| /* |
| * Copyright 2008-2012 Freescale Semiconductor, Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * Version 2 as published by the Free Software Foundation. |
| */ |
| |
| #include <common.h> |
| #include <asm/fsl_ddr_sdram.h> |
| |
| #include "ddr.h" |
| |
| #if defined(CONFIG_FSL_DDR3) |
| static unsigned int |
| compute_cas_latency_ddr3(const dimm_params_t *dimm_params, |
| common_timing_params_t *outpdimm, |
| unsigned int number_of_dimms) |
| { |
| unsigned int i; |
| unsigned int tAAmin_ps = 0; |
| unsigned int tCKmin_X_ps = 0; |
| unsigned int common_caslat; |
| unsigned int caslat_actual; |
| unsigned int retry = 16; |
| unsigned int tmp; |
| const unsigned int mclk_ps = get_memory_clk_period_ps(); |
| |
| /* compute the common CAS latency supported between slots */ |
| tmp = dimm_params[0].caslat_X; |
| for (i = 1; i < number_of_dimms; i++) { |
| if (dimm_params[i].n_ranks) |
| tmp &= dimm_params[i].caslat_X; |
| } |
| common_caslat = tmp; |
| |
| /* compute the max tAAmin tCKmin between slots */ |
| for (i = 0; i < number_of_dimms; i++) { |
| tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps); |
| tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps); |
| } |
| /* validate if the memory clk is in the range of dimms */ |
| if (mclk_ps < tCKmin_X_ps) { |
| printf("DDR clock (MCLK cycle %u ps) is faster than " |
| "the slowest DIMM(s) (tCKmin %u ps) can support.\n", |
| mclk_ps, tCKmin_X_ps); |
| return 1; |
| } |
| /* determine the acutal cas latency */ |
| caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps; |
| /* check if the dimms support the CAS latency */ |
| while (!(common_caslat & (1 << caslat_actual)) && retry > 0) { |
| caslat_actual++; |
| retry--; |
| } |
| /* once the caculation of caslat_actual is completed |
| * we must verify that this CAS latency value does not |
| * exceed tAAmax, which is 20 ns for all DDR3 speed grades |
| */ |
| if (caslat_actual * mclk_ps > 20000) { |
| printf("The choosen cas latency %d is too large\n", |
| caslat_actual); |
| return 1; |
| } |
| outpdimm->lowest_common_SPD_caslat = caslat_actual; |
| |
| return 0; |
| } |
| #endif |
| |
| /* |
| * compute_lowest_common_dimm_parameters() |
| * |
| * Determine the worst-case DIMM timing parameters from the set of DIMMs |
| * whose parameters have been computed into the array pointed to |
| * by dimm_params. |
| */ |
| unsigned int |
| compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params, |
| common_timing_params_t *outpdimm, |
| const unsigned int number_of_dimms) |
| { |
| unsigned int i, j; |
| |
| unsigned int tCKmin_X_ps = 0; |
| unsigned int tCKmax_ps = 0xFFFFFFFF; |
| unsigned int tCKmax_max_ps = 0; |
| unsigned int tRCD_ps = 0; |
| unsigned int tRP_ps = 0; |
| unsigned int tRAS_ps = 0; |
| unsigned int tWR_ps = 0; |
| unsigned int tWTR_ps = 0; |
| unsigned int tRFC_ps = 0; |
| unsigned int tRRD_ps = 0; |
| unsigned int tRC_ps = 0; |
| unsigned int refresh_rate_ps = 0; |
| unsigned int tIS_ps = 0; |
| unsigned int tIH_ps = 0; |
| unsigned int tDS_ps = 0; |
| unsigned int tDH_ps = 0; |
| unsigned int tRTP_ps = 0; |
| unsigned int tDQSQ_max_ps = 0; |
| unsigned int tQHS_ps = 0; |
