blob: 9767cf2ca04f96c558546566ec59f9d87ce9bf5b [file] [log] [blame]
/*
* (C) Copyright 2001
* Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*************************************************************************
* adaption for the Marvell DB64360 Board
* Ingo Assmus (ingo.assmus@keymile.com)
*
* adaption for the cpci750 Board
* Reinhard Arlt (reinhard.arlt@esd-electronics.com)
*************************************************************************/
/* sdram_init.c - automatic memory sizing */
#include <common.h>
#include <74xx_7xx.h>
#include "../../Marvell/include/memory.h"
#include "../../Marvell/include/pci.h"
#include "../../Marvell/include/mv_gen_reg.h"
#include <net.h>
#include "eth.h"
#include "mpsc.h"
#include "../../Marvell/common/i2c.h"
#include "64360.h"
#include "mv_regs.h"
DECLARE_GLOBAL_DATA_PTR;
int set_dfcdlInit(void); /* setup delay line of Mv64360 */
/* ------------------------------------------------------------------------- */
int
memory_map_bank(unsigned int bankNo,
unsigned int bankBase,
unsigned int bankLength)
{
#ifdef MAP_PCI
PCI_HOST host;
#endif
#ifdef DEBUG
if (bankLength > 0) {
printf("mapping bank %d at %08x - %08x\n",
bankNo, bankBase, bankBase + bankLength - 1);
} else {
printf("unmapping bank %d\n", bankNo);
}
#endif
memoryMapBank(bankNo, bankBase, bankLength);
#ifdef MAP_PCI
for (host=PCI_HOST0;host<=PCI_HOST1;host++) {
const int features=
PREFETCH_ENABLE |
DELAYED_READ_ENABLE |
AGGRESSIVE_PREFETCH |
READ_LINE_AGGRESSIVE_PREFETCH |
READ_MULTI_AGGRESSIVE_PREFETCH |
MAX_BURST_4 |
PCI_NO_SWAP;
pciMapMemoryBank(host, bankNo, bankBase, bankLength);
pciSetRegionSnoopMode(host, bankNo, PCI_SNOOP_WB, bankBase,
bankLength);
pciSetRegionFeatures(host, bankNo, features, bankBase, bankLength);
}
#endif
return 0;
}
#define GB (1 << 30)
/* much of this code is based on (or is) the code in the pip405 port */
/* thanks go to the authors of said port - Josh */
/* structure to store the relevant information about an sdram bank */
typedef struct sdram_info {
uchar drb_size;
uchar registered, ecc;
uchar tpar;
uchar tras_clocks;
uchar burst_len;
uchar banks, slot;
} sdram_info_t;
/* Typedefs for 'gtAuxilGetDIMMinfo' function */
typedef enum _memoryType {SDRAM, DDR} MEMORY_TYPE;
typedef enum _voltageInterface {TTL_5V_TOLERANT, LVTTL, HSTL_1_5V,
SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN,
} VOLTAGE_INTERFACE;
typedef enum _max_CL_supported_DDR {DDR_CL_1=1, DDR_CL_1_5=2, DDR_CL_2=4, DDR_CL_2_5=8, DDR_CL_3=16, DDR_CL_3_5=32, DDR_CL_FAULT} MAX_CL_SUPPORTED_DDR;
typedef enum _max_CL_supported_SD {SD_CL_1=1, SD_CL_2, SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7, SD_FAULT} MAX_CL_SUPPORTED_SD;
/* SDRAM/DDR information struct */
typedef struct _gtMemoryDimmInfo {
MEMORY_TYPE memoryType;
unsigned int numOfRowAddresses;
unsigned int numOfColAddresses;
unsigned int numOfModuleBanks;
unsigned int dataWidth;
VOLTAGE_INTERFACE voltageInterface;
unsigned int errorCheckType; /* ECC , PARITY.. */
unsigned int sdramWidth; /* 4,8,16 or 32 */ ;
unsigned int errorCheckDataWidth; /* 0 - no, 1 - Yes */
unsigned int minClkDelay;
unsigned int burstLengthSupported;
unsigned int numOfBanksOnEachDevice;
unsigned int suportedCasLatencies;
unsigned int RefreshInterval;
unsigned int maxCASlatencySupported_LoP; /* LoP left of point (measured in ns) */
unsigned int maxCASlatencySupported_RoP; /* RoP right of point (measured in ns) */
MAX_CL_SUPPORTED_DDR maxClSupported_DDR;
MAX_CL_SUPPORTED_SD maxClSupported_SD;
unsigned int moduleBankDensity;
/* module attributes (true for yes) */
bool bufferedAddrAndControlInputs;
bool registeredAddrAndControlInputs;
bool onCardPLL;
bool bufferedDQMBinputs;
bool registeredDQMBinputs;
bool differentialClockInput;
bool redundantRowAddressing;
/* module general attributes */
bool suportedAutoPreCharge;
bool suportedPreChargeAll;
bool suportedEarlyRasPreCharge;
bool suportedWrite1ReadBurst;
bool suported5PercentLowVCC;
bool suported5PercentUpperVCC;
/* module timing parameters */
unsigned int minRasToCasDelay;
unsigned int minRowActiveRowActiveDelay;
unsigned int minRasPulseWidth;
unsigned int minRowPrechargeTime; /* measured in ns */
int addrAndCommandHoldTime; /* LoP left of point (measured in ns) */
int addrAndCommandSetupTime; /* (measured in ns/100) */
int dataInputSetupTime; /* LoP left of point (measured in ns) */
int dataInputHoldTime; /* LoP left of point (measured in ns) */
/* tAC times for highest 2nd and 3rd highest CAS Latency values */
unsigned int clockToDataOut_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOut_RoP; /* RoP right of point (measured in ns) */
unsigned int clockToDataOutMinus1_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOutMinus1_RoP; /* RoP right of point (measured in ns) */
unsigned int clockToDataOutMinus2_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOutMinus2_RoP; /* RoP right of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancy_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancy_RoP; /* RoP right of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP; /* RoP right of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP; /* RoP right of point (measured in ns) */
/* Parameters calculated from
the extracted DIMM information */
