| // Special functions -*- C++ -*- |
| |
| // Copyright (C) 2006, 2007, 2008, 2009, 2010 |
| // Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| // |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| // |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** @file tr1/ell_integral.tcc |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{tr1/cmath} |
| */ |
| |
| // |
| // ISO C++ 14882 TR1: 5.2 Special functions |
| // |
| |
| // Written by Edward Smith-Rowland based on: |
| // (1) B. C. Carlson Numer. Math. 33, 1 (1979) |
| // (2) B. C. Carlson, Special Functions of Applied Mathematics (1977) |
| // (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| // (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky, |
| // W. T. Vetterling, B. P. Flannery, Cambridge University Press |
| // (1992), pp. 261-269 |
| |
| #ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC |
| #define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1 |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| namespace tr1 |
| { |
| // [5.2] Special functions |
| |
| // Implementation-space details. |
| namespace __detail |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| /** |
| * @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$ |
| * of the first kind. |
| * |
| * The Carlson elliptic function of the first kind is defined by: |
| * @f[ |
| * R_F(x,y,z) = \frac{1}{2} \int_0^\infty |
| * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}} |
| * @f] |
| * |
| * @param __x The first of three symmetric arguments. |
| * @param __y The second of three symmetric arguments. |
| * @param __z The third of three symmetric arguments. |
| * @return The Carlson elliptic function of the first kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __ellint_rf(const _Tp __x, const _Tp __y, const _Tp __z) |
| { |
| const _Tp __min = std::numeric_limits<_Tp>::min(); |
| const _Tp __max = std::numeric_limits<_Tp>::max(); |
| const _Tp __lolim = _Tp(5) * __min; |
| const _Tp __uplim = __max / _Tp(5); |
| |
| if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0)) |
| std::__throw_domain_error(__N("Argument less than zero " |
| "in __ellint_rf.")); |
| else if (__x + __y < __lolim || __x + __z < __lolim |
| || __y + __z < __lolim) |
| std::__throw_domain_error(__N("Argument too small in __ellint_rf")); |
| else |
| { |
| const _Tp __c0 = _Tp(1) / _Tp(4); |
| const _Tp __c1 = _Tp(1) / _Tp(24); |
| const _Tp __c2 = _Tp(1) / _Tp(10); |
| const _Tp __c3 = _Tp(3) / _Tp(44); |
| const _Tp __c4 = _Tp(1) / _Tp(14); |
| |
| _Tp __xn = __x; |
| _Tp __yn = __y; |
| _Tp __zn = __z; |
| |
| const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); |
| _Tp __mu; |
| _Tp __xndev, __yndev, __zndev; |
| |
| const unsigned int __max_iter = 100; |
| for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
| { |
| __mu = (__xn + __yn + __zn) / _Tp(3); |
| __xndev = 2 - (__mu + __xn) / __mu; |
| __yndev = 2 - (__mu + __yn) / __mu; |
| __zndev = 2 - (__mu + __zn) / __mu; |
| _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); |
| __epsilon = std::max(__epsilon, std::abs(__zndev)); |
| if (__epsilon < __errtol) |
| break; |
| const _Tp __xnroot = std::sqrt(__xn); |
| const _Tp __ynroot = std::sqrt(__yn); |
| const _Tp __znroot = std::sqrt(__zn); |
| const _Tp __lambda = __xnroot * (__ynroot + __znroot) |
| + __ynroot * __znroot; |
| __xn = __c0 * (__xn + __lambda); |
| __yn = __c0 * (__yn + __lambda); |
| __zn = __c0 * (__zn + __lambda); |
| } |
| |
| const _Tp __e2 = __xndev * __yndev - __zndev * __zndev; |
| const _Tp __e3 = __xndev * __yndev * __zndev; |
| const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2 |
| + __c4 * __e3; |
| |
| return __s / std::sqrt(__mu); |
| } |
| } |
| |
| |
| /** |
| * @brief Return the complete elliptic integral of the first kind |
| * @f$ K(k) @f$ by series expansion. |