| |
| unsigned int temp1, temp2; |
| unsigned int additive_latency = 0; |
| #if !defined(CONFIG_FSL_DDR3) |
| const unsigned int mclk_ps = get_memory_clk_period_ps(); |
| unsigned int lowest_good_caslat; |
| unsigned int not_ok; |
| |
| debug("using mclk_ps = %u\n", mclk_ps); |
| #endif |
| |
| temp1 = 0; |
| for (i = 0; i < number_of_dimms; i++) { |
| /* |
| * If there are no ranks on this DIMM, |
| * it probably doesn't exist, so skip it. |
| */ |
| if (dimm_params[i].n_ranks == 0) { |
| temp1++; |
| continue; |
| } |
| if (dimm_params[i].n_ranks == 4 && i != 0) { |
| printf("Found Quad-rank DIMM in wrong bank, ignored." |
| " Software may not run as expected.\n"); |
| temp1++; |
| continue; |
| } |
| |
| /* |
| * check if quad-rank DIMM is plugged if |
| * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined |
| * Only the board with proper design is capable |
| */ |
| #ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE |
| if (dimm_params[i].n_ranks == 4 && \ |
| CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) { |
| printf("Found Quad-rank DIMM, not able to support."); |
| temp1++; |
| continue; |
| } |
| #endif |
| /* |
| * Find minimum tCKmax_ps to find fastest slow speed, |
| * i.e., this is the slowest the whole system can go. |
| */ |
| tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps); |
| |
| /* Either find maximum value to determine slowest |
| * speed, delay, time, period, etc */ |
| tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps); |
| tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps); |
| tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps); |
| tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps); |
| tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps); |
| tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps); |
| tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps); |
| tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps); |
| tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps); |
| tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps); |
| tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps); |
| tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps); |
| tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps); |
| tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps); |
| tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps); |
| tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps); |
| refresh_rate_ps = max(refresh_rate_ps, |
| dimm_params[i].refresh_rate_ps); |
| |
| /* |
| * Find maximum tDQSQ_max_ps to find slowest. |
| * |
| * FIXME: is finding the slowest value the correct |
| * strategy for this parameter? |
| */ |
| tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps); |
| } |
| |
| outpdimm->ndimms_present = number_of_dimms - temp1; |
| |
| if (temp1 == number_of_dimms) { |
| debug("no dimms this memory controller\n"); |
| return 0; |
| } |
| |
| outpdimm->tCKmin_X_ps = tCKmin_X_ps; |
| outpdimm->tCKmax_ps = tCKmax_ps; |
| outpdimm->tCKmax_max_ps = tCKmax_max_ps; |
| outpdimm->tRCD_ps = tRCD_ps; |
| outpdimm->tRP_ps = tRP_ps; |
| outpdimm->tRAS_ps = tRAS_ps; |