unsigned int size;
unsigned int deviceDensity; /* 16,64,128,256 or 512 Mbit */
unsigned int numberOfDevices;
uchar drb_size; /* DRAM size in n*64Mbit */
uchar slot; /* Slot Number this module is inserted in */
uchar spd_raw_data[128]; /* Content of SPD-EEPROM copied 1:1 */
#ifdef DEBUG
uchar manufactura[8]; /* Content of SPD-EEPROM Byte 64-71 */
uchar modul_id[18]; /* Content of SPD-EEPROM Byte 73-90 */
uchar vendor_data[27]; /* Content of SPD-EEPROM Byte 99-125 */
unsigned long modul_serial_no; /* Content of SPD-EEPROM Byte 95-98 */
unsigned int manufac_date; /* Content of SPD-EEPROM Byte 93-94 */
unsigned int modul_revision; /* Content of SPD-EEPROM Byte 91-92 */
uchar manufac_place; /* Content of SPD-EEPROM Byte 72 */
#endif
} AUX_MEM_DIMM_INFO;
/*
* translate ns.ns/10 coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short
NS10to10PS(unsigned char spd_byte)
{
unsigned short ns, ns10;
/* isolate upper nibble */
ns = (spd_byte >> 4) & 0x0F;
/* isolate lower nibble */
ns10 = (spd_byte & 0x0F);
return(ns*100 + ns10*10);
}
/*
* translate ns coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short
NSto10PS(unsigned char spd_byte)
{
return(spd_byte*100);
}
/* This code reads the SPD chip on the sdram and populates
* the array which is passed in with the relevant information */
/* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */
static int check_dimm (uchar slot, AUX_MEM_DIMM_INFO * dimmInfo)
{
uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR;
int ret;
unsigned int i, j, density = 1, devicesForErrCheck = 0;
#ifdef DEBUG
unsigned int k;
#endif
unsigned int rightOfPoint = 0, leftOfPoint = 0, mult, div, time_tmp;
int sign = 1, shift, maskLeftOfPoint, maskRightOfPoint;
uchar supp_cal, cal_val;
ulong memclk, tmemclk;
ulong tmp;
uchar trp_clocks = 0, tras_clocks;
uchar data[128];
memclk = gd->bus_clk;
tmemclk = 1000000000 / (memclk / 100); /* in 10 ps units */
memset (data, 0, sizeof (data));
ret = 0;
debug("before i2c read\n");
ret = i2c_read (addr, 0, 2, data, 128);
debug("after i2c read\n");
if ((data[64] != 'e') || (data[65] != 's') || (data[66] != 'd')
|| (data[67] != '-') || (data[68] != 'g') || (data[69] != 'm')
|| (data[70] != 'b') || (data[71] != 'h')) {
ret = -1;
}
if ((ret != 0) && (slot == 0)) {
memset (data, 0, sizeof (data));
data[0] = 0x80;
data[1] = 0x08;
data[2] = 0x07;
data[3] = 0x0c;
data[4] = 0x09;
data[5] = 0x01;
data[6] = 0x48;
data[7] = 0x00;
data[8] = 0x04;
data[9] = 0x75;
data[10] = 0x80;
data[11] = 0x02;
data[12] = 0x80;
data[13] = 0x10;
data[14] = 0x08;
data[15] = 0x01;
data[16] = 0x0e;
data[17] = 0x04;
data[18] = 0x0c;
data[19] = 0x01;
data[20] = 0x02;
data[21] = 0x20;
data[22] = 0x00;
data[23] = 0xa0;
data[24] = 0x80;
data[25] = 0x00;
data[26] = 0x00;
data[27] = 0x50;
data[28] = 0x3c;
data[29] = 0x50;
data[30] = 0x32;
data[31] = 0x10;
data[32] = 0xb0;
data[33] = 0xb0;
data[34] = 0x60;
data[35] = 0x60;
data[64] = 'e';
data[65] = 's';
data[66] = 'd';
data[67] = '-';
data[68] = 'g';
data[69] = 'm';
data[70] = 'b';
data[71] = 'h';
ret = 0;
}
/* zero all the values */
memset (dimmInfo, 0, sizeof (*dimmInfo));
/* copy the SPD content 1:1 into the dimmInfo structure */
for (i = 0; i <= 127; i++) {
dimmInfo->spd_raw_data[i] = data[i];
}
if (ret) {
debug("No DIMM in slot %d [err = %x]\n", slot, ret);
return 0;
} else
dimmInfo->slot = slot; /* start to fill up dimminfo for this "slot" */
#ifdef CONFIG_SYS_DISPLAY_DIMM_SPD_CONTENT
for (i = 0; i <= 127; i++) {
printf ("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i],
data[i]);
}
#endif
#ifdef DEBUG
/* find Manufacturer of Dimm Module */
for (i = 0; i < sizeof (dimmInfo->manufactura); i++) {
dimmInfo->manufactura[i] = data[64 + i];
}
printf ("\nThis RAM-Module is produced by: %s\n",
dimmInfo->manufactura);
/* find Manul-ID of Dimm Module */
for (i = 0; i < sizeof (dimmInfo->modul_id); i++) {
dimmInfo->modul_id[i] = data[73 + i];
}
printf ("The Module-ID of this RAM-Module is: %s\n",
dimmInfo->modul_id);
/* find Vendor-Data of Dimm Module */
for (i = 0; i < sizeof (dimmInfo->vendor_data); i++) {
dimmInfo->vendor_data[i] = data[99 + i];
}
printf ("Vendor Data of this RAM-Module is: %s\n",
dimmInfo->vendor_data);
/* find modul_serial_no of Dimm Module */
dimmInfo->modul_serial_no = (*((unsigned long *) (&data[95])));
printf ("Serial No. of this RAM-Module is: %ld (%lx)\n",
dimmInfo->modul_serial_no, dimmInfo->modul_serial_no);
/* find Manufac-Data of Dimm Module */
dimmInfo->manufac_date = (*((unsigned int *) (&data[93])));
printf ("Manufactoring Date of this RAM-Module is: %d.%d\n", data[93], data[94]); /*dimmInfo->manufac_date */
/* find modul_revision of Dimm Module */
dimmInfo->modul_revision = (*((unsigned int *) (&data[91])));
printf ("Module Revision of this RAM-Module is: %d.%d\n", data[91], data[92]); /* dimmInfo->modul_revision */
/* find manufac_place of Dimm Module */
dimmInfo->manufac_place = (*((unsigned char *) (&data[72])));
printf ("manufac_place of this RAM-Module is: %d\n",
dimmInfo->manufac_place);
#endif
/*------------------------------------------------------------------------------------------------------------------------------*/
/* calculate SPD checksum */
/*------------------------------------------------------------------------------------------------------------------------------*/