| * |
| * The complete elliptic integral of the first kind is defined as |
| * @f[ |
| * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} |
| * {\sqrt{1 - k^2sin^2\theta}} |
| * @f] |
| * |
| * This routine is not bad as long as |k| is somewhat smaller than 1 |
| * but is not is good as the Carlson elliptic integral formulation. |
| * |
| * @param __k The argument of the complete elliptic function. |
| * @return The complete elliptic function of the first kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __comp_ellint_1_series(const _Tp __k) |
| { |
| |
| const _Tp __kk = __k * __k; |
| |
| _Tp __term = __kk / _Tp(4); |
| _Tp __sum = _Tp(1) + __term; |
| |
| const unsigned int __max_iter = 1000; |
| for (unsigned int __i = 2; __i < __max_iter; ++__i) |
| { |
| __term *= (2 * __i - 1) * __kk / (2 * __i); |
| if (__term < std::numeric_limits<_Tp>::epsilon()) |
| break; |
| __sum += __term; |
| } |
| |
| return __numeric_constants<_Tp>::__pi_2() * __sum; |
| } |
| |
| |
| /** |
| * @brief Return the complete elliptic integral of the first kind |
| * @f$ K(k) @f$ using the Carlson formulation. |
| * |
| * The complete elliptic integral of the first kind is defined as |
| * @f[ |
| * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} |
| * {\sqrt{1 - k^2 sin^2\theta}} |
| * @f] |
| * where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the |
| * first kind. |
| * |
| * @param __k The argument of the complete elliptic function. |
| * @return The complete elliptic function of the first kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __comp_ellint_1(const _Tp __k) |
| { |
| |
| if (__isnan(__k)) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else if (std::abs(__k) >= _Tp(1)) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else |
| return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1)); |
| } |
| |
| |
| /** |
| * @brief Return the incomplete elliptic integral of the first kind |
| * @f$ F(k,\phi) @f$ using the Carlson formulation. |
| * |
| * The incomplete elliptic integral of the first kind is defined as |
| * @f[ |
| * F(k,\phi) = \int_0^{\phi}\frac{d\theta} |
| * {\sqrt{1 - k^2 sin^2\theta}} |
| * @f] |
| * |
| * @param __k The argument of the elliptic function. |
| * @param __phi The integral limit argument of the elliptic function. |
| * @return The elliptic function of the first kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __ellint_1(const _Tp __k, const _Tp __phi) |
| { |
| |
| if (__isnan(__k) || __isnan(__phi)) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else if (std::abs(__k) > _Tp(1)) |
| std::__throw_domain_error(__N("Bad argument in __ellint_1.")); |
| else |
| { |
| // Reduce phi to -pi/2 < phi < +pi/2. |
| const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() |
| + _Tp(0.5L)); |
| const _Tp __phi_red = __phi |
| - __n * __numeric_constants<_Tp>::__pi(); |
| |
| const _Tp __s = std::sin(__phi_red); |
| const _Tp __c = std::cos(__phi_red); |
| |
| const _Tp __F = __s |
| * __ellint_rf(__c * __c, |
| _Tp(1) - __k * __k * __s * __s, _Tp(1)); |
| |
| if (__n == 0) |
| return __F; |
| else |
| return __F + _Tp(2) * __n * __comp_ellint_1(__k); |
| } |
| } |
| |
| |
| /** |
| * @brief Return the complete elliptic integral of the second kind |
| * @f$ E(k) @f$ by series expansion. |
| * |
| * The complete elliptic integral of the second kind is defined as |
| * @f[ |
| * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} |
| * @f] |
| * |
| * This routine is not bad as long as |k| is somewhat smaller than 1 |
| * but is not is good as the Carlson elliptic integral formulation. |
| * |
| * @param __k The argument of the complete elliptic function. |
| * @return The complete elliptic function of the second kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __comp_ellint_2_series(const _Tp __k) |
| { |
| |
| const _Tp __kk = __k * __k; |
| |
| _Tp __term = __kk; |
| _Tp __sum = __term; |
| |
| const unsigned int __max_iter = 1000; |
| for (unsigned int __i = 2; __i < __max_iter; ++__i) |
| { |
| const _Tp __i2m = 2 * __i - 1; |
| const _Tp __i2 = 2 * __i; |
| __term *= __i2m * __i2m * __kk / (__i2 * __i2); |
| if (__term < std::numeric_limits<_Tp>::epsilon()) |
| break; |
| __sum += __term / __i2m; |
| } |
| |
| return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum); |
| } |
| |
| |
| /** |
| * @brief Return the Carlson elliptic function of the second kind |
| * @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where |
| * @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function |
| * of the third kind. |
| * |
| * The Carlson elliptic function of the second kind is defined by: |
| * @f[ |
| * R_D(x,y,z) = \frac{3}{2} \int_0^\infty |
| * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}} |
| * @f] |
| * |
| * Based on Carlson's algorithms: |
| * - B. C. Carlson Numer. Math. 33, 1 (1979) |
| * - B. C. Carlson, Special Functions of Applied Mathematics (1977) |
| * - Numerical Recipes in C, 2nd ed, pp. 261-269, |
| * by Press, Teukolsky, Vetterling, Flannery (1992) |
| * |
| * @param __x The first of two symmetric arguments. |
| * @param __y The second of two symmetric arguments. |
| * @param __z The third argument. |
| * @return The Carlson elliptic function of the second kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __ellint_rd(const _Tp __x, const _Tp __y, const _Tp __z) |
| { |
| const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); |
| const _Tp __min = std::numeric_limits<_Tp>::min(); |
| const _Tp __max = std::numeric_limits<_Tp>::max(); |
| const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); |
| const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); |
| |
| if (__x < _Tp(0) || __y < _Tp(0)) |
| std::__throw_domain_error(__N("Argument less than zero " |
| "in __ellint_rd.")); |
| else if (__x + __y < __lolim || __z < __lolim) |
| std::__throw_domain_error(__N("Argument too small " |
| "in __ellint_rd.")); |
| else |
| { |
| const _Tp __c0 = _Tp(1) / _Tp(4); |
| const _Tp __c1 = _Tp(3) / _Tp(14); |
| const _Tp __c2 = _Tp(1) / _Tp(6); |
| const _Tp __c3 = _Tp(9) / _Tp(22); |
| const _Tp __c4 = _Tp(3) / _Tp(26); |
| |
| _Tp __xn = __x; |
| _Tp __yn = __y; |
| _Tp __zn = __z; |
| _Tp __sigma = _Tp(0); |
| _Tp __power4 = _Tp(1); |
| |
| _Tp __mu; |
| _Tp __xndev, __yndev, __zndev; |
| |
| const unsigned int __max_iter = 100; |
| for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
| { |
| __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5); |
| __xndev = (__mu - __xn) / __mu; |
| __yndev = (__mu - __yn) / __mu; |
| __zndev = (__mu - __zn) / __mu; |
| _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); |
| __epsilon = std::max(__epsilon, std::abs(__zndev)); |
| if (__epsilon < __errtol) |
| break; |
| _Tp __xnroot = std::sqrt(__xn); |
| _Tp __ynroot = std::sqrt(__yn); |
| _Tp __znroot = std::sqrt(__zn); |
| _Tp __lambda = __xnroot * (__ynroot + __znroot) |
| + __ynroot * __znroot; |
| __sigma += __power4 / (__znroot * (__zn + __lambda)); |
| __power4 *= __c0; |
| __xn = __c0 * (__xn + __lambda); |
| __yn = __c0 * (__yn + __lambda); |
| __zn = __c0 * (__zn + __lambda); |
| } |
| |
| // Note: __ea is an SPU badname. |
| _Tp __eaa = __xndev * __yndev; |
| _Tp __eb = __zndev * __zndev; |
| _Tp __ec = __eaa - __eb; |
| _Tp __ed = __eaa - _Tp(6) * __eb; |
| _Tp __ef = __ed + __ec + __ec; |
| _Tp __s1 = __ed * (-__c1 + __c3 * __ed |
| / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef |
| / _Tp(2)); |
| _Tp __s2 = __zndev |
| * (__c2 * __ef |
| + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa)); |
| |
| return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2) |
| / (__mu * std::sqrt(__mu)); |
| } |
| } |
| |
| |
| /** |
| * @brief Return the complete elliptic integral of the second kind |
| * @f$ E(k) @f$ using the Carlson formulation. |
| * |
| * The complete elliptic integral of the second kind is defined as |
| * @f[ |
| * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} |
| * @f] |
| * |
| * @param __k The argument of the complete elliptic function. |
| * @return The complete elliptic function of the second kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __comp_ellint_2(const _Tp __k) |
| { |
| |
| if (__isnan(__k)) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else if (std::abs(__k) == 1) |
| return _Tp(1); |
| else if (std::abs(__k) > _Tp(1)) |
| std::__throw_domain_error(__N("Bad argument in __comp_ellint_2.")); |
| else |
| { |
| const _Tp __kk = __k * __k; |
| |
| return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1)) |
| - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3); |
| } |
| } |
| |
| |
| /** |
| * @brief Return the incomplete elliptic integral of the second kind |
| * @f$ E(k,\phi) @f$ using the Carlson formulation. |
| * |
| * The incomplete elliptic integral of the second kind is defined as |
| * @f[ |
| * E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta} |
| * @f] |
| * |
| * @param __k The argument of the elliptic function. |
| * @param __phi The integral limit argument of the elliptic function. |
| * @return The elliptic function of the second kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __ellint_2(const _Tp __k, const _Tp __phi) |
| { |
| |
| if (__isnan(__k) || __isnan(__phi)) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else if (std::abs(__k) > _Tp(1)) |
| std::__throw_domain_error(__N("Bad argument in __ellint_2.")); |
| else |
| { |
| // Reduce phi to -pi/2 < phi < +pi/2. |
| const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() |
| + _Tp(0.5L)); |
| const _Tp __phi_red = __phi |
| - __n * __numeric_constants<_Tp>::__pi(); |
| |
| const _Tp __kk = __k * __k; |
| const _Tp __s = std::sin(__phi_red); |
| const _Tp __ss = __s * __s; |
| const _Tp __sss = __ss * __s; |
| const _Tp __c = std::cos(__phi_red); |
| const _Tp __cc = __c * __c; |
| |
| const _Tp __E = __s |
| * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1)) |
| - __kk * __sss |
| * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1)) |
| / _Tp(3); |
| |
| if (__n == 0) |
| return __E; |
| else |
| return __E + _Tp(2) * __n * __comp_ellint_2(__k); |
| } |
| } |
| |
| |
| /** |
| * @brief Return the Carlson elliptic function |
| * @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$ |
| * is the Carlson elliptic function of the first kind. |
| * |
| * The Carlson elliptic function is defined by: |
| * @f[ |
| * R_C(x,y) = \frac{1}{2} \int_0^\infty |
| * \frac{dt}{(t + x)^{1/2}(t + y)} |
| * @f] |
| * |
| * Based on Carlson's algorithms: |
| * - B. C. Carlson Numer. Math. 33, 1 (1979) |
| * - B. C. Carlson, Special Functions of Applied Mathematics (1977) |
| * - Numerical Recipes in C, 2nd ed, pp. 261-269, |
| * by Press, Teukolsky, Vetterling, Flannery (1992) |
| * |
| * @param __x The first argument. |
| * @param __y The second argument. |
| * @return The Carlson elliptic function. |
| */ |
| template<typename _Tp> |
| _Tp |
| __ellint_rc(const _Tp __x, const _Tp __y) |
| { |
| const _Tp __min = std::numeric_limits<_Tp>::min(); |
| const _Tp __max = std::numeric_limits<_Tp>::max(); |
| const _Tp __lolim = _Tp(5) * __min; |
| const _Tp __uplim = __max / _Tp(5); |
| |
| if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim) |
| std::__throw_domain_error(__N("Argument less than zero " |
| "in __ellint_rc.")); |
| else |
| { |
| const _Tp __c0 = _Tp(1) / _Tp(4); |
| const _Tp __c1 = _Tp(1) / _Tp(7); |
| const _Tp __c2 = _Tp(9) / _Tp(22); |
| const _Tp __c3 = _Tp(3) / _Tp(10); |
| const _Tp __c4 = _Tp(3) / _Tp(8); |
| |
| _Tp __xn = __x; |
| _Tp __yn = __y; |
| |
| const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); |
| _Tp __mu; |
| _Tp __sn; |
| |
| const unsigned int __max_iter = 100; |
| for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
| { |
| __mu = (__xn + _Tp(2) * __yn) / _Tp(3); |
| __sn = (__yn + __mu) / __mu - _Tp(2); |
| if (std::abs(__sn) < __errtol) |
| break; |
| const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn) |
| + __yn; |
| __xn = __c0 * (__xn + __lambda); |
| __yn = __c0 * (__yn + __lambda); |
| } |
| |
| _Tp __s = __sn * __sn |
| * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2))); |
| |
| return (_Tp(1) + __s) / std::sqrt(__mu); |
| } |
| } |
| |
| |
| /** |
| * @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$ |
| * of the third kind. |
| * |
| * The Carlson elliptic function of the third kind is defined by: |
| * @f[ |
| * R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty |
| * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)} |
| * @f] |
| * |
| * Based on Carlson's algorithms: |
| * - B. C. Carlson Numer. Math. 33, 1 (1979) |
| * - B. C. Carlson, Special Functions of Applied Mathematics (1977) |
| * - Numerical Recipes in C, 2nd ed, pp. 261-269, |
| * by Press, Teukolsky, Vetterling, Flannery (1992) |
| * |
| * @param __x The first of three symmetric arguments. |
| * @param __y The second of three symmetric arguments. |
| * @param __z The third of three symmetric arguments. |
| * @param __p The fourth argument. |
| * @return The Carlson elliptic function of the fourth kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __ellint_rj(const _Tp __x, const _Tp __y, const _Tp __z, const _Tp __p) |
| { |
| const _Tp __min = std::numeric_limits<_Tp>::min(); |
| const _Tp __max = std::numeric_limits<_Tp>::max(); |
| const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); |
| const _Tp __uplim = _Tp(0.3L) |
| * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); |
| |
| if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0)) |
| std::__throw_domain_error(__N("Argument less than zero " |
| "in __ellint_rj.")); |
| else if (__x + __y < __lolim || __x + __z < __lolim |
| || __y + __z < __lolim || __p < __lolim) |
| std::__throw_domain_error(__N("Argument too small " |
| "in __ellint_rj")); |
| else |
| { |
| const _Tp __c0 = _Tp(1) / _Tp(4); |
| const _Tp __c1 = _Tp(3) / _Tp(14); |
| const _Tp __c2 = _Tp(1) / _Tp(3); |
| const _Tp __c3 = _Tp(3) / _Tp(22); |
| const _Tp __c4 = _Tp(3) / _Tp(26); |
| |
| _Tp __xn = __x; |
| _Tp __yn = __y; |
| _Tp __zn = __z; |
| _Tp __pn = __p; |
| _Tp __sigma = _Tp(0); |
| _Tp __power4 = _Tp(1); |
| |
| const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); |
| |
| _Tp __lambda, __mu; |
| _Tp __xndev, __yndev, __zndev, __pndev; |
| |
| const unsigned int __max_iter = 100; |
| for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
| { |
| __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5); |
| __xndev = (__mu - __xn) / __mu; |
| __yndev = (__mu - __yn) / __mu; |
| __zndev = (__mu - __zn) / __mu; |
| __pndev = (__mu - __pn) / __mu; |
| _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); |
| __epsilon = std::max(__epsilon, std::abs(__zndev)); |
| __epsilon = std::max(__epsilon, std::abs(__pndev)); |
| if (__epsilon < __errtol) |
| break; |
| const _Tp __xnroot = std::sqrt(__xn); |
| const _Tp __ynroot = std::sqrt(__yn); |
| const _Tp __znroot = std::sqrt(__zn); |
| const _Tp __lambda = __xnroot * (__ynroot + __znroot) |
| + __ynroot * __znroot; |
| const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot) |
| + __xnroot * __ynroot * __znroot; |
| const _Tp __alpha2 = __alpha1 * __alpha1; |
| const _Tp __beta = __pn * (__pn + __lambda) |
| * (__pn + __lambda); |
| __sigma += __power4 * __ellint_rc(__alpha2, __beta); |
| __power4 *= __c0; |
| __xn = __c0 * (__xn + __lambda); |