| outpdimm->tWR_ps = tWR_ps; |
| outpdimm->tWTR_ps = tWTR_ps; |
| outpdimm->tRFC_ps = tRFC_ps; |
| outpdimm->tRRD_ps = tRRD_ps; |
| outpdimm->tRC_ps = tRC_ps; |
| outpdimm->refresh_rate_ps = refresh_rate_ps; |
| outpdimm->tIS_ps = tIS_ps; |
| outpdimm->tIH_ps = tIH_ps; |
| outpdimm->tDS_ps = tDS_ps; |
| outpdimm->tDH_ps = tDH_ps; |
| outpdimm->tRTP_ps = tRTP_ps; |
| outpdimm->tDQSQ_max_ps = tDQSQ_max_ps; |
| outpdimm->tQHS_ps = tQHS_ps; |
| |
| /* Determine common burst length for all DIMMs. */ |
| temp1 = 0xff; |
| for (i = 0; i < number_of_dimms; i++) { |
| if (dimm_params[i].n_ranks) { |
| temp1 &= dimm_params[i].burst_lengths_bitmask; |
| } |
| } |
| outpdimm->all_DIMMs_burst_lengths_bitmask = temp1; |
| |
| /* Determine if all DIMMs registered buffered. */ |
| temp1 = temp2 = 0; |
| for (i = 0; i < number_of_dimms; i++) { |
| if (dimm_params[i].n_ranks) { |
| if (dimm_params[i].registered_dimm) { |
| temp1 = 1; |
| printf("Detected RDIMM %s\n", |
| dimm_params[i].mpart); |
| } else { |
| temp2 = 1; |
| printf("Detected UDIMM %s\n", |
| dimm_params[i].mpart); |
| } |
| } |
| } |
| |
| outpdimm->all_DIMMs_registered = 0; |
| outpdimm->all_DIMMs_unbuffered = 0; |
| if (temp1 && !temp2) { |
| outpdimm->all_DIMMs_registered = 1; |
| } else if (!temp1 && temp2) { |
| outpdimm->all_DIMMs_unbuffered = 1; |
| } else { |
| printf("ERROR: Mix of registered buffered and unbuffered " |
| "DIMMs detected!\n"); |
| } |
| |
| temp1 = 0; |
| if (outpdimm->all_DIMMs_registered) |
| for (j = 0; j < 16; j++) { |
| outpdimm->rcw[j] = dimm_params[0].rcw[j]; |
| for (i = 1; i < number_of_dimms; i++) { |
| if (!dimm_params[i].n_ranks) |
| continue; |
| if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) { |
| temp1 = 1; |
| break; |
| } |
| } |
| } |
| |
| if (temp1 != 0) |
| printf("ERROR: Mix different RDIMM detected!\n"); |
| |
| #if defined(CONFIG_FSL_DDR3) |
| if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms)) |
| return 1; |
| #else |
| /* |
| * Compute a CAS latency suitable for all DIMMs |
| * |
| * Strategy for SPD-defined latencies: compute only |
| * CAS latency defined by all DIMMs. |
| */ |
| |
| /* |
| * Step 1: find CAS latency common to all DIMMs using bitwise |
| * operation. |
| */ |
| temp1 = 0xFF; |
| for (i = 0; i < number_of_dimms; i++) { |
| if (dimm_params[i].n_ranks) { |
| temp2 = 0; |
| temp2 |= 1 << dimm_params[i].caslat_X; |
| temp2 |= 1 << dimm_params[i].caslat_X_minus_1; |
| temp2 |= 1 << dimm_params[i].caslat_X_minus_2; |
| /* |
| * FIXME: If there was no entry for X-2 (X-1) in |
| * the SPD, then caslat_X_minus_2 |
| * (caslat_X_minus_1) contains either 255 or |
| * 0xFFFFFFFF because that's what the glorious |
| * __ilog2 function returns for an input of 0. |
| * On 32-bit PowerPC, left shift counts with bit |
| * 26 set (that the value of 255 or 0xFFFFFFFF |
| * will have), cause the destination register to |
| * be 0. That is why this works. |
| */ |
| temp1 &= temp2; |
| } |
| } |
| |
| /* |
| * Step 2: check each common CAS latency against tCK of each |
| * DIMM's SPD. |
| */ |
| lowest_good_caslat = 0; |
| temp2 = 0; |
| while (temp1) { |
| not_ok = 0; |
| temp2 = __ilog2(temp1); |