#if 0 /* test-only */
spd_checksum = 0;
for (i = 0; i <= 62; i++) {
spd_checksum += data[i];
}
if ((spd_checksum & 0xff) != data[63]) {
printf ("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int) (spd_checksum & 0xff), data[63]);
hang ();
}
else
printf ("SPD Checksum ok!\n");
#endif /* test-only */
/*------------------------------------------------------------------------------------------------------------------------------*/
for (i = 2; i <= 35; i++) {
switch (i) {
case 2: /* Memory type (DDR / SDRAM) */
dimmInfo->memoryType = (data[i] == 0x7) ? DDR : SDRAM;
#ifdef DEBUG
if (dimmInfo->memoryType == 0)
debug("Dram_type in slot %d is: SDRAM\n",
dimmInfo->slot);
if (dimmInfo->memoryType == 1)
debug("Dram_type in slot %d is: DDRAM\n",
dimmInfo->slot);
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 3: /* Number Of Row Addresses */
dimmInfo->numOfRowAddresses = data[i];
debug("Module Number of row addresses: %d\n",
dimmInfo->numOfRowAddresses);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 4: /* Number Of Column Addresses */
dimmInfo->numOfColAddresses = data[i];
debug("Module Number of col addresses: %d\n",
dimmInfo->numOfColAddresses);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 5: /* Number Of Module Banks */
dimmInfo->numOfModuleBanks = data[i];
debug("Number of Banks on Mod. : %d\n",
dimmInfo->numOfModuleBanks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 6: /* Data Width */
dimmInfo->dataWidth = data[i];
debug("Module Data Width: %d\n",
dimmInfo->dataWidth);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 8: /* Voltage Interface */
switch (data[i]) {
case 0x0:
dimmInfo->voltageInterface = TTL_5V_TOLERANT;
debug("Module is TTL_5V_TOLERANT\n");
break;
case 0x1:
dimmInfo->voltageInterface = LVTTL;
debug("Module is LVTTL\n");
break;
case 0x2:
dimmInfo->voltageInterface = HSTL_1_5V;
debug("Module is TTL_5V_TOLERANT\n");
break;
case 0x3:
dimmInfo->voltageInterface = SSTL_3_3V;
debug("Module is HSTL_1_5V\n");
break;
case 0x4:
dimmInfo->voltageInterface = SSTL_2_5V;
debug("Module is SSTL_2_5V\n");
break;
default:
dimmInfo->voltageInterface = VOLTAGE_UNKNOWN;
debug("Module is VOLTAGE_UNKNOWN\n");
break;
}
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 9: /* Minimum Cycle Time At Max CasLatancy */
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP =
leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP =
rightOfPoint;
debug("Minimum Cycle Time At Max CasLatancy: %d.%d [ns]\n",
leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 10: /* Clock To Data Out */
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOut_LoP = leftOfPoint;
dimmInfo->clockToDataOut_RoP = rightOfPoint;
debug("Clock To Data Out: %d.%2d [ns]\n",
leftOfPoint, rightOfPoint);
/*dimmInfo->clockToDataOut */
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
#ifdef CONFIG_MV64360_ECC
case 11: /* Error Check Type */
dimmInfo->errorCheckType = data[i];
debug("Error Check Type (0=NONE): %d\n",
dimmInfo->errorCheckType);
break;
#endif /* of ifdef CONFIG_MV64360_ECC */
/*------------------------------------------------------------------------------------------------------------------------------*/
case 12: /* Refresh Interval */
dimmInfo->RefreshInterval = data[i];
debug("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n",
dimmInfo->RefreshInterval);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 13: /* Sdram Width */
dimmInfo->sdramWidth = data[i];
debug("Sdram Width: %d\n",
dimmInfo->sdramWidth);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 14: /* Error Check Data Width */
dimmInfo->errorCheckDataWidth = data[i];
debug("Error Check Data Width: %d\n",
dimmInfo->errorCheckDataWidth);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 15: /* Minimum Clock Delay */
dimmInfo->minClkDelay = data[i];
debug("Minimum Clock Delay: %d\n",
dimmInfo->minClkDelay);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 16: /* Burst Length Supported */
/******-******-******-*******
* bit3 | bit2 | bit1 | bit0 *
*******-******-******-*******
burst length = * 8 | 4 | 2 | 1 *
*****************************
If for example bit0 and bit2 are set, the burst
length supported are 1 and 4. */
dimmInfo->burstLengthSupported = data[i];
#ifdef DEBUG
debug("Burst Length Supported: ");
if (dimmInfo->burstLengthSupported & 0x01)
debug("1, ");
if (dimmInfo->burstLengthSupported & 0x02)
debug("2, ");
if (dimmInfo->burstLengthSupported & 0x04)
debug("4, ");
if (dimmInfo->burstLengthSupported & 0x08)
debug("8, ");
debug(" Bit \n");
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 17: /* Number Of Banks On Each Device */
dimmInfo->numOfBanksOnEachDevice = data[i];
debug("Number Of Banks On Each Chip: %d\n",
dimmInfo->numOfBanksOnEachDevice);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 18: /* Suported Cas Latencies */
/* DDR:
*******-******-******-******-******-******-******-*******
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
*******-******-******-******-******-******-******-*******
CAS = * TBD | TBD | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 *
*********************************************************
SDRAM:
*******-******-******-******-******-******-******-*******
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
*******-******-******-******-******-******-******-*******
CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 *
********************************************************/
dimmInfo->suportedCasLatencies = data[i];
#ifdef DEBUG
debug("Suported Cas Latencies: (CL) ");
if (dimmInfo->memoryType == 0) { /* SDRAM */
for (k = 0; k <= 7; k++) {
if (dimmInfo->
suportedCasLatencies & (1 << k))
debug("%d, ",
k + 1);
}
} else { /* DDR-RAM */
if (dimmInfo->suportedCasLatencies & 1)
debug("1, ");
if (dimmInfo->suportedCasLatencies & 2)
debug("1.5, ");
if (dimmInfo->suportedCasLatencies & 4)
debug("2, ");
if (dimmInfo->suportedCasLatencies & 8)
debug("2.5, ");
if (dimmInfo->suportedCasLatencies & 16)
debug("3, ");
if (dimmInfo->suportedCasLatencies & 32)
debug("3.5, ");
}
debug("\n");
#endif
/* Calculating MAX CAS latency */
for (j = 7; j > 0; j--) {
if (((dimmInfo->
suportedCasLatencies >> j) & 0x1) ==
1) {
switch (dimmInfo->memoryType) {
case DDR:
/* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */
switch (j) {
case 7:
debug("Max. Cas Latencies (DDR): ERROR !!!\n");
dimmInfo->
maxClSupported_DDR
=
DDR_CL_FAULT;
hang ();
break;
case 6:
debug("Max. Cas Latencies (DDR): ERROR !!!\n");
dimmInfo->
maxClSupported_DDR
=
DDR_CL_FAULT;
hang ();
break;
case 5:
debug("Max. Cas Latencies (DDR): 3.5 clk's\n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_3_5;
break;
case 4:
debug("Max. Cas Latencies (DDR): 3 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_3;
break;
case 3:
debug("Max. Cas Latencies (DDR): 2.5 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_2_5;
break;
case 2:
debug("Max. Cas Latencies (DDR): 2 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_2;
break;
case 1:
debug("Max. Cas Latencies (DDR): 1.5 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_1_5;
break;
}
dimmInfo->
maxCASlatencySupported_LoP
=
1 +
(int) (5 * j / 10);
if (((5 * j) % 10) != 0)
dimmInfo->
maxCASlatencySupported_RoP
= 5;
else
dimmInfo->
maxCASlatencySupported_RoP
= 0;
debug("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
dimmInfo->
maxCASlatencySupported_LoP,
dimmInfo->
maxCASlatencySupported_RoP);
break;
case SDRAM:
/* CAS latency 1, 2, 3, 4, 5, 6, 7 */
dimmInfo->maxClSupported_SD = j; /* Cas Latency DDR-RAM Coded */
debug("Max. Cas Latencies (SD): %d\n",
dimmInfo->
maxClSupported_SD);
dimmInfo->
maxCASlatencySupported_LoP
= j;
dimmInfo->
maxCASlatencySupported_RoP
= 0;
debug("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
dimmInfo->
maxCASlatencySupported_LoP,
dimmInfo->
maxCASlatencySupported_RoP);
break;
}
break;
}
}
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 21: /* Buffered Address And Control Inputs */
debug("\nModul Attributes (SPD Byte 21): \n");
dimmInfo->bufferedAddrAndControlInputs =
data[i] & BIT0;
dimmInfo->registeredAddrAndControlInputs =
(data[i] & BIT1) >> 1;
dimmInfo->onCardPLL = (data[i] & BIT2) >> 2;
dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3;
dimmInfo->registeredDQMBinputs =
(data[i] & BIT4) >> 4;
dimmInfo->differentialClockInput =
(data[i] & BIT5) >> 5;
dimmInfo->redundantRowAddressing =
(data[i] & BIT6) >> 6;
if (dimmInfo->bufferedAddrAndControlInputs == 1)
debug(" - Buffered Address/Control Input: Yes \n");
else
debug(" - Buffered Address/Control Input: No \n");
if (dimmInfo->registeredAddrAndControlInputs == 1)
debug(" - Registered Address/Control Input: Yes \n");
else
debug(" - Registered Address/Control Input: No \n");
if (dimmInfo->onCardPLL == 1)
debug(" - On-Card PLL (clock): Yes \n");
else
debug(" - On-Card PLL (clock): No \n");
if (dimmInfo->bufferedDQMBinputs == 1)
debug(" - Bufferd DQMB Inputs: Yes \n");
else
debug(" - Bufferd DQMB Inputs: No \n");
if (dimmInfo->registeredDQMBinputs == 1)
debug(" - Registered DQMB Inputs: Yes \n");
else
debug(" - Registered DQMB Inputs: No \n");
if (dimmInfo->differentialClockInput == 1)
debug(" - Differential Clock Input: Yes \n");
else
debug(" - Differential Clock Input: No \n");
if (dimmInfo->redundantRowAddressing == 1)
debug(" - redundant Row Addressing: Yes \n");
else
debug(" - redundant Row Addressing: No \n");
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 22: /* Suported AutoPreCharge */
debug("\nModul Attributes (SPD Byte 22): \n");
dimmInfo->suportedEarlyRasPreCharge = data[i] & BIT0;
dimmInfo->suportedAutoPreCharge =
(data[i] & BIT1) >> 1;
dimmInfo->suportedPreChargeAll =
(data[i] & BIT2) >> 2;
dimmInfo->suportedWrite1ReadBurst =
(data[i] & BIT3) >> 3;
dimmInfo->suported5PercentLowVCC =
(data[i] & BIT4) >> 4;
dimmInfo->suported5PercentUpperVCC =
(data[i] & BIT5) >> 5;
if (dimmInfo->suportedEarlyRasPreCharge == 1)
debug(" - Early Ras Precharge: Yes \n");
else
debug(" - Early Ras Precharge: No \n");
if (dimmInfo->suportedAutoPreCharge == 1)
debug(" - AutoPreCharge: Yes \n");
else
debug(" - AutoPreCharge: No \n");
if (dimmInfo->suportedPreChargeAll == 1)
debug(" - Precharge All: Yes \n");
else
debug(" - Precharge All: No \n");
if (dimmInfo->suportedWrite1ReadBurst == 1)
debug(" - Write 1/ReadBurst: Yes \n");
else
debug(" - Write 1/ReadBurst: No \n");
if (dimmInfo->suported5PercentLowVCC == 1)
debug(" - lower VCC tolerance: 5 Percent \n");
else
