| // random number generation -*- C++ -*- |
| |
| // Copyright (C) 2009, 2010, 2011, 2012 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** |
| * @file bits/random.h |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{random} |
| */ |
| |
| #ifndef _RANDOM_H |
| #define _RANDOM_H 1 |
| |
| #include <vector> |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| // [26.4] Random number generation |
| |
| /** |
| * @defgroup random Random Number Generation |
| * @ingroup numerics |
| * |
| * A facility for generating random numbers on selected distributions. |
| * @{ |
| */ |
| |
| /** |
| * @brief A function template for converting the output of a (integral) |
| * uniform random number generator to a floatng point result in the range |
| * [0-1). |
| */ |
| template<typename _RealType, size_t __bits, |
| typename _UniformRandomNumberGenerator> |
| _RealType |
| generate_canonical(_UniformRandomNumberGenerator& __g); |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| |
| /* |
| * Implementation-space details. |
| */ |
| namespace __detail |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| template<typename _UIntType, size_t __w, |
| bool = __w < static_cast<size_t> |
| (std::numeric_limits<_UIntType>::digits)> |
| struct _Shift |
| { static const _UIntType __value = 0; }; |
| |
| template<typename _UIntType, size_t __w> |
| struct _Shift<_UIntType, __w, true> |
| { static const _UIntType __value = _UIntType(1) << __w; }; |
| |
| template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool> |
| struct _Mod; |
| |
| // Dispatch based on modulus value to prevent divide-by-zero compile-time |
| // errors when m == 0. |
| template<typename _Tp, _Tp __m, _Tp __a = 1, _Tp __c = 0> |
| inline _Tp |
| __mod(_Tp __x) |
| { return _Mod<_Tp, __m, __a, __c, __m == 0>::__calc(__x); } |
| |
| /* |
| * An adaptor class for converting the output of any Generator into |
| * the input for a specific Distribution. |
| */ |
| template<typename _Engine, typename _DInputType> |
| struct _Adaptor |
| { |
| |
| public: |
| _Adaptor(_Engine& __g) |
| : _M_g(__g) { } |
| |
| _DInputType |
| min() const |
| { return _DInputType(0); } |
| |
| _DInputType |
| max() const |
| { return _DInputType(1); } |
| |
| /* |
| * Converts a value generated by the adapted random number generator |
| * into a value in the input domain for the dependent random number |
| * distribution. |
| */ |
| _DInputType |
| operator()() |
| { |
| return std::generate_canonical<_DInputType, |
| std::numeric_limits<_DInputType>::digits, |
| _Engine>(_M_g); |
| } |
| |
| private: |
| _Engine& _M_g; |
| }; |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace __detail |
| |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| /** |
| * @addtogroup random_generators Random Number Generators |
| * @ingroup random |
| * |
| * These classes define objects which provide random or pseudorandom |
| * numbers, either from a discrete or a continuous interval. The |
| * random number generator supplied as a part of this library are |
| * all uniform random number generators which provide a sequence of |
| * random number uniformly distributed over their range. |
| * |
| * A number generator is a function object with an operator() that |
| * takes zero arguments and returns a number. |
| * |
| * A compliant random number generator must satisfy the following |
| * requirements. <table border=1 cellpadding=10 cellspacing=0> |
| * <caption align=top>Random Number Generator Requirements</caption> |
| * <tr><td>To be documented.</td></tr> </table> |
| * |
| * @{ |
| */ |
| |
| /** |
| * @brief A model of a linear congruential random number generator. |
| * |
| * A random number generator that produces pseudorandom numbers via |
| * linear function: |
| * @f[ |
| * x_{i+1}\leftarrow(ax_{i} + c) \bmod m |
| * @f] |
| * |
| * The template parameter @p _UIntType must be an unsigned integral type |
| * large enough to store values up to (__m-1). If the template parameter |
| * @p __m is 0, the modulus @p __m used is |
| * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template |
| * parameters @p __a and @p __c must be less than @p __m. |
| * |
| * The size of the state is @f$1@f$. |
| */ |
| template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| class linear_congruential_engine |
| { |
| static_assert(std::is_unsigned<_UIntType>::value, "template argument " |
| "substituting _UIntType not an unsigned integral type"); |
| static_assert(__m == 0u || (__a < __m && __c < __m), |
| "template argument substituting __m out of bounds"); |
| |
| // XXX FIXME: |
| // _Mod::__calc should handle correctly __m % __a >= __m / __a too. |
| static_assert(__m % __a < __m / __a, |
| "sorry, not implemented yet: try a smaller 'a' constant"); |
| |
| public: |
| /** The type of the generated random value. */ |
| typedef _UIntType result_type; |
| |
| /** The multiplier. */ |
| static constexpr result_type multiplier = __a; |
| /** An increment. */ |
| static constexpr result_type increment = __c; |
| /** The modulus. */ |
| static constexpr result_type modulus = __m; |
| static constexpr result_type default_seed = 1u; |
| |
| /** |
| * @brief Constructs a %linear_congruential_engine random number |
| * generator engine with seed @p __s. The default seed value |
| * is 1. |
| * |
| * @param __s The initial seed value. |
| */ |
| explicit |
| linear_congruential_engine(result_type __s = default_seed) |
| { seed(__s); } |
| |
| /** |
| * @brief Constructs a %linear_congruential_engine random number |
| * generator engine seeded from the seed sequence @p __q. |
| * |
| * @param __q the seed sequence. |
| */ |
| template<typename _Sseq, typename = typename |
| std::enable_if<!std::is_same<_Sseq, linear_congruential_engine>::value> |
| ::type> |
| explicit |
| linear_congruential_engine(_Sseq& __q) |
| { seed(__q); } |
| |
| /** |
| * @brief Reseeds the %linear_congruential_engine random number generator |
| * engine sequence to the seed @p __s. |
| * |
| * @param __s The new seed. |
| */ |
| void |
| seed(result_type __s = default_seed); |
| |
| /** |
| * @brief Reseeds the %linear_congruential_engine random number generator |
| * engine |
| * sequence using values from the seed sequence @p __q. |
| * |
| * @param __q the seed sequence. |
| */ |
| template<typename _Sseq> |
| typename std::enable_if<std::is_class<_Sseq>::value>::type |
| seed(_Sseq& __q); |
| |
| /** |
| * @brief Gets the smallest possible value in the output range. |