| debug("checking common caslat = %u\n", temp2); |
| |
| /* Check if this CAS latency will work on all DIMMs at tCK. */ |
| for (i = 0; i < number_of_dimms; i++) { |
| if (!dimm_params[i].n_ranks) { |
| continue; |
| } |
| if (dimm_params[i].caslat_X == temp2) { |
| if (mclk_ps >= dimm_params[i].tCKmin_X_ps) { |
| debug("CL = %u ok on DIMM %u at tCK=%u" |
| " ps with its tCKmin_X_ps of %u\n", |
| temp2, i, mclk_ps, |
| dimm_params[i].tCKmin_X_ps); |
| continue; |
| } else { |
| not_ok++; |
| } |
| } |
| |
| if (dimm_params[i].caslat_X_minus_1 == temp2) { |
| unsigned int tCKmin_X_minus_1_ps |
| = dimm_params[i].tCKmin_X_minus_1_ps; |
| if (mclk_ps >= tCKmin_X_minus_1_ps) { |
| debug("CL = %u ok on DIMM %u at " |
| "tCK=%u ps with its " |
| "tCKmin_X_minus_1_ps of %u\n", |
| temp2, i, mclk_ps, |
| tCKmin_X_minus_1_ps); |
| continue; |
| } else { |
| not_ok++; |
| } |
| } |
| |
| if (dimm_params[i].caslat_X_minus_2 == temp2) { |
| unsigned int tCKmin_X_minus_2_ps |
| = dimm_params[i].tCKmin_X_minus_2_ps; |
| if (mclk_ps >= tCKmin_X_minus_2_ps) { |
| debug("CL = %u ok on DIMM %u at " |
| "tCK=%u ps with its " |
| "tCKmin_X_minus_2_ps of %u\n", |
| temp2, i, mclk_ps, |
| tCKmin_X_minus_2_ps); |
| continue; |
| } else { |
| not_ok++; |
| } |
| } |
| } |
| |
| if (!not_ok) { |
| lowest_good_caslat = temp2; |
| } |
| |
| temp1 &= ~(1 << temp2); |
| } |
| |
| debug("lowest common SPD-defined CAS latency = %u\n", |
| lowest_good_caslat); |
| outpdimm->lowest_common_SPD_caslat = lowest_good_caslat; |
| |
| |
| /* |
| * Compute a common 'de-rated' CAS latency. |
| * |
| * The strategy here is to find the *highest* dereated cas latency |
| * with the assumption that all of the DIMMs will support a dereated |
| * CAS latency higher than or equal to their lowest dereated value. |
| */ |
| temp1 = 0; |
| for (i = 0; i < number_of_dimms; i++) { |
| temp1 = max(temp1, dimm_params[i].caslat_lowest_derated); |
| } |
| outpdimm->highest_common_derated_caslat = temp1; |
| debug("highest common dereated CAS latency = %u\n", temp1); |
| #endif /* #if defined(CONFIG_FSL_DDR3) */ |
| |
| /* Determine if all DIMMs ECC capable. */ |
| temp1 = 1; |
| for (i = 0; i < number_of_dimms; i++) { |
| if (dimm_params[i].n_ranks && |
| !(dimm_params[i].edc_config & EDC_ECC)) { |
| temp1 = 0; |
| break; |
| } |
| } |
| if (temp1) { |
| debug("all DIMMs ECC capable\n"); |
| } else { |
| debug("Warning: not all DIMMs ECC capable, cant enable ECC\n"); |
| } |
| outpdimm->all_DIMMs_ECC_capable = temp1; |
| |
| #ifndef CONFIG_FSL_DDR3 |
| /* FIXME: move to somewhere else to validate. */ |
| if (mclk_ps > tCKmax_max_ps) { |
| printf("Warning: some of the installed DIMMs " |
| "can not operate this slowly.\n"); |
| return 1; |
| } |
| #endif |
| /* |
| * Compute additive latency. |
| * |
| * For DDR1, additive latency should be 0. |
| * |
| * For DDR2, with ODT enabled, use "a value" less than ACTTORW, |
| * which comes from Trcd, and also note that: |
| * add_lat + caslat must be >= 4 |
| * |
| * For DDR3, we use the AL=0 |
| * |
| * When to use additive latency for DDR2: |
| * |
| * I. Because you are using CL=3 and need to do ODT on writes and |