debug(" - lower VCC tolerance: 10 Percent \n");
if (dimmInfo->suported5PercentUpperVCC == 1)
debug(" - upper VCC tolerance: 5 Percent \n");
else
debug(" - upper VCC tolerance: 10 Percent \n");
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 23: /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP =
leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP =
rightOfPoint;
debug("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n",
leftOfPoint, rightOfPoint);
/*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 24: /* Clock To Data Out 2nd highest Cas Latency Value */
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint;
dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint;
debug("Clock To Data Out (2nd CL value): %d.%2d [ns]\n",
leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 25: /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP =
leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP =
rightOfPoint;
debug("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n",
leftOfPoint, rightOfPoint);
/*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 26: /* Clock To Data Out 3rd highest Cas Latency Value */
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint;
dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint;
debug("Clock To Data Out (3rd CL value): %d.%2d [ns]\n",
leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 27: /* Minimum Row Precharge Time */
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
dimmInfo->minRowPrechargeTime = ((leftOfPoint * 100) + rightOfPoint); /* measured in n times 10ps Intervals */
trp_clocks =
(dimmInfo->minRowPrechargeTime +
(tmemclk - 1)) / tmemclk;
debug("*** 1 clock cycle = %ld 10ps intervalls = %ld.%ld ns****\n",
tmemclk, tmemclk / 100, tmemclk % 100);
debug("Minimum Row Precharge Time [ns]: %d.%2d = in Clk cycles %d\n",
leftOfPoint, rightOfPoint, trp_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 28: /* Minimum Row Active to Row Active Time */
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */
debug("Minimum Row Active -To- Row Active Delay [ns]: %d.%2d = in Clk cycles %d\n",
leftOfPoint, rightOfPoint, trp_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 29: /* Minimum Ras-To-Cas Delay */
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */
debug("Minimum Ras-To-Cas Delay [ns]: %d.%2d = in Clk cycles %d\n",
leftOfPoint, rightOfPoint, trp_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 30: /* Minimum Ras Pulse Width */
dimmInfo->minRasPulseWidth = data[i];
tras_clocks =
(NSto10PS (data[i]) +
(tmemclk - 1)) / tmemclk;
debug("Minimum Ras Pulse Width [ns]: %d = in Clk cycles %d\n",
dimmInfo->minRasPulseWidth, tras_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 31: /* Module Bank Density */
dimmInfo->moduleBankDensity = data[i];
debug("Module Bank Density: %d\n",
dimmInfo->moduleBankDensity);
#ifdef DEBUG
debug("*** Offered Densities (more than 1 = Multisize-Module): ");
{
if (dimmInfo->moduleBankDensity & 1)
debug("4MB, ");
if (dimmInfo->moduleBankDensity & 2)
debug("8MB, ");
if (dimmInfo->moduleBankDensity & 4)
debug("16MB, ");
if (dimmInfo->moduleBankDensity & 8)
debug("32MB, ");
if (dimmInfo->moduleBankDensity & 16)
debug("64MB, ");
if (dimmInfo->moduleBankDensity & 32)
debug("128MB, ");
if ((dimmInfo->moduleBankDensity & 64)
|| (dimmInfo->moduleBankDensity & 128)) {
debug("ERROR, ");
hang ();
}
}
debug("\n");
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 32: /* Address And Command Setup Time (measured in ns/1000) */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->addrAndCommandSetupTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug("Address And Command Setup Time [ns]: %d.%d\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 33: /* Address And Command Hold Time */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->addrAndCommandHoldTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug("Address And Command Hold Time [ns]: %d.%d\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 34: /* Data Input Setup Time */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->dataInputSetupTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug("Data Input Setup Time [ns]: %d.%d\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 35: /* Data Input Hold Time */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->dataInputHoldTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug("Data Input Hold Time [ns]: %d.%d\n\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
}
}
/* calculating the sdram density */
for (i = 0;
i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses;
i++) {
density = density * 2;
}
dimmInfo->deviceDensity = density * dimmInfo->numOfBanksOnEachDevice *
dimmInfo->sdramWidth;
dimmInfo->numberOfDevices =
(dimmInfo->dataWidth / dimmInfo->sdramWidth) *
dimmInfo->numOfModuleBanks;
devicesForErrCheck =
(dimmInfo->dataWidth - 64) / dimmInfo->sdramWidth;
if ((dimmInfo->errorCheckType == 0x1)
|| (dimmInfo->errorCheckType == 0x2)
|| (dimmInfo->errorCheckType == 0x3)) {
dimmInfo->size =
(dimmInfo->deviceDensity / 8) *
(dimmInfo->numberOfDevices - devicesForErrCheck);
} else {
dimmInfo->size =
(dimmInfo->deviceDensity / 8) *
dimmInfo->numberOfDevices;
}
/* compute the module DRB size */
tmp = (1 <<
(dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses));
tmp *= dimmInfo->numOfModuleBanks;
tmp *= dimmInfo->sdramWidth;
tmp = tmp >> 24; /* div by 0x4000000 (64M) */
dimmInfo->drb_size = (uchar) tmp;
debug("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size);
/* try a CAS latency of 3 first... */
/* bit 1 is CL2, bit 2 is CL3 */
supp_cal = (dimmInfo->suportedCasLatencies & 0x1c) >> 1;
cal_val = 0;
if (supp_cal & 8) {
if (NS10to10PS (data[9]) <= tmemclk)
cal_val = 6;
}
if (supp_cal & 4) {
if (NS10to10PS (data[9]) <= tmemclk)
cal_val = 5;
}
/* then 2... */
if (supp_cal & 2) {
if (NS10to10PS (data[23]) <= tmemclk)
cal_val = 4;
}
debug("cal_val = %d\n", cal_val * 5);
/* bummer, did't work... */
if (cal_val == 0) {
debug("Couldn't find a good CAS latency\n");
hang ();
return 0;
}
return true;
}
/* sets up the GT properly with information passed in */
int setup_sdram (AUX_MEM_DIMM_INFO * info)
{
ulong tmp;
ulong tmp_sdram_mode = 0; /* 0x141c */
ulong tmp_dunit_control_low = 0; /* 0x1404 */
uint sdram_config_reg = CONFIG_SYS_SDRAM_CONFIG;
int i;
/* sanity checking */
if (!info->numOfModuleBanks) {
printf ("setup_sdram called with 0 banks\n");
return 1;
}
/* delay line */
/* Program the GT with the discovered data */
if (info->registeredAddrAndControlInputs == true)
debug("Module is registered, but we do not support registered Modules !!!\n");
/* delay line */
set_dfcdlInit (); /* may be its not needed */
debug("Delay line set done\n");
/* set SDRAM mode NOP */ /* To_do check it */
GT_REG_WRITE (SDRAM_OPERATION, 0x5);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n");
}
#ifdef CONFIG_MV64360_ECC
if ((info->errorCheckType == 0x2) && (CPCI750_ECC_TEST)) {
/* DRAM has ECC, so turn it on */
sdram_config_reg |= BIT18;
debug("Enabling ECC\n");
}
#endif /* of ifdef CONFIG_MV64360_ECC */
/* SDRAM configuration */
GT_REG_WRITE(SDRAM_CONFIG, sdram_config_reg);
debug("sdram_conf 0x1400: %08x\n", GTREGREAD (SDRAM_CONFIG));
/* SDRAM open pages controll keep open as much as I can */
GT_REG_WRITE (SDRAM_OPEN_PAGES_CONTROL, 0x0);
debug("sdram_open_pages_controll 0x1414: %08x\n",
GTREGREAD (SDRAM_OPEN_PAGES_CONTROL));
/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */
if (tmp == 0)
debug("Core Signals are sync (by HW-Setting)!!!\n");
else
debug("Core Signals syncs. are bypassed (by HW-Setting)!!!\n");
/* SDRAM set CAS Lentency according to SPD information */
switch (info->memoryType) {
case SDRAM:
debug("### SD-RAM not supported yet !!!\n");
hang ();
/* ToDo fill SD-RAM if needed !!!!! */
break;
case DDR:
debug("### SET-CL for DDR-RAM\n");
switch (info->maxClSupported_DDR) {
case DDR_CL_3:
tmp_dunit_control_low = 0x3c000000; /* Read-Data sampled on falling edge of Clk */
tmp_sdram_mode = 0x32; /* CL=3 Burstlength = 4 */
debug("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
break;
case DDR_CL_2_5:
if (tmp == 1) { /* clocks sync */
tmp_dunit_control_low = 0x24000000; /* Read-Data sampled on falling edge of Clk */
tmp_sdram_mode = 0x62; /* CL=2,5 Burstlength = 4 */
debug("Max. CL is 2,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* clk sync. bypassed */
tmp_dunit_control_low = 0x03000000; /* Read-Data sampled on rising edge of Clk */
tmp_sdram_mode = 0x62; /* CL=2,5 Burstlength = 4 */
debug("Max. CL is 2,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
case DDR_CL_2:
if (tmp == 1) { /* Sync */
tmp_dunit_control_low = 0x03000000; /* Read-Data sampled on rising edge of Clk */
tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */
debug("Max. CL is 2s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* Not sync. */
tmp_dunit_control_low = 0x3b000000; /* Read-Data sampled on rising edge of Clk */
tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */
debug("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
case DDR_CL_1_5:
if (tmp == 1) { /* Sync */
tmp_dunit_control_low = 0x23000000; /* Read-Data sampled on falling edge of Clk */
tmp_sdram_mode = 0x52; /* CL=1,5 Burstlength = 4 */
debug("Max. CL is 1,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* not sync */
tmp_dunit_control_low = 0x1a000000; /* Read-Data sampled on rising edge of Clk */
tmp_sdram_mode = 0x52; /* CL=1,5 Burstlength = 4 */
debug("Max. CL is 1,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
default:
printf ("Max. CL is out of range %d\n",
info->maxClSupported_DDR);
hang ();
break;
}
break;
}
/* Write results of CL detection procedure */
GT_REG_WRITE (SDRAM_MODE, tmp_sdram_mode);
/* set SDRAM mode SetCommand 0x1418 */
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
}
/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */
if (tmp != 1) { /*clocks are not sync */
/* asyncmode */
GT_REG_WRITE (D_UNIT_CONTROL_LOW,
(GTREGREAD (D_UNIT_CONTROL_LOW) & 0x7F) |
0x18110780 | tmp_dunit_control_low);
} else {
/* syncmode */
GT_REG_WRITE (D_UNIT_CONTROL_LOW,
(GTREGREAD (D_UNIT_CONTROL_LOW) & 0x7F) |
0x00110000 | tmp_dunit_control_low);
}
/* set SDRAM mode SetCommand 0x1418 */
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n");
}
/*------------------------------------------------------------------------------ */
/* bank parameters */
/* SDRAM address decode register */
/* program this with the default value */
tmp = 0x02;