| * |
| * The minimum depends on the @p __c parameter: if it is zero, the |
| * minimum generated must be > 0, otherwise 0 is allowed. |
| */ |
| static constexpr result_type |
| min() |
| { return __c == 0u ? 1u : 0u; } |
| |
| /** |
| * @brief Gets the largest possible value in the output range. |
| */ |
| static constexpr result_type |
| max() |
| { return __m - 1u; } |
| |
| /** |
| * @brief Discard a sequence of random numbers. |
| */ |
| void |
| discard(unsigned long long __z) |
| { |
| for (; __z != 0ULL; --__z) |
| (*this)(); |
| } |
| |
| /** |
| * @brief Gets the next random number in the sequence. |
| */ |
| result_type |
| operator()() |
| { |
| _M_x = __detail::__mod<_UIntType, __m, __a, __c>(_M_x); |
| return _M_x; |
| } |
| |
| /** |
| * @brief Compares two linear congruential random number generator |
| * objects of the same type for equality. |
| * |
| * @param __lhs A linear congruential random number generator object. |
| * @param __rhs Another linear congruential random number generator |
| * object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be equal, false otherwise. |
| */ |
| friend bool |
| operator==(const linear_congruential_engine& __lhs, |
| const linear_congruential_engine& __rhs) |
| { return __lhs._M_x == __rhs._M_x; } |
| |
| /** |
| * @brief Writes the textual representation of the state x(i) of x to |
| * @p __os. |
| * |
| * @param __os The output stream. |
| * @param __lcr A % linear_congruential_engine random number generator. |
| * @returns __os. |
| */ |
| template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
| _UIntType1 __m1, typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::linear_congruential_engine<_UIntType1, |
| __a1, __c1, __m1>&); |
| |
| /** |
| * @brief Sets the state of the engine by reading its textual |
| * representation from @p __is. |
| * |
| * The textual representation must have been previously written using |
| * an output stream whose imbued locale and whose type's template |
| * specialization arguments _CharT and _Traits were the same as those |
| * of @p __is. |
| * |
| * @param __is The input stream. |
| * @param __lcr A % linear_congruential_engine random number generator. |
| * @returns __is. |
| */ |
| template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
| _UIntType1 __m1, typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::linear_congruential_engine<_UIntType1, __a1, |
| __c1, __m1>&); |
| |
| private: |
| _UIntType _M_x; |
| }; |
| |
| /** |
| * @brief Compares two linear congruential random number generator |
| * objects of the same type for inequality. |
| * |
| * @param __lhs A linear congruential random number generator object. |
| * @param __rhs Another linear congruential random number generator |
| * object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be different, false otherwise. |
| */ |
| template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| inline bool |
| operator!=(const std::linear_congruential_engine<_UIntType, __a, |
| __c, __m>& __lhs, |
| const std::linear_congruential_engine<_UIntType, __a, |
| __c, __m>& __rhs) |
| { return !(__lhs == __rhs); } |
| |
| |
| /** |
| * A generalized feedback shift register discrete random number generator. |
| * |
| * This algorithm avoids multiplication and division and is designed to be |
| * friendly to a pipelined architecture. If the parameters are chosen |
| * correctly, this generator will produce numbers with a very long period and |
| * fairly good apparent entropy, although still not cryptographically strong. |
| * |
| * The best way to use this generator is with the predefined mt19937 class. |
| * |
| * This algorithm was originally invented by Makoto Matsumoto and |
| * Takuji Nishimura. |
| * |
| * @var word_size The number of bits in each element of the state vector. |
| * @var state_size The degree of recursion. |
| * @var shift_size The period parameter. |
| * @var mask_bits The separation point bit index. |
| * @var parameter_a The last row of the twist matrix. |
| * @var output_u The first right-shift tempering matrix parameter. |
| * @var output_s The first left-shift tempering matrix parameter. |
| * @var output_b The first left-shift tempering matrix mask. |
| * @var output_t The second left-shift tempering matrix parameter. |
| * @var output_c The second left-shift tempering matrix mask. |
| * @var output_l The second right-shift tempering matrix parameter. |
| */ |
| template<typename _UIntType, size_t __w, |
| size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, |
| _UIntType __c, size_t __l, _UIntType __f> |
| class mersenne_twister_engine |
| { |
| static_assert(std::is_unsigned<_UIntType>::value, "template argument " |
| "substituting _UIntType not an unsigned integral type"); |
| static_assert(1u <= __m && __m <= __n, |
| "template argument substituting __m out of bounds"); |
| static_assert(__r <= __w, "template argument substituting " |
| "__r out of bound"); |
| static_assert(__u <= __w, "template argument substituting " |
| "__u out of bound"); |
| static_assert(__s <= __w, "template argument substituting " |
| "__s out of bound"); |
| static_assert(__t <= __w, "template argument substituting " |
| "__t out of bound"); |
| static_assert(__l <= __w, "template argument substituting " |
| "__l out of bound"); |
| static_assert(__w <= std::numeric_limits<_UIntType>::digits, |
| "template argument substituting __w out of bound"); |
| static_assert(__a <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| "template argument substituting __a out of bound"); |
| static_assert(__b <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| "template argument substituting __b out of bound"); |
| static_assert(__c <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| "template argument substituting __c out of bound"); |
| static_assert(__d <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| "template argument substituting __d out of bound"); |
| static_assert(__f <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
| "template argument substituting __f out of bound"); |
| |
| public: |
| /** The type of the generated random value. */ |
| typedef _UIntType result_type; |
| |
| // parameter values |
| static constexpr size_t word_size = __w; |
| static constexpr size_t state_size = __n; |
| static constexpr size_t shift_size = __m; |
| static constexpr size_t mask_bits = __r; |
| static constexpr result_type xor_mask = __a; |
| static constexpr size_t tempering_u = __u; |