| * want functionality. |
| * 1. Are you going to use ODT? (Does your board not have |
| * additional termination circuitry for DQ, DQS, DQS_, |
| * DM, RDQS, RDQS_ for x4/x8 configs?) |
| * 2. If so, is your lowest supported CL going to be 3? |
| * 3. If so, then you must set AL=1 because |
| * |
| * WL >= 3 for ODT on writes |
| * RL = AL + CL |
| * WL = RL - 1 |
| * -> |
| * WL = AL + CL - 1 |
| * AL + CL - 1 >= 3 |
| * AL + CL >= 4 |
| * QED |
| * |
| * RL >= 3 for ODT on reads |
| * RL = AL + CL |
| * |
| * Since CL aren't usually less than 2, AL=0 is a minimum, |
| * so the WL-derived AL should be the -- FIXME? |
| * |
| * II. Because you are using auto-precharge globally and want to |
| * use additive latency (posted CAS) to get more bandwidth. |
| * 1. Are you going to use auto-precharge mode globally? |
| * |
| * Use addtivie latency and compute AL to be 1 cycle less than |
| * tRCD, i.e. the READ or WRITE command is in the cycle |
| * immediately following the ACTIVATE command.. |
| * |
| * III. Because you feel like it or want to do some sort of |
| * degraded-performance experiment. |
| * 1. Do you just want to use additive latency because you feel |
| * like it? |
| * |
| * Validation: AL is less than tRCD, and within the other |
| * read-to-precharge constraints. |
| */ |
| |
| additive_latency = 0; |
| |
| #if defined(CONFIG_FSL_DDR2) |
| if (lowest_good_caslat < 4) { |
| additive_latency = (picos_to_mclk(tRCD_ps) > lowest_good_caslat) |
| ? picos_to_mclk(tRCD_ps) - lowest_good_caslat : 0; |
| if (mclk_to_picos(additive_latency) > tRCD_ps) { |
| additive_latency = picos_to_mclk(tRCD_ps); |
| debug("setting additive_latency to %u because it was " |
| " greater than tRCD_ps\n", additive_latency); |
| } |
| } |
| |
| #elif defined(CONFIG_FSL_DDR3) |
| /* |
| * The system will not use the global auto-precharge mode. |
| * However, it uses the page mode, so we set AL=0 |
| */ |
| additive_latency = 0; |
| #endif |
| |
| /* |
| * Validate additive latency |
| * FIXME: move to somewhere else to validate |
| * |
| * AL <= tRCD(min) |
| */ |
| if (mclk_to_picos(additive_latency) > tRCD_ps) { |
| printf("Error: invalid additive latency exceeds tRCD(min).\n"); |
| return 1; |
| } |
| |
| /* |
| * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled |
| * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled |
| * ADD_LAT (the register) must be set to a value less |
| * than ACTTORW if WL = 1, then AL must be set to 1 |
| * RD_TO_PRE (the register) must be set to a minimum |
| * tRTP + AL if AL is nonzero |
| */ |
| |
| /* |
| * Additive latency will be applied only if the memctl option to |
| * use it. |
| */ |
| outpdimm->additive_latency = additive_latency; |
| |
| debug("tCKmin_ps = %u\n", outpdimm->tCKmin_X_ps); |
| debug("tRCD_ps = %u\n", outpdimm->tRCD_ps); |
| debug("tRP_ps = %u\n", outpdimm->tRP_ps); |
| debug("tRAS_ps = %u\n", outpdimm->tRAS_ps); |
| debug("tWR_ps = %u\n", outpdimm->tWR_ps); |
| debug("tWTR_ps = %u\n", outpdimm->tWTR_ps); |
| debug("tRFC_ps = %u\n", outpdimm->tRFC_ps); |
| debug("tRRD_ps = %u\n", outpdimm->tRRD_ps); |
| debug("tRC_ps = %u\n", outpdimm->tRC_ps); |
| |
| return 0; |
| } |