debug("drb_size (n*64Mbit): %d\n", info->drb_size);
switch (info->drb_size) {
case 1: /* 64 Mbit */
case 2: /* 128 Mbit */
debug("RAM-Device_size 64Mbit or 128Mbit)\n");
tmp |= (0x00 << 4);
break;
case 4: /* 256 Mbit */
case 8: /* 512 Mbit */
debug("RAM-Device_size 256Mbit or 512Mbit)\n");
tmp |= (0x01 << 4);
break;
case 16: /* 1 Gbit */
case 32: /* 2 Gbit */
debug("RAM-Device_size 1Gbit or 2Gbit)\n");
tmp |= (0x02 << 4);
break;
default:
printf ("Error in dram size calculation\n");
debug("Assume: RAM-Device_size 1Gbit or 2Gbit)\n");
tmp |= (0x02 << 4);
return 1;
}
/* SDRAM bank parameters */
/* the param registers for slot 1 (banks 2+3) are offset by 0x8 */
debug("setting up slot %d config with: %08lx \n", info->slot, tmp);
GT_REG_WRITE (SDRAM_ADDR_CONTROL, tmp);
/* ------------------------------------------------------------------------------ */
debug("setting up sdram_timing_control_low with: %08x \n",
0x11511220);
GT_REG_WRITE (SDRAM_TIMING_CONTROL_LOW, 0x11511220);
/* ------------------------------------------------------------------------------ */
/* SDRAM configuration */
tmp = GTREGREAD (SDRAM_CONFIG);
if (info->registeredAddrAndControlInputs
|| info->registeredDQMBinputs) {
tmp |= (1 << 17);
debug("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n",
info->registeredAddrAndControlInputs,
info->registeredDQMBinputs);
}
/* Use buffer 1 to return read data to the CPU
* Page 426 MV64360 */
tmp |= (1 << 26);
debug("Before Buffer assignment - sdram_conf: %08x\n",
GTREGREAD (SDRAM_CONFIG));
debug("After Buffer assignment - sdram_conf: %08x\n",
GTREGREAD (SDRAM_CONFIG));
/* SDRAM timing To_do: */
tmp = GTREGREAD (SDRAM_TIMING_CONTROL_HIGH);
debug("# sdram_timing_control_high is : %08lx \n", tmp);
/* SDRAM address decode register */
/* program this with the default value */
tmp = GTREGREAD (SDRAM_ADDR_CONTROL);
debug("SDRAM address control (before: decode): %08x ",
GTREGREAD (SDRAM_ADDR_CONTROL));
GT_REG_WRITE (SDRAM_ADDR_CONTROL, (tmp | 0x2));
debug("SDRAM address control (after: decode): %08x\n",
GTREGREAD (SDRAM_ADDR_CONTROL));
/* set the SDRAM configuration for each bank */
/* for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */
{
int l, l1;
i = info->slot;
debug("\n*** Running a MRS cycle for bank %d ***\n", i);
/* map the bank */
memory_map_bank (i, 0, GB / 4);
#if 1 /* test only */
tmp = GTREGREAD (SDRAM_MODE);
GT_REG_WRITE (EXTENDED_DRAM_MODE, 0x0);
GT_REG_WRITE (SDRAM_OPERATION, 0x4);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
}
GT_REG_WRITE (SDRAM_MODE, tmp | 0x80);
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
}
l1 = 0;
for (l=0;l<200;l++)
l1 += GTREGREAD (SDRAM_OPERATION);
GT_REG_WRITE (SDRAM_MODE, tmp);
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
}
/* switch back to normal operation mode */
GT_REG_WRITE (SDRAM_OPERATION, 0x5);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
}
#endif /* test only */
/* unmap the bank */
memory_map_bank (i, 0, 0);
}
return 0;
}
/*
* Check memory range for valid RAM. A simple memory test determines
* the actually available RAM size between addresses `base' and
* `base + maxsize'. Some (not all) hardware errors are detected:
* - short between address lines
* - short between data lines
*/
long int
dram_size(long int *base, long int maxsize)
{
volatile long int *addr, *b=base;
long int cnt, val, save1, save2;
#define STARTVAL (1<<20) /* start test at 1M */
for (cnt = STARTVAL/sizeof(long); cnt < maxsize/sizeof(long); cnt <<= 1) {
addr = base + cnt; /* pointer arith! */
save1 = *addr; /* save contents of addr */
save2 = *b; /* save contents of base */
*addr=cnt; /* write cnt to addr */
*b=0; /* put null at base */
/* check at base address */
if ((*b) != 0) {
*addr=save1; /* restore *addr */
*b=save2; /* restore *b */
return (0);
}
val = *addr; /* read *addr */
val = *addr; /* read *addr */
*addr=save1;
*b=save2;
if (val != cnt) {
debug("Found %08x at Address %08x (failure)\n", (unsigned int)val, (unsigned int) addr);
/* fix boundary condition.. STARTVAL means zero */
if(cnt==STARTVAL/sizeof(long)) cnt=0;
return (cnt * sizeof(long));
}
}
return maxsize;
}
#ifdef CONFIG_MV64360_ECC
/*
* mv_dma_is_channel_active:
* Checks if a engine is busy.
*/
int mv_dma_is_channel_active(int engine)
{
ulong data;
data = GTREGREAD(MV64360_DMA_CHANNEL0_CONTROL + 4 * engine);
if (data & BIT14) /* activity status */
return 1;
return 0;
}
/*
* mv_dma_set_memory_space:
* Set a DMA memory window for the DMA's address decoding map.
*/
int mv_dma_set_memory_space(ulong mem_space, ulong mem_space_target,
ulong mem_space_attr, ulong base_address,
ulong size)
{
ulong temp;
/* The base address must be aligned to the size. */
if (base_address % size != 0)
return 0;
if (size >= 0x10000) {
size &= 0xffff0000;
base_address = (base_address & 0xffff0000);
/* Set the new attributes */
GT_REG_WRITE(MV64360_DMA_BASE_ADDR_REG0 + mem_space * 8,
(base_address | mem_space_target |
mem_space_attr));
GT_REG_WRITE((MV64360_DMA_SIZE_REG0 + mem_space * 8),
(size - 1) & 0xffff0000);
temp = GTREGREAD(MV64360_DMA_BASE_ADDR_ENABLE_REG);
GT_REG_WRITE(DMA_BASE_ADDR_ENABLE_REG,
(temp & ~(BIT0 << mem_space)));
return 1;
}
return 0;
}
/*
* mv_dma_transfer:
* Transfer data from source_addr to dest_addr on one of the 4 DMA channels.
