blob: 6dae26bd3de540dd9f8e6464edd20e90e2bb158b [file] [log] [blame]
/*
* Copyright 2008 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
/*
* Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
* Based on code from spd_sdram.c
* Author: James Yang [at freescale.com]
*/
#include <common.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
extern void fsl_ddr_set_lawbar(
const common_timing_params_t *memctl_common_params,
unsigned int memctl_interleaved,
unsigned int ctrl_num);
/* processor specific function */
extern void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
unsigned int ctrl_num);
/* Board-specific functions defined in each board's ddr.c */
extern void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
unsigned int ctrl_num);
/*
* ASSUMPTIONS:
* - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
* - Same memory data bus width on all controllers
*
* NOTES:
*
* The memory controller and associated documentation use confusing
* terminology when referring to the orgranization of DRAM.
*
* Here is a terminology translation table:
*
* memory controller/documention |industry |this code |signals
* -------------------------------|-----------|-----------|-----------------
* physical bank/bank |rank |rank |chip select (CS)
* logical bank/sub-bank |bank |bank |bank address (BA)
* page/row |row |page |row address
* ??? |column |column |column address
*
* The naming confusion is further exacerbated by the descriptions of the
* memory controller interleaving feature, where accesses are interleaved
* _BETWEEN_ two seperate memory controllers. This is configured only in
* CS0_CONFIG[INTLV_CTL] of each memory controller.
*
* memory controller documentation | number of chip selects
* | per memory controller supported
* --------------------------------|-----------------------------------------
* cache line interleaving | 1 (CS0 only)
* page interleaving | 1 (CS0 only)
* bank interleaving | 1 (CS0 only)
* superbank interleraving | depends on bank (chip select)
* | interleraving [rank interleaving]
* | mode used on every memory controller
*
* Even further confusing is the existence of the interleaving feature
* _WITHIN_ each memory controller. The feature is referred to in
* documentation as chip select interleaving or bank interleaving,
* although it is configured in the DDR_SDRAM_CFG field.
*
* Name of field | documentation name | this code
* -----------------------------|-----------------------|------------------
* DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
* | interleaving
*/
#ifdef DEBUG
const char *step_string_tbl[] = {
"STEP_GET_SPD",
"STEP_COMPUTE_DIMM_PARMS",
"STEP_COMPUTE_COMMON_PARMS",
"STEP_GATHER_OPTS",
"STEP_ASSIGN_ADDRESSES",
"STEP_COMPUTE_REGS",
"STEP_PROGRAM_REGS",
"STEP_ALL"
};
const char * step_to_string(unsigned int step) {
unsigned int s = __ilog2(step);
if ((1 << s) != step)
return step_string_tbl[7];
return step_string_tbl[s];
}
#endif
int step_assign_addresses(fsl_ddr_info_t *pinfo,
unsigned int dbw_cap_adj[],
unsigned int *memctl_interleaving,
unsigned int *rank_interleaving)
{
int i, j;
/*
* If a reduced data width is requested, but the SPD
* specifies a physically wider device, adjust the
* computed dimm capacities accordingly before
* assigning addresses.
*/
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
unsigned int found = 0;
switch (pinfo->memctl_opts[i].data_bus_width) {
case 2:
/* 16-bit */
printf("can't handle 16-bit mode yet\n");
break;
case 1:
/* 32-bit */
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned int dw;
dw = pinfo->dimm_params[i][j].data_width;
if (pinfo->dimm_params[i][j].n_ranks
&& (dw == 72 || dw == 64)) {
/*
* FIXME: can't really do it
* like this because this just
* further reduces the memory
*/
found = 1;
break;
}
}
if (found) {
dbw_cap_adj[i] = 1;
}
break;
case 0:
/* 64-bit */
break;
default:
printf("unexpected data bus width "
"specified controller %u\n", i);
return 1;
}
}
/*
* Check if all controllers are configured for memory
* controller interleaving.