| __yn = __c0 * (__yn + __lambda); |
| __zn = __c0 * (__zn + __lambda); |
| __pn = __c0 * (__pn + __lambda); |
| } |
| |
| // Note: __ea is an SPU badname. |
| _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev; |
| _Tp __eb = __xndev * __yndev * __zndev; |
| _Tp __ec = __pndev * __pndev; |
| _Tp __e2 = __eaa - _Tp(3) * __ec; |
| _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec); |
| _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4) |
| - _Tp(3) * __c4 * __e3 / _Tp(2)); |
| _Tp __s2 = __eb * (__c2 / _Tp(2) |
| + __pndev * (-__c3 - __c3 + __pndev * __c4)); |
| _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3) |
| - __c2 * __pndev * __ec; |
| |
| return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3) |
| / (__mu * std::sqrt(__mu)); |
| } |
| } |
| |
| |
| /** |
| * @brief Return the complete elliptic integral of the third kind |
| * @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the |
| * Carlson formulation. |
| * |
| * The complete elliptic integral of the third kind is defined as |
| * @f[ |
| * \Pi(k,\nu) = \int_0^{\pi/2} |
| * \frac{d\theta} |
| * {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}} |
| * @f] |
| * |
| * @param __k The argument of the elliptic function. |
| * @param __nu The second argument of the elliptic function. |
| * @return The complete elliptic function of the third kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __comp_ellint_3(const _Tp __k, const _Tp __nu) |
| { |
| |
| if (__isnan(__k) || __isnan(__nu)) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else if (__nu == _Tp(1)) |
| return std::numeric_limits<_Tp>::infinity(); |
| else if (std::abs(__k) > _Tp(1)) |
| std::__throw_domain_error(__N("Bad argument in __comp_ellint_3.")); |
| else |
| { |
| const _Tp __kk = __k * __k; |
| |
| return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1)) |
| - __nu |
| * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) + __nu) |
| / _Tp(3); |
| } |
| } |
| |
| |
| /** |
| * @brief Return the incomplete elliptic integral of the third kind |
| * @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation. |
| * |
| * The incomplete elliptic integral of the third kind is defined as |
| * @f[ |
| * \Pi(k,\nu,\phi) = \int_0^{\phi} |
| * \frac{d\theta} |
| * {(1 - \nu \sin^2\theta) |
| * \sqrt{1 - k^2 \sin^2\theta}} |
| * @f] |
| * |
| * @param __k The argument of the elliptic function. |
| * @param __nu The second argument of the elliptic function. |
| * @param __phi The integral limit argument of the elliptic function. |
| * @return The elliptic function of the third kind. |
| */ |
| template<typename _Tp> |
| _Tp |
| __ellint_3(const _Tp __k, const _Tp __nu, const _Tp __phi) |
| { |
| |
| if (__isnan(__k) || __isnan(__nu) || __isnan(__phi)) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else if (std::abs(__k) > _Tp(1)) |
| std::__throw_domain_error(__N("Bad argument in __ellint_3.")); |
| else |
| { |
| // Reduce phi to -pi/2 < phi < +pi/2. |
| const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() |
| + _Tp(0.5L)); |
| const _Tp __phi_red = __phi |
| - __n * __numeric_constants<_Tp>::__pi(); |
| |
| const _Tp __kk = __k * __k; |
| const _Tp __s = std::sin(__phi_red); |
| const _Tp __ss = __s * __s; |
| const _Tp __sss = __ss * __s; |
| const _Tp __c = std::cos(__phi_red); |
| const _Tp __cc = __c * __c; |
| |
| const _Tp __Pi = __s |
| * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1)) |
| - __nu * __sss |
| * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1), |
| _Tp(1) + __nu * __ss) / _Tp(3); |
| |
| if (__n == 0) |
| return __Pi; |
| else |
| return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu); |
| } |
| } |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace std::tr1::__detail |
| } |
| } |
| |
| #endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC |
| |