*/
int mv_dma_transfer(int engine, ulong source_addr,
ulong dest_addr, ulong bytes, ulong command)
{
ulong eng_off_reg; /* Engine Offset Register */
if (bytes > 0xffff)
command = command | BIT31; /* DMA_16M_DESCRIPTOR_MODE */
command = command | ((command >> 6) & 0x7);
eng_off_reg = engine * 4;
GT_REG_WRITE(MV64360_DMA_CHANNEL0_BYTE_COUNT + eng_off_reg,
bytes);
GT_REG_WRITE(MV64360_DMA_CHANNEL0_SOURCE_ADDR + eng_off_reg,
source_addr);
GT_REG_WRITE(MV64360_DMA_CHANNEL0_DESTINATION_ADDR + eng_off_reg,
dest_addr);
command |= BIT12 /* DMA_CHANNEL_ENABLE */
| BIT9; /* DMA_NON_CHAIN_MODE */
/* Activate DMA engine By writting to mv_dma_control_register */
GT_REG_WRITE(MV64360_DMA_CHANNEL0_CONTROL + eng_off_reg, command);
return 1;
}
#endif /* of ifdef CONFIG_MV64360_ECC */
/* ppcboot interface function to SDRAM init - this is where all the
* controlling logic happens */
phys_size_t
initdram(int board_type)
{
int checkbank[4] = { [0 ... 3] = 0 };
ulong realsize, total, check;
AUX_MEM_DIMM_INFO dimmInfo1;
AUX_MEM_DIMM_INFO dimmInfo2;
int bank_no, nhr;
#ifdef CONFIG_MV64360_ECC
ulong dest, mem_space_attr;
#endif /* of ifdef CONFIG_MV64360_ECC */
/* first, use the SPD to get info about the SDRAM/ DDRRAM */
/* check the NHR bit and skip mem init if it's already done */
nhr = get_hid0() & (1 << 16);
if (nhr) {
printf("Skipping SD- DDRRAM setup due to NHR bit being set\n");
} else {
/* DIMM0 */
(void)check_dimm(0, &dimmInfo1);
/* DIMM1 */
(void)check_dimm(1, &dimmInfo2);
memory_map_bank(0, 0, 0);
memory_map_bank(1, 0, 0);
memory_map_bank(2, 0, 0);
memory_map_bank(3, 0, 0);
if (dimmInfo1.numOfModuleBanks && setup_sdram(&dimmInfo1)) {
printf("Setup for DIMM1 failed.\n");
}
if (dimmInfo2.numOfModuleBanks && setup_sdram(&dimmInfo2)) {
printf("Setup for DIMM2 failed.\n");
}
/* set the NHR bit */
set_hid0(get_hid0() | (1 << 16));
}
/* next, size the SDRAM banks */
realsize = total = 0;
check = GB/4;
if (dimmInfo1.numOfModuleBanks > 0) {checkbank[0] = 1; printf("-- DIMM1 has 1 bank\n");}
if (dimmInfo1.numOfModuleBanks > 1) {checkbank[1] = 1; printf("-- DIMM1 has 2 banks\n");}
if (dimmInfo1.numOfModuleBanks > 2)
printf("Error, SPD claims DIMM1 has >2 banks\n");
if (dimmInfo2.numOfModuleBanks > 0) {checkbank[2] = 1; printf("-- DIMM2 has 1 bank\n");}
if (dimmInfo2.numOfModuleBanks > 1) {checkbank[3] = 1; printf("-- DIMM2 has 2 banks\n");}
if (dimmInfo2.numOfModuleBanks > 2)
printf("Error, SPD claims DIMM2 has >2 banks\n");
for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) {
/* skip over banks that are not populated */
if (! checkbank[bank_no])
continue;
if ((total + check) > CONFIG_SYS_GT_REGS)
check = CONFIG_SYS_GT_REGS - total;
memory_map_bank(bank_no, total, check);
realsize = dram_size((long int *)total, check);
memory_map_bank(bank_no, total, realsize);
#ifdef CONFIG_MV64360_ECC
if (((dimmInfo1.errorCheckType != 0) &&
((dimmInfo2.errorCheckType != 0) ||
(dimmInfo2.numOfModuleBanks == 0))) &&
(CPCI750_ECC_TEST)) {
printf("ECC Initialization of Bank %d:", bank_no);
mem_space_attr = ((~(BIT0 << bank_no)) & 0xf) << 8;
mv_dma_set_memory_space(0, 0, mem_space_attr, total,
realsize);
for (dest = total; dest < total + realsize;
dest += _8M) {
mv_dma_transfer(0, total, dest, _8M,
BIT8 | /* DMA_DTL_128BYTES */
BIT3 | /* DMA_HOLD_SOURCE_ADDR */
BIT11); /* DMA_BLOCK_TRANSFER_MODE */
while (mv_dma_is_channel_active(0))
;
}
printf(" PASS\n");
}
#endif /* of ifdef CONFIG_MV64360_ECC */
total += realsize;
}
/* Setup Ethernet DMA Adress window to DRAM Area */
return(total);
}
/* ***************************************************************************************
! * SDRAM INIT *
! * This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb *
! * This procedure fits only the Atlantis *
! * *
! *************************************************************************************** */
/* ***************************************************************************************
! * DFCDL initialize MV643xx Design Considerations *
! * *
! *************************************************************************************** */
int set_dfcdlInit (void)
{
int i;
unsigned int dfcdl_word = 0x0000014f;
for (i = 0; i < 64; i++) {
GT_REG_WRITE (SRAM_DATA0, dfcdl_word);
}
GT_REG_WRITE (DFCDL_CONFIG0, 0x00300000); /* enable dynamic delay line updating */
return (0);
}
int do_show_ecc(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned int ecc_counter;
unsigned int ecc_addr;
GT_REG_READ(0x1458, &ecc_counter);
GT_REG_READ(0x1450, &ecc_addr);
GT_REG_WRITE(0x1450, 0);
printf("Error Counter since Reset: %8d\n", ecc_counter);
printf("Last error address :0x%08x (" , ecc_addr & 0xfffffff8);
if (ecc_addr & 0x01)
printf("double");
else
printf("single");
printf(" bit) at DDR-RAM CS#%d\n", ((ecc_addr & 0x6) >> 1));
return 0;
}
U_BOOT_CMD(
show_ecc, 1, 1, do_show_ecc,
"Show Marvell MV64360 ECC Info",
"Show Marvell MV64360 ECC Counter and last error."
);