumPosBitsMax) + posState, &rd) == 0) |
| { |
| CProb *probs = p + Literal + (LZMA_LIT_SIZE * |
| ((( |
| (nowPos |
| #ifdef _LZMA_OUT_READ |
| + globalPos |
| #endif |
| ) |
| & literalPosMask) << lc) + (previousByte >> (8 - lc)))); |
| |
| if (state >= kNumLitStates) |
| { |
| Byte matchByte; |
| #ifdef _LZMA_OUT_READ |
| UInt32 pos = dictionaryPos - rep0; |
| if (pos >= dictionarySize) |
| pos += dictionarySize; |
| matchByte = dictionary[pos]; |
| #else |
| matchByte = outStream[nowPos - rep0]; |
| #endif |
| previousByte = LzmaLiteralDecodeMatch(probs, &rd, matchByte); |
| } |
| else |
| previousByte = LzmaLiteralDecode(probs, &rd); |
| outStream[nowPos++] = previousByte; |
| #ifdef _LZMA_OUT_READ |
| if (distanceLimit < dictionarySize) |
| distanceLimit++; |
| |
| dictionary[dictionaryPos] = previousByte; |
| if (++dictionaryPos == dictionarySize) |
| dictionaryPos = 0; |
| #endif |
| if (state < 4) state = 0; |
| else if (state < 10) state -= 3; |
| else state -= 6; |
| } |
| else |
| { |
| if (RangeDecoderBitDecode(p + IsRep + state, &rd) == 1) |
| { |
| if (RangeDecoderBitDecode(p + IsRepG0 + state, &rd) == 0) |
| { |
| if (RangeDecoderBitDecode(p + IsRep0Long + (state << kNumPosBitsMax) + posState, &rd) == 0) |
| { |
| #ifdef _LZMA_OUT_READ |
| UInt32 pos; |
| #endif |
| |
| #ifdef _LZMA_OUT_READ |
| if (distanceLimit == 0) |
| #else |
| if (nowPos == 0) |
| #endif |
| return LZMA_RESULT_DATA_ERROR; |
| |
| state = state < 7 ? 9 : 11; |
| #ifdef _LZMA_OUT_READ |
| pos = dictionaryPos - rep0; |
| if (pos >= dictionarySize) |
| pos += dictionarySize; |
| previousByte = dictionary[pos]; |
| dictionary[dictionaryPos] = previousByte; |
| if (++dictionaryPos == dictionarySize) |
| dictionaryPos = 0; |
| #else |
| previousByte = outStream[nowPos - rep0]; |
| #endif |
| outStream[nowPos++] = previousByte; |
| |
| #ifdef _LZMA_OUT_READ |
| if (distanceLimit < dictionarySize) |
| distanceLimit++; |
| #endif |
| continue; |
| } |
| } |
| else |
| { |
| UInt32 distance; |
| if(RangeDecoderBitDecode(p + IsRepG1 + state, &rd) == 0) |
| distance = rep1; |
| else |
| { |
| if(RangeDecoderBitDecode(p + IsRepG2 + state, &rd) == 0) |
| distance = rep2; |
| else |
| { |
| distance = rep3; |
| rep3 = rep2; |
| } |
| rep2 = rep1; |
| } |
| rep1 = rep0; |
| rep0 = distance; |
| } |
| len = LzmaLenDecode(p + RepLenCoder, &rd, posState); |
| state = state < 7 ? 8 : 11; |
| } |
| else |
| { |
| int posSlot; |
| rep3 = rep2; |
| rep2 = rep1; |
| rep1 = rep0; |
| state = state < 7 ? 7 : 10; |
| len = LzmaLenDecode(p + LenCoder, &rd, posState); |
| posSlot = RangeDecoderBitTreeDecode(p + PosSlot + |
| ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << |
| kNumPosSlotBits), kNumPosSlotBits, &rd); |
| if (posSlot >= kStartPosModelIndex) |
| { |
| int numDirectBits = ((posSlot >> 1) - 1); |
| rep0 = ((2 | ((UInt32)posSlot & 1)) << numDirectBits); |
| if (posSlot < kEndPosModelIndex) |
| { |
| rep0 += RangeDecoderReverseBitTreeDecode( |
| p + SpecPos + rep0 - posSlot - 1, numDirectBits, &rd); |
| } |
| else |
| { |
| rep0 += RangeDecoderDecodeDirectBits(&rd, |
| numDirectBits - kNumAlignBits) << kNumAlignBits; |
| rep0 += RangeDecoderReverseBitTreeDecode(p + Align, kNumAlignBits, &rd); |
| } |
| } |
| else |
| rep0 = posSlot; |
| if (++rep0 == (UInt32)(0)) |
| { |
| /* it's for stream version */ |
| len = kLzmaStreamWasFinishedId; |
| break; |
| } |
| } |
| |
| len += kMatchMinLen; |
| #ifdef _LZMA_OUT_READ |
| if (rep0 > distanceLimit) |
| #else |
| if (rep0 > nowPos) |
| #endif |
| return LZMA_RESULT_DATA_ERROR; |
| |
| #ifdef _LZMA_OUT_READ |
| if (dictionarySize - distanceLimit > (UInt32)len) |
| distanceLimit += len; |
| else |
| distanceLimit = dictionarySize; |
| #endif |
| |
| do |
| { |
| #ifdef _LZMA_OUT_READ |
| UInt32 pos = dictionaryPos - rep0; |
| if (pos >= dictionarySize) |
| pos += dictionarySize; |
| previousByte = dictionary[pos]; |
| dictionary[dictionaryPos] = previousByte; |
| if (++dictionaryPos == dictionarySize) |
| dictionaryPos = 0; |
| #else |
| previousByte = outStream[nowPos - rep0]; |
| #endif |
| len--; |
| outStream[nowPos++] = previousByte; |
| } |
| while(len != 0 && nowPos < outSize); |
| } |
| } |
| |
| |
| #ifdef _LZMA_OUT_READ |
| vs->Range = rd.Range; |
| vs->Code = rd.Code; |
| vs->DictionaryPos = dictionaryPos; |
| vs->GlobalPos = globalPos + (UInt32)nowPos; |
| vs->DistanceLimit = distanceLimit; |
| vs->Reps[0] = rep0; |
| vs->Reps[1] = rep1; |
| vs->Reps[2] = rep2; |
| vs->Reps[3] = rep3; |
| vs->State = state; |
| vs->RemainLen = len; |
| vs->TempDictionary[0] = tempDictionary[0]; |
| #endif |
| |
| #ifdef _LZMA_IN_CB |
| vs->Buffer = rd.Buffer; |
| vs->BufferLim = rd.BufferLim; |
| #else |
| *inSizeProcessed = (SizeT)(rd.Buffer - inStream); |
| #endif |
| *outSizeProcessed = nowPos; |
| return LZMA_RESULT_OK; |
| } |