*/
j = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
if (pinfo->memctl_opts[i].memctl_interleaving) {
j++;
}
}
if (j == 2) {
*memctl_interleaving = 1;
printf("\nMemory controller interleaving enabled: ");
switch (pinfo->memctl_opts[0].memctl_interleaving_mode) {
case FSL_DDR_CACHE_LINE_INTERLEAVING:
printf("Cache-line interleaving!\n");
break;
case FSL_DDR_PAGE_INTERLEAVING:
printf("Page interleaving!\n");
break;
case FSL_DDR_BANK_INTERLEAVING:
printf("Bank interleaving!\n");
break;
case FSL_DDR_SUPERBANK_INTERLEAVING:
printf("Super bank interleaving\n");
default:
break;
}
}
/* Check that all controllers are rank interleaving. */
j = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
if (pinfo->memctl_opts[i].ba_intlv_ctl) {
j++;
}
}
if (j == 2) {
*rank_interleaving = 1;
printf("Bank(chip-select) interleaving enabled: ");
switch (pinfo->memctl_opts[0].ba_intlv_ctl &
FSL_DDR_CS0_CS1_CS2_CS3) {
case FSL_DDR_CS0_CS1_CS2_CS3:
printf("CS0+CS1+CS2+CS3\n");
break;
case FSL_DDR_CS0_CS1:
printf("CS0+CS1\n");
break;
case FSL_DDR_CS2_CS3:
printf("CS2+CS3\n");
break;
case FSL_DDR_CS0_CS1_AND_CS2_CS3:
printf("CS0+CS1 and CS2+CS3\n");
default:
break;
}
}
if (*memctl_interleaving) {
unsigned long long addr, total_mem_per_ctlr = 0;
/*
* If interleaving between memory controllers,
* make each controller start at a base address
* of 0.
*
* Also, if bank interleaving (chip select
* interleaving) is enabled on each memory
* controller, CS0 needs to be programmed to
* cover the entire memory range on that memory
* controller
*
* Bank interleaving also implies that each
* addressed chip select is identical in size.
*/
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
addr = 0;
pinfo->common_timing_params[i].base_address = 0ull;
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned long long cap
= pinfo->dimm_params[i][j].capacity;
pinfo->dimm_params[i][j].base_address = addr;
addr += cap >> dbw_cap_adj[i];
total_mem_per_ctlr += cap >> dbw_cap_adj[i];
}
}
pinfo->common_timing_params[0].total_mem = total_mem_per_ctlr;
} else {
/*
* Simple linear assignment if memory
* controllers are not interleaved.
*/
unsigned long long cur_memsize = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
u64 total_mem_per_ctlr = 0;
pinfo->common_timing_params[i].base_address =
cur_memsize;
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
/* Compute DIMM base addresses. */
unsigned long long cap =
pinfo->dimm_params[i][j].capacity;
pinfo->dimm_params[i][j].base_address =
cur_memsize;
cur_memsize += cap >> dbw_cap_adj[i];
total_mem_per_ctlr += cap >> dbw_cap_adj[i];
}
pinfo->common_timing_params[i].total_mem =
total_mem_per_ctlr;
}
}
return 0;
}
unsigned long long
fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step)
{
unsigned int i, j;
unsigned int all_controllers_memctl_interleaving = 0;
unsigned int all_controllers_rank_interleaving = 0;
unsigned long long total_mem = 0;
fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
common_timing_params_t *timing_params = pinfo->common_timing_params;
/* data bus width capacity adjust shift amount */
unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
dbw_capacity_adjust[i] = 0;
}
debug("starting at step %u (%s)\n",
start_step, step_to_string(start_step));
switch (start_step) {
case STEP_GET_SPD:
/* STEP 1: Gather all DIMM SPD data */
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
}
case STEP_COMPUTE_DIMM_PARMS:
/* STEP 2: Compute DIMM parameters from SPD data */
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned int retval;
generic_spd_eeprom_t *spd =
&(pinfo->spd_installed_dimms[i][j]);
dimm_params_t *pdimm =
&(pinfo->dimm_params[i][j]);
retval = compute_dimm_parameters(spd, pdimm, i);
if (retval == 2) {
printf("Error: compute_dimm_parameters"
" non-zero returned FATAL value "
"for memctl=%u dimm=%u\n", i, j);
return 0;
}
if (retval) {
debug("Warning: compute_dimm_parameters"
" non-zero return value for memctl=%u "
"dimm=%u\n", i, j);
}
}
}
case STEP_COMPUTE_COMMON_PARMS:
/*
* STEP 3: Compute a common set of timing parameters
* suitable for all of the DIMMs on each memory controller
*/
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
debug("Computing lowest common DIMM"
" parameters for memctl=%u\n", i);
compute_lowest_common_dimm_parameters(
pinfo->dimm_params[i],
&timing_params[i],
CONFIG_DIMM_SLOTS_PER_CTLR);
}
case STEP_GATHER_OPTS:
/* STEP 4: Gather configuration requirements from user */
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
debug("Reloading memory controller "
"configuration options for memctl=%u\n", i);
/*
* This "reloads" the memory controller options
* to defaults. If the user "edits" an option,
* next_step points to the step after this,
* which is currently STEP_ASSIGN_ADDRESSES.
*/
populate_memctl_options(
timing_params[i].all_DIMMs_registered,
&pinfo->memctl_opts[i],
pinfo->dimm_params[i], i);
}
case STEP_ASSIGN_ADDRESSES:
/* STEP 5: Assign addresses to chip selects */
step_assign_addresses(pinfo,
dbw_capacity_adjust,
&all_controllers_memctl_interleaving,
&all_controllers_rank_interleaving);
case STEP_COMPUTE_REGS:
/* STEP 6: compute controller register values */
debug("FSL Memory ctrl cg register computation\n");
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
if (timing_params[i].ndimms_present == 0) {
memset(&ddr_reg[i], 0,
sizeof(fsl_ddr_cfg_regs_t));
continue;
}
compute_fsl_memctl_config_regs(
&pinfo->memctl_opts[i],
&ddr_reg[i], &timing_params[i],
pinfo->dimm_params[i],
dbw_capacity_adjust[i]);
}
default:
break;
}
/* Compute the total amount of memory. */
/*
* If bank interleaving but NOT memory controller interleaving
* CS_BNDS describe the quantity of memory on each memory
* controller, so the total is the sum across.
*/
if (!all_controllers_memctl_interleaving
&& all_controllers_rank_interleaving) {
total_mem = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
total_mem += timing_params[i].total_mem;
}
} else {
/*
* Compute the amount of memory available just by
* looking for the highest valid CSn_BNDS value.
* This allows us to also experiment with using
* only CS0 when using dual-rank DIMMs.
*/
unsigned int max_end = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
if (reg->cs[j].config & 0x80000000) {
unsigned int end;
end = reg->cs[j].bnds & 0xFFF;
if (end > max_end) {
max_end = end;
}
}
}
}
total_mem = 1 + (((unsigned long long)max_end << 24ULL)
| 0xFFFFFFULL);
}
return total_mem;
}
/*
* fsl_ddr_sdram() -- this is the main function to be called by
* initdram() in the board file.
*
* It returns amount of memory configured in bytes.
*/
phys_size_t fsl_ddr_sdram(void)
{
unsigned int i;
unsigned int memctl_interleaved;
unsigned long long total_memory;
fsl_ddr_info_t info;
/* Reset info structure. */
memset(&info, 0, sizeof(fsl_ddr_info_t));
/* Compute it once normally. */
total_memory = fsl_ddr_compute(&info, STEP_GET_SPD);
/* Check for memory controller interleaving. */
memctl_interleaved = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
memctl_interleaved +=
info.memctl_opts[i].memctl_interleaving;
}
if (memctl_interleaved) {
if (memctl_interleaved == CONFIG_NUM_DDR_CONTROLLERS) {
debug("memctl interleaving\n");
/*
* Change the meaning of memctl_interleaved
* to be "boolean".
*/
memctl_interleaved = 1;
} else {
printf("Warning: memctl interleaving not "
"properly configured on all controllers\n");
memctl_interleaved = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++)
info.memctl_opts[i].memctl_interleaving = 0;
debug("Recomputing with memctl_interleaving off.\n");
total_memory = fsl_ddr_compute(&info,
STEP_ASSIGN_ADDRESSES);
}
}
/* Program configuration registers. */
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
debug("Programming controller %u\n", i);
if (info.common_timing_params[i].ndimms_present == 0) {
debug("No dimms present on controller %u; "
"skipping programming\n", i);
continue;
}
fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i);
}
if (memctl_interleaved) {
const unsigned int ctrl_num = 0;
/* Only set LAWBAR1 if memory controller interleaving is on. */
fsl_ddr_set_lawbar(&info.common_timing_params[0],
memctl_interleaved, ctrl_num);
} else {
/*
* Memory controller interleaving is NOT on;
* set each lawbar individually.
*/
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
fsl_ddr_set_lawbar(&info.common_timing_params[i],
0, i);
}
}
debug("total_memory = %llu\n", total_memory);
#if !defined(CONFIG_PHYS_64BIT)
/* Check for 4G or more. Bad. */
if (total_memory >= (1ull << 32)) {
printf("Detected %lld MB of memory\n", total_memory >> 20);
printf("This U-Boot only supports < 4G of DDR\n");
printf("You could rebuild it with CONFIG_PHYS_64BIT\n");
total_memory = CONFIG_MAX_MEM_MAPPED;
}
#endif
return total_memory;
}