| static constexpr result_type tempering_d = __d; |
| static constexpr size_t tempering_s = __s; |
| static constexpr result_type tempering_b = __b; |
| static constexpr size_t tempering_t = __t; |
| static constexpr result_type tempering_c = __c; |
| static constexpr size_t tempering_l = __l; |
| static constexpr result_type initialization_multiplier = __f; |
| static constexpr result_type default_seed = 5489u; |
| |
| // constructors and member function |
| explicit |
| mersenne_twister_engine(result_type __sd = default_seed) |
| { seed(__sd); } |
| |
| /** |
| * @brief Constructs a %mersenne_twister_engine random number generator |
| * engine seeded from the seed sequence @p __q. |
| * |
| * @param __q the seed sequence. |
| */ |
| template<typename _Sseq, typename = typename |
| std::enable_if<!std::is_same<_Sseq, mersenne_twister_engine>::value> |
| ::type> |
| explicit |
| mersenne_twister_engine(_Sseq& __q) |
| { seed(__q); } |
| |
| void |
| seed(result_type __sd = default_seed); |
| |
| template<typename _Sseq> |
| typename std::enable_if<std::is_class<_Sseq>::value>::type |
| seed(_Sseq& __q); |
| |
| /** |
| * @brief Gets the smallest possible value in the output range. |
| */ |
| static constexpr result_type |
| min() |
| { return 0; }; |
| |
| /** |
| * @brief Gets the largest possible value in the output range. |
| */ |
| static constexpr result_type |
| max() |
| { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
| |
| /** |
| * @brief Discard a sequence of random numbers. |
| */ |
| void |
| discard(unsigned long long __z) |
| { |
| for (; __z != 0ULL; --__z) |
| (*this)(); |
| } |
| |
| result_type |
| operator()(); |
| |
| /** |
| * @brief Compares two % mersenne_twister_engine random number generator |
| * objects of the same type for equality. |
| * |
| * @param __lhs A % mersenne_twister_engine random number generator |
| * object. |
| * @param __rhs Another % mersenne_twister_engine random number |
| * generator object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be equal, false otherwise. |
| */ |
| friend bool |
| operator==(const mersenne_twister_engine& __lhs, |
| const mersenne_twister_engine& __rhs) |
| { return std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x); } |
| |
| /** |
| * @brief Inserts the current state of a % mersenne_twister_engine |
| * random number generator engine @p __x into the output stream |
| * @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A % mersenne_twister_engine random number generator |
| * engine. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _UIntType1, |
| size_t __w1, size_t __n1, |
| size_t __m1, size_t __r1, |
| _UIntType1 __a1, size_t __u1, |
| _UIntType1 __d1, size_t __s1, |
| _UIntType1 __b1, size_t __t1, |
| _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
| typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::mersenne_twister_engine<_UIntType1, __w1, __n1, |
| __m1, __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
| __l1, __f1>&); |
| |
| /** |
| * @brief Extracts the current state of a % mersenne_twister_engine |
| * random number generator engine @p __x from the input stream |
| * @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A % mersenne_twister_engine random number generator |
| * engine. |
| * |
| * @returns The input stream with the state of @p __x extracted or in |
| * an error state. |
| */ |
| template<typename _UIntType1, |
| size_t __w1, size_t __n1, |
| size_t __m1, size_t __r1, |
| _UIntType1 __a1, size_t __u1, |
| _UIntType1 __d1, size_t __s1, |
| _UIntType1 __b1, size_t __t1, |
| _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
| typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::mersenne_twister_engine<_UIntType1, __w1, __n1, __m1, |
| __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
| __l1, __f1>&); |
| |
| private: |
| _UIntType _M_x[state_size]; |
| size_t _M_p; |
| }; |
| |
| /** |
| * @brief Compares two % mersenne_twister_engine random number generator |
| * objects of the same type for inequality. |
| * |
| * @param __lhs A % mersenne_twister_engine random number generator |
| * object. |
| * @param __rhs Another % mersenne_twister_engine random number |
| * generator object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be different, false otherwise. |
| */ |
| template<typename _UIntType, size_t __w, |
| size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, |
| _UIntType __c, size_t __l, _UIntType __f> |
| inline bool |
| operator!=(const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
| __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __lhs, |
| const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
| __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __rhs) |
| { return !(__lhs == __rhs); } |
| |
| |
| /** |
| * @brief The Marsaglia-Zaman generator. |
| * |
| * This is a model of a Generalized Fibonacci discrete random number |
| * generator, sometimes referred to as the SWC generator. |
| * |
| * A discrete random number generator that produces pseudorandom |
| * numbers using: |
| * @f[ |
| * x_{i}\leftarrow(x_{i - s} - x_{i - r} - carry_{i-1}) \bmod m |
| * @f] |
| * |
| * The size of the state is @f$r@f$ |
| * and the maximum period of the generator is @f$(m^r - m^s - 1)@f$. |
| * |
| * @var _M_x The state of the generator. This is a ring buffer. |
| * @var _M_carry The carry. |
| * @var _M_p Current index of x(i - r). |
| */ |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| class subtract_with_carry_engine |
| { |
| static_assert(std::is_unsigned<_UIntType>::value, "template argument " |
| "substituting _UIntType not an unsigned integral type"); |
| static_assert(0u < __s && __s < __r, |
| "template argument substituting __s out of bounds"); |
| static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
| "template argument substituting __w out of bounds"); |
| |
| public: |
| /** The type of the generated random value. */ |
| typedef _UIntType result_type; |
| |
| // parameter values |
| static constexpr size_t word_size = __w; |
| static constexpr size_t short_lag = __s; |
| static constexpr size_t long_lag = __r; |
| static constexpr result_type default_seed = 19780503u; |
| |
| /** |
| * @brief Constructs an explicitly seeded % subtract_with_carry_engine |
| * random number generator. |
| */ |
| explicit |
| subtract_with_carry_engine(result_type __sd = default_seed) |
| { seed(__sd); } |
| |
| /** |
| * @brief Constructs a %subtract_with_carry_engine random number engine |
| * seeded from the seed sequence @p __q. |
| * |
| * @param __q the seed sequence. |
| */ |
| template<typename _Sseq, typename = typename |
| std::enable_if<!std::is_same<_Sseq, subtract_with_carry_engine>::value> |
| ::type> |
| explicit |
| subtract_with_carry_engine(_Sseq& __q) |
| { seed(__q); } |
| |
| /** |
| * @brief Seeds the initial state @f$x_0@f$ of the random number |
| * generator. |
| * |
| * N1688[4.19] modifies this as follows. If @p __value == 0, |
| * sets value to 19780503. In any case, with a linear |
| * congruential generator lcg(i) having parameters @f$ m_{lcg} = |
| * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value |
| * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m |
| * \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$ |
| * set carry to 1, otherwise sets carry to 0. |
| */ |
| void |
| seed(result_type __sd = default_seed); |
| |
| /** |
| * @brief Seeds the initial state @f$x_0@f$ of the |
| * % subtract_with_carry_engine random number generator. |
| */ |
| template<typename _Sseq> |
| typename std::enable_if<std::is_class<_Sseq>::value>::type |
| seed(_Sseq& __q); |
| |
| /** |
| * @brief Gets the inclusive minimum value of the range of random |
| * integers returned by this generator. |
| */ |
| static constexpr result_type |
| min() |
| { return 0; } |
| |
| /** |
| * @brief Gets the inclusive maximum value of the range of random |
| * integers returned by this generator. |
| */ |
| static constexpr result_type |
| max() |
| { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
| |
| /** |
| * @brief Discard a sequence of random numbers. |
| */ |
| void |
| discard(unsigned long long __z) |
| { |
| for (; __z != 0ULL; --__z) |
| (*this)(); |
| } |
| |
| /** |
| * @brief Gets the next random number in the sequence. |
| */ |
| result_type |
| operator()(); |
| |
| /** |
| * @brief Compares two % subtract_with_carry_engine random number |
| * generator objects of the same type for equality. |
| * |
| * @param __lhs A % subtract_with_carry_engine random number generator |
| * object. |
| * @param __rhs Another % subtract_with_carry_engine random number |
| * generator object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be equal, false otherwise. |
| */ |
| friend bool |
| operator==(const subtract_with_carry_engine& __lhs, |
| const subtract_with_carry_engine& __rhs) |
| { return std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x); } |
| |
| /** |
| * @brief Inserts the current state of a % subtract_with_carry_engine |
| * random number generator engine @p __x into the output stream |
| * @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A % subtract_with_carry_engine random number generator |
| * engine. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
| typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::subtract_with_carry_engine<_UIntType1, __w1, |
| __s1, __r1>&); |
| |
| /** |
| * @brief Extracts the current state of a % subtract_with_carry_engine |
| * random number generator engine @p __x from the input stream |
| * @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A % subtract_with_carry_engine random number generator |
| * engine. |
| * |
| * @returns The input stream with the state of @p __x extracted or in |
| * an error state. |
| */ |
| template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
| typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::subtract_with_carry_engine<_UIntType1, __w1, |
| __s1, __r1>&); |
| |
| private: |
| _UIntType _M_x[long_lag]; |
| _UIntType _M_carry; |
| size_t _M_p; |
| }; |
| |
| /** |
| * @brief Compares two % subtract_with_carry_engine random number |
| * generator objects of the same type for inequality. |
| * |
| * @param __lhs A % subtract_with_carry_engine random number generator |
| * object. |
| * @param __rhs Another % subtract_with_carry_engine random number |
| * generator object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be different, false otherwise. |
| */ |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| inline bool |
| operator!=(const std::subtract_with_carry_engine<_UIntType, __w, |
| __s, __r>& __lhs, |
| const std::subtract_with_carry_engine<_UIntType, __w, |
| __s, __r>& __rhs) |
| { return !(__lhs == __rhs); } |
| |
| |
| /** |
| * Produces random numbers from some base engine by discarding blocks of |
| * data. |
| * |
| * 0 <= @p __r <= @p __p |
| */ |
| template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| class discard_block_engine |
| { |
| static_assert(1 <= __r && __r <= __p, |
| "template argument substituting __r out of bounds"); |
| |
| public: |
| /** The type of the generated random value. */ |
| typedef typename _RandomNumberEngine::result_type result_type; |
| |
| // parameter values |
| static constexpr size_t block_size = __p; |
| static constexpr size_t used_block = __r; |
| |
| /** |
| * @brief Constructs a default %discard_block_engine engine. |
| * |
| * The underlying engine is default constructed as well. |
| */ |
| discard_block_engine() |
| : _M_b(), _M_n(0) { } |
| |
| /** |
| * @brief Copy constructs a %discard_block_engine engine. |
| * |
| * Copies an existing base class random number generator. |
| * @param rng An existing (base class) engine object. |
| */ |
| explicit |
| discard_block_engine(const _RandomNumberEngine& __rne) |
| : _M_b(__rne), _M_n(0) { } |
| |
| /** |
| * @brief Move constructs a %discard_block_engine engine. |
| * |
| * Copies an existing base class random number generator. |
| * @param rng An existing (base class) engine object. |
| */ |
| explicit |
| discard_block_engine(_RandomNumberEngine&& __rne) |
| : _M_b(std::move(__rne)), _M_n(0) { } |
| |
| /** |
| * @brief Seed constructs a %discard_block_engine engine. |
| * |
| * Constructs the underlying generator engine seeded with @p __s. |
| * @param __s A seed value for the base class engine. |
| */ |
| explicit |
| discard_block_engine(result_type __s) |
| : _M_b(__s), _M_n(0) { } |
| |
| /** |
| * @brief Generator construct a %discard_block_engine engine. |
| * |
| * @param __q A seed sequence. |
| */ |
| template<typename _Sseq, typename = typename |
| std::enable_if<!std::is_same<_Sseq, discard_block_engine>::value |
| && !std::is_same<_Sseq, _RandomNumberEngine>::value> |
| ::type> |
| explicit |
| discard_block_engine(_Sseq& __q) |
| : _M_b(__q), _M_n(0) |
| { } |
| |
| /** |
| * @brief Reseeds the %discard_block_engine object with the default |
| * seed for the underlying base class generator engine. |
| */ |
| void |
| seed() |
| { |
| _M_b.seed(); |
| _M_n = 0; |
| } |
| |
| /** |
| * @brief Reseeds the %discard_block_engine object with the default |
| * seed for the underlying base class generator engine. |
| */ |
| void |
| seed(result_type __s) |
| { |
| _M_b.seed(__s); |
| _M_n = 0; |
| } |
| |
| /** |
| * @brief Reseeds the %discard_block_engine object with the given seed |
| * sequence. |
| * @param __q A seed generator function. |
| */ |
| template<typename _Sseq> |
| void |
| seed(_Sseq& __q) |
| { |
| _M_b.seed(__q); |
| _M_n = 0; |
| } |
| |
| /** |
| * @brief Gets a const reference to the underlying generator engine |
| * object. |
| */ |
| const _RandomNumberEngine& |
| base() const |
| { return _M_b; } |
| |
| /** |
| * @brief Gets the minimum value in the generated random number range. |
| */ |
| static constexpr result_type |
| min() |
| { return _RandomNumberEngine::min(); } |
| |
| /** |
| * @brief Gets the maximum value in the generated random number range. |
| */ |
| static constexpr result_type |
| max() |
| { return _RandomNumberEngine::max(); } |
| |
| /** |
| * @brief Discard a sequence of random numbers. |
| */ |
| void |
| discard(unsigned long long __z) |
| { |
| for (; __z != 0ULL; --__z) |
| (*this)(); |
| } |
| |
| /** |
| * @brief Gets the next value in the generated random number sequence. |
| */ |
| result_type |
| operator()(); |
| |
| /** |
| * @brief Compares two %discard_block_engine random number generator |
| * objects of the same type for equality. |
| * |
| * @param __lhs A %discard_block_engine random number generator object. |
| * @param __rhs Another %discard_block_engine random number generator |
| * object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be equal, false otherwise. |
| */ |
| friend bool |
| operator==(const discard_block_engine& __lhs, |
| const discard_block_engine& __rhs) |
| { return __lhs._M_b == __rhs._M_b && __lhs._M_n == __rhs._M_n; } |
| |
| /** |
| * @brief Inserts the current state of a %discard_block_engine random |
| * number generator engine @p __x into the output stream |
| * @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %discard_block_engine random number generator engine. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
| typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::discard_block_engine<_RandomNumberEngine1, |
| __p1, __r1>&); |
| |
| /** |
| * @brief Extracts the current state of a % subtract_with_carry_engine |
| * random number generator engine @p __x from the input stream |
| * @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %discard_block_engine random number generator engine. |
| * |
| * @returns The input stream with the state of @p __x extracted or in |
| * an error state. |
| */ |
| template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
| typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::discard_block_engine<_RandomNumberEngine1, |
| __p1, __r1>&); |
| |
| private: |
| _RandomNumberEngine _M_b; |
| size_t _M_n; |
| }; |
| |
| /** |
| * @brief Compares two %discard_block_engine random number generator |
| * objects of the same type for inequality. |
| * |
| * @param __lhs A %discard_block_engine random number generator object. |
| * @param __rhs Another %discard_block_engine random number generator |
| * object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be different, false otherwise. |
| */ |
| template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| inline bool |
| operator!=(const std::discard_block_engine<_RandomNumberEngine, __p, |
| __r>& __lhs, |
| const std::discard_block_engine<_RandomNumberEngine, __p, |
| __r>& __rhs) |
| { return !(__lhs == __rhs); } |
| |
| |
| /** |
| * Produces random numbers by combining random numbers from some base |
| * engine to produce random numbers with a specifies number of bits @p __w. |
| */ |
| template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
| class independent_bits_engine |
| { |
| static_assert(std::is_unsigned<_UIntType>::value, "template argument " |
| "substituting _UIntType not an unsigned integral type"); |
| static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
| "template argument substituting __w out of bounds"); |
| |
| public: |
| /** The type of the generated random value. */ |
| typedef _UIntType result_type; |
| |
| /** |
| * @brief Constructs a default %independent_bits_engine engine. |
| * |
| * The underlying engine is default constructed as well. |
| */ |
| independent_bits_engine() |
| : _M_b() { } |
| |
| /** |
| * @brief Copy constructs a %independent_bits_engine engine. |
| * |
| * Copies an existing base class random number generator. |
| * @param rng An existing (base class) engine object. |
| */ |
| explicit |
| independent_bits_engine(const _RandomNumberEngine& __rne) |
| : _M_b(__rne) { } |
| |
| /** |
| * @brief Move constructs a %independent_bits_engine engine. |
| * |
| * Copies an existing base class random number generator. |
| * @param rng An existing (base class) engine object. |
| */ |
| explicit |
| independent_bits_engine(_RandomNumberEngine&& __rne) |
| : _M_b(std::move(__rne)) { } |
| |
| /** |
| * @brief Seed constructs a %independent_bits_engine engine. |
| * |
| * Constructs the underlying generator engine seeded with @p __s. |
| * @param __s A seed value for the base class engine. |
| */ |
| explicit |
| independent_bits_engine(result_type __s) |
| : _M_b(__s) { } |
| |
| /** |
| * @brief Generator construct a %independent_bits_engine engine. |
| * |
| * @param __q A seed sequence. |
| */ |
| template<typename _Sseq, typename = typename |
| std::enable_if<!std::is_same<_Sseq, independent_bits_engine>::value |
| && !std::is_same<_Sseq, _RandomNumberEngine>::value> |
| ::type> |
| explicit |
| independent_bits_engine(_Sseq& __q) |
| : _M_b(__q) |
| { } |
| |
| /** |
| * @brief Reseeds the %independent_bits_engine object with the default |
| * seed for the underlying base class generator engine. |
| */ |
| void |
| seed() |
| { _M_b.seed(); } |
| |
| /** |
| * @brief Reseeds the %independent_bits_engine object with the default |
| * seed for the underlying base class generator engine. |
| */ |
| void |
| seed(result_type __s) |
| { _M_b.seed(__s); } |
| |
| /** |
| * @brief Reseeds the %independent_bits_engine object with the given |
| * seed sequence. |
| * @param __q A seed generator function. |
| */ |
| template<typename _Sseq> |
| void |
| seed(_Sseq& __q) |
| { _M_b.seed(__q); } |
| |
| /** |
| * @brief Gets a const reference to the underlying generator engine |
| * object. |
| */ |
| const _RandomNumberEngine& |
| base() const |
| { return _M_b; } |
| |
| /** |
| * @brief Gets the minimum value in the generated random number range. |
| */ |
| static constexpr result_type |
| min() |
| { return 0U; } |
| |
| /** |
| * @brief Gets the maximum value in the generated random number range. |
| */ |
| static constexpr result_type |
| max() |
| { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
| |
| /** |
| * @brief Discard a sequence of random numbers. |
| */ |
| void |
| discard(unsigned long long __z) |
| { |
| for (; __z != 0ULL; --__z) |
| (*this)(); |
| } |
| |
| /** |
| * @brief Gets the next value in the generated random number sequence. |
| */ |
| result_type |
| operator()(); |
| |
| /** |
| * @brief Compares two %independent_bits_engine random number generator |
| * objects of the same type for equality. |
| * |
| * @param __lhs A %independent_bits_engine random number generator |
| * object. |
| * @param __rhs Another %independent_bits_engine random number generator |
| * object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be equal, false otherwise. |
| */ |
| friend bool |
| operator==(const independent_bits_engine& __lhs, |
| const independent_bits_engine& __rhs) |
| { return __lhs._M_b == __rhs._M_b; } |
| |
| /** |
| * @brief Extracts the current state of a % subtract_with_carry_engine |
| * random number generator engine @p __x from the input stream |
| * @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %independent_bits_engine random number generator |
| * engine. |
| * |
| * @returns The input stream with the state of @p __x extracted or in |
| * an error state. |
| */ |
| template<typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| std::independent_bits_engine<_RandomNumberEngine, |
| __w, _UIntType>& __x) |
| { |
| __is >> __x._M_b; |
| return __is; |
| } |
| |
| private: |
| _RandomNumberEngine _M_b; |
| }; |
| |
| /** |
| * @brief Compares two %independent_bits_engine random number generator |
| * objects of the same type for inequality. |
| * |
| * @param __lhs A %independent_bits_engine random number generator |
| * object. |
| * @param __rhs Another %independent_bits_engine random number generator |
| * object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be different, false otherwise. |
| */ |
| template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
| inline bool |
| operator!=(const std::independent_bits_engine<_RandomNumberEngine, __w, |
| _UIntType>& __lhs, |
| const std::independent_bits_engine<_RandomNumberEngine, __w, |
| _UIntType>& __rhs) |
| { return !(__lhs == __rhs); } |
| |
| /** |
| * @brief Inserts the current state of a %independent_bits_engine random |
| * number generator engine @p __x into the output stream @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %independent_bits_engine random number generator engine. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RandomNumberEngine, size_t __w, typename _UIntType, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const std::independent_bits_engine<_RandomNumberEngine, |
| __w, _UIntType>& __x) |
| { |
| __os << __x.base(); |
| return __os; |
| } |
| |
| |
| /** |
| * @brief Produces random numbers by combining random numbers from some |
| * base engine to produce random numbers with a specifies number of bits |
| * @p __w. |
| */ |
| template<typename _RandomNumberEngine, size_t __k> |
| class shuffle_order_engine |
| { |
| static_assert(1u <= __k, "template argument substituting " |
| "__k out of bound"); |
| |
| public: |
| /** The type of the generated random value. */ |
| typedef typename _RandomNumberEngine::result_type result_type; |
| |
| static constexpr size_t table_size = __k; |
| |
| /** |
| * @brief Constructs a default %shuffle_order_engine engine. |
| * |
| * The underlying engine is default constructed as well. |
| */ |
| shuffle_order_engine() |
| : _M_b() |
| { _M_initialize(); } |
| |
| /** |
| * @brief Copy constructs a %shuffle_order_engine engine. |
| * |
| * Copies an existing base class random number generator. |
| * @param rng An existing (base class) engine object. |
| */ |
| explicit |
| shuffle_order_engine(const _RandomNumberEngine& __rne) |
| : _M_b(__rne) |
| { _M_initialize(); } |
| |
| /** |
| * @brief Move constructs a %shuffle_order_engine engine. |
| * |
| * Copies an existing base class random number generator. |
| * @param rng An existing (base class) engine object. |
| */ |
| explicit |
| shuffle_order_engine(_RandomNumberEngine&& __rne) |
| : _M_b(std::move(__rne)) |
| { _M_initialize(); } |
| |
| /** |
| * @brief Seed constructs a %shuffle_order_engine engine. |
| * |
| * Constructs the underlying generator engine seeded with @p __s. |
| * @param __s A seed value for the base class engine. |
| */ |
| explicit |
| shuffle_order_engine(result_type __s) |
| : _M_b(__s) |
| { _M_initialize(); } |
| |
| /** |
| * @brief Generator construct a %shuffle_order_engine engine. |
| * |
| * @param __q A seed sequence. |
| */ |
| template<typename _Sseq, typename = typename |
| std::enable_if<!std::is_same<_Sseq, shuffle_order_engine>::value |
| && !std::is_same<_Sseq, _RandomNumberEngine>::value> |
| ::type> |
| explicit |
| shuffle_order_engine(_Sseq& __q) |
| : _M_b(__q) |
| { _M_initialize(); } |
| |
| /** |
| * @brief Reseeds the %shuffle_order_engine object with the default seed |
| for the underlying base class generator engine. |
| */ |
| void |
| seed() |
| { |
| _M_b.seed(); |
| _M_initialize(); |
| } |
| |
| /** |
| * @brief Reseeds the %shuffle_order_engine object with the default seed |
| * for the underlying base class generator engine. |
| */ |
| void |
| seed(result_type __s) |
| { |
| _M_b.seed(__s); |
| _M_initialize(); |
| } |
| |
| /** |
| * @brief Reseeds the %shuffle_order_engine object with the given seed |
| * sequence. |
| * @param __q A seed generator function. |
| */ |
| template<typename _Sseq> |
| void |
| seed(_Sseq& __q) |
| { |
| _M_b.seed(__q); |
| _M_initialize(); |
| } |
| |
| /** |
| * Gets a const reference to the underlying generator engine object. |
| */ |
| const _RandomNumberEngine& |
| base() const |
| { return _M_b; } |
| |
| /** |
| * Gets the minimum value in the generated random number range. |
| */ |
| static constexpr result_type |
| min() |
| { return _RandomNumberEngine::min(); } |
| |
| /** |
| * Gets the maximum value in the generated random number range. |
| */ |
| static constexpr result_type |
| max() |
| { return _RandomNumberEngine::max(); } |
| |
| /** |
| * Discard a sequence of random numbers. |
| */ |
| void |
| discard(unsigned long long __z) |
| { |
| for (; __z != 0ULL; --__z) |
| (*this)(); |
| } |
| |
| /** |
| * Gets the next value in the generated random number sequence. |
| */ |
| result_type |
| operator()(); |
| |
| /** |
| * Compares two %shuffle_order_engine random number generator objects |
| * of the same type for equality. |
| * |
| * @param __lhs A %shuffle_order_engine random number generator object. |
| * @param __rhs Another %shuffle_order_engine random number generator |
| * object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be equal, false otherwise. |
| */ |
| friend bool |
| operator==(const shuffle_order_engine& __lhs, |
| const shuffle_order_engine& __rhs) |
| { return __lhs._M_b == __rhs._M_b; } |
| |
| /** |
| * @brief Inserts the current state of a %shuffle_order_engine random |
| * number generator engine @p __x into the output stream |
| @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %shuffle_order_engine random number generator engine. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RandomNumberEngine1, size_t __k1, |
| typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::shuffle_order_engine<_RandomNumberEngine1, |
| __k1>&); |
| |
| /** |
| * @brief Extracts the current state of a % subtract_with_carry_engine |
| * random number generator engine @p __x from the input stream |
| * @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %shuffle_order_engine random number generator engine. |
| * |
| * @returns The input stream with the state of @p __x extracted or in |
| * an error state. |
| */ |
| template<typename _RandomNumberEngine1, size_t __k1, |
| typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::shuffle_order_engine<_RandomNumberEngine1, __k1>&); |
| |
| private: |
| void _M_initialize() |
| { |
| for (size_t __i = 0; __i < __k; ++__i) |
| _M_v[__i] = _M_b(); |
| _M_y = _M_b(); |
| } |
| |
| _RandomNumberEngine _M_b; |
| result_type _M_v[__k]; |
| result_type _M_y; |
| }; |
| |
| /** |
| * Compares two %shuffle_order_engine random number generator objects |
| * of the same type for inequality. |
| * |
| * @param __lhs A %shuffle_order_engine random number generator object. |
| * @param __rhs Another %shuffle_order_engine random number generator |
| * object. |
| * |
| * @returns true if the infinite sequences of generated values |
| * would be different, false otherwise. |
| */ |
| template<typename _RandomNumberEngine, size_t __k> |
| inline bool |
| operator!=(const std::shuffle_order_engine<_RandomNumberEngine, |
| __k>& __lhs, |
| const std::shuffle_order_engine<_RandomNumberEngine, |
| __k>& __rhs) |
| { return !(__lhs == __rhs); } |
| |
| |
| /** |
| * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller. |
| */ |
| typedef linear_congruential_engine<uint_fast32_t, 16807UL, 0UL, 2147483647UL> |
| minstd_rand0; |
| |
| /** |
| * An alternative LCR (Lehmer Generator function). |
| */ |
| typedef linear_congruential_engine<uint_fast32_t, 48271UL, 0UL, 2147483647UL> |
| minstd_rand; |
| |
| /** |
| * The classic Mersenne Twister. |
| * |
| * Reference: |
| * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally |
| * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions |
| * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30. |
| */ |
| typedef mersenne_twister_engine< |
| uint_fast32_t, |
| 32, 624, 397, 31, |
| 0x9908b0dfUL, 11, |
| 0xffffffffUL, 7, |
| 0x9d2c5680UL, 15, |
| 0xefc60000UL, 18, 1812433253UL> mt19937; |
| |
| /** |
| * An alternative Mersenne Twister. |
| */ |
| typedef mersenne_twister_engine< |
| uint_fast64_t, |
| 64, 312, 156, 31, |
| 0xb5026f5aa96619e9ULL, 29, |
| 0x5555555555555555ULL, 17, |
| 0x71d67fffeda60000ULL, 37, |
| 0xfff7eee000000000ULL, 43, |
| 6364136223846793005ULL> mt19937_64; |
| |
| typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24> |
| ranlux24_base; |
| |
| typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12> |
| ranlux48_base; |
| |
| typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24; |
| |
| typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48; |
| |
| typedef shuffle_order_engine<minstd_rand0, 256> knuth_b; |
| |
| typedef minstd_rand0 default_random_engine; |
| |
| /** |
| * A standard interface to a platform-specific non-deterministic |
| * random number generator (if any are available). |
| */ |
| class random_device |
| { |
| public: |
| /** The type of the generated random value. */ |
| typedef unsigned int result_type; |
| |
| // constructors, destructors and member functions |
| |
| #ifdef _GLIBCXX_USE_RANDOM_TR1 |
| |
| explicit |
| random_device(const std::string& __token = "/dev/urandom") |
| { |
| if ((__token != "/dev/urandom" && __token != "/dev/random") |
| || !(_M_file = std::fopen(__token.c_str(), "rb"))) |
| std::__throw_runtime_error(__N("random_device::" |
| "random_device(const std::string&)")); |
| } |
| |
| ~random_device() |
| { std::fclose(_M_file); } |
| |
| #else |
| |
| explicit |
| random_device(const std::string& __token = "mt19937") |
| : _M_mt(_M_strtoul(__token)) { } |
| |
| private: |
| static unsigned long |
| _M_strtoul(const std::string& __str) |
| { |
| unsigned long __ret = 5489UL; |
| if (__str != "mt19937") |
| { |
| const char* __nptr = __str.c_str(); |
| char* __endptr; |
| __ret = std::strtoul(__nptr, &__endptr, 0); |
| if (*__nptr == '\0' || *__endptr != '\0') |
| std::__throw_runtime_error(__N("random_device::_M_strtoul" |
| "(const std::string&)")); |
| } |
| return __ret; |
| } |
| |
| public: |
| |
| #endif |
| |
| result_type |
| min() const |
| { return std::numeric_limits<result_type>::min(); } |
| |
| result_type |
| max() const |
| { return std::numeric_limits<result_type>::max(); } |
| |
| double |
| entropy() const |
| { return 0.0; } |
| |
| result_type |
| operator()() |
| { |
| #ifdef _GLIBCXX_USE_RANDOM_TR1 |
| result_type __ret; |
| std::fread(reinterpret_cast<void*>(&__ret), sizeof(result_type), |
| 1, _M_file); |
| return __ret; |
| #else |
| return _M_mt(); |
| #endif |
| } |
| |
| // No copy functions. |
| random_device(const random_device&) = delete; |
| void operator=(const random_device&) = delete; |
| |
| private: |
| |
| #ifdef _GLIBCXX_USE_RANDOM_TR1 |
| FILE* _M_file; |
| #else |
| mt19937 _M_mt; |
| #endif |
| }; |
| |
| /* @} */ // group random_generators |
| |
| /** |
| * @addtogroup random_distributions Random Number Distributions |
| * @ingroup random |
| * @{ |
| */ |
| |
| /** |
| * @addtogroup random_distributions_uniform Uniform Distributions |
| * @ingroup random_distributions |
| * @{ |
| */ |
| |
| /** |
| * @brief Uniform discrete distribution for random numbers. |
| * A discrete random distribution on the range @f$[min, max]@f$ with equal |
| * probability throughout the range. |
| */ |
| template<typename _IntType = int> |
| class uniform_int_distribution |
| { |
| static_assert(std::is_integral<_IntType>::value, |
| "template argument not an integral type"); |
| |
| public: |
| /** The type of the range of the distribution. */ |
| typedef _IntType result_type; |
| /** Parameter type. */ |
| struct param_type |
| { |
| typedef uniform_int_distribution<_IntType> distribution_type; |
| |
| explicit |
| param_type(_IntType __a = 0, |
| _IntType __b = std::numeric_limits<_IntType>::max()) |
| : _M_a(__a), _M_b(__b) |
| { |
| _GLIBCXX_DEBUG_ASSERT(_M_a <= _M_b); |
| } |
| |
| result_type |
| a() const |
| { return _M_a; } |
| |
| result_type |
| b() const |
| { return _M_b; } |
| |
| friend bool |
| operator==(const param_type& __p1, const param_type& __p2) |
| { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| |
| private: |
| _IntType _M_a; |
| _IntType _M_b; |
| }; |
| |
| public: |
| /** |
| * @brief Constructs a uniform distribution object. |
| */ |
| explicit |
| uniform_int_distribution(_IntType __a = 0, |
| _IntType __b = std::numeric_limits<_IntType>::max()) |
| : _M_param(__a, __b) |
| { } |
| |
| explicit |
| uniform_int_distribution(const param_type& __p) |
| : _M_param(__p) |
| { } |
| |
| /** |
| * @brief Resets the distribution state. |
| * |
| * Does nothing for the uniform integer distribution. |
| */ |
| void |
| reset() { } |
| |
| result_type |
| a() const |
| { return _M_param.a(); } |
| |
| result_type |
| b() const |
| { return _M_param.b(); } |
| |
| /** |
| * @brief Returns the parameter set of the distribution. |
| */ |
| param_type |
| param() const |
| { return _M_param; } |
| |
| /** |
| * @brief Sets the parameter set of the distribution. |
| * @param __param The new parameter set of the distribution. |
| */ |
| void |
| param(const param_type& __param) |
| { _M_param = __param; } |
| |
| /** |
| * @brief Returns the inclusive lower bound of the distribution range. |
| */ |
| result_type |
| min() const |
| { return this->a(); } |
| |
| /** |
| * @brief Returns the inclusive upper bound of the distribution range. |
| */ |
| result_type |
| max() const |
| { return this->b(); } |
| |
| /** |
| * @brief Generating functions. |
| */ |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { return this->operator()(__urng, this->param()); } |
| |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p); |
| |
| param_type _M_param; |
| }; |
| |
| /** |
| * @brief Return true if two uniform integer distributions have |
| * the same parameters. |
| */ |
| template<typename _IntType> |
| inline bool |
| operator==(const std::uniform_int_distribution<_IntType>& __d1, |
| const std::uniform_int_distribution<_IntType>& __d2) |
| { return __d1.param() == __d2.param(); } |
| |
| /** |
| * @brief Return true if two uniform integer distributions have |
| * different parameters. |
| */ |
| template<typename _IntType> |
| inline bool |
| operator!=(const std::uniform_int_distribution<_IntType>& __d1, |
| const std::uniform_int_distribution<_IntType>& __d2) |
| { return !(__d1 == __d2); } |
| |
| /** |
| * @brief Inserts a %uniform_int_distribution random number |
| * distribution @p __x into the output stream @p os. |
| * |
| * @param __os An output stream. |
| * @param __x A %uniform_int_distribution random number distribution. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _IntType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::uniform_int_distribution<_IntType>&); |
| |
| /** |
| * @brief Extracts a %uniform_int_distribution random number distribution |
| * @p __x from the input stream @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %uniform_int_distribution random number generator engine. |
| * |
| * @returns The input stream with @p __x extracted or in an error state. |
| */ |
| template<typename _IntType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::uniform_int_distribution<_IntType>&); |
| |
| |
| /** |
| * @brief Uniform continuous distribution for random numbers. |
| * |
| * A continuous random distribution on the range [min, max) with equal |
| * probability throughout the range. The URNG should be real-valued and |
| * deliver number in the range [0, 1). |
| */ |
| template<typename _RealType = double> |
| class uniform_real_distribution |
| { |
| static_assert(std::is_floating_point<_RealType>::value, |
| "template argument not a floating point type"); |
| |
| public: |
| /** The type of the range of the distribution. */ |
| typedef _RealType result_type; |
| /** Parameter type. */ |
| struct param_type |
| { |
| typedef uniform_real_distribution<_RealType> distribution_type; |
| |
| explicit |
| param_type(_RealType __a = _RealType(0), |
| _RealType __b = _RealType(1)) |
| : _M_a(__a), _M_b(__b) |
| { |
| _GLIBCXX_DEBUG_ASSERT(_M_a <= _M_b); |
| } |
| |
| result_type |
| a() const |
| { return _M_a; } |
| |
| result_type |
| b() const |
| { return _M_b; } |
| |
| friend bool |
| operator==(const param_type& __p1, const param_type& __p2) |
| { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| |
| private: |
| _RealType _M_a; |
| _RealType _M_b; |
| }; |
| |
| public: |
| /** |
| * @brief Constructs a uniform_real_distribution object. |
| * |
| * @param __min [IN] The lower bound of the distribution. |
| * @param __max [IN] The upper bound of the distribution. |
| */ |
| explicit |
| uniform_real_distribution(_RealType __a = _RealType(0), |
| _RealType __b = _RealType(1)) |
| : _M_param(__a, __b) |
| { } |
| |
| explicit |
| uniform_real_distribution(const param_type& __p) |
| : _M_param(__p) |
| { } |
| |
| /** |
| * @brief Resets the distribution state. |
| * |
| * Does nothing for the uniform real distribution. |
| */ |
| void |
| reset() { } |
| |
| result_type |
| a() const |
| { return _M_param.a(); } |
| |
| result_type |
| b() const |
| { return _M_param.b(); } |
| |
| /** |
| * @brief Returns the parameter set of the distribution. |
| */ |
| param_type |
| param() const |
| { return _M_param; } |
| |
| /** |
| * @brief Sets the parameter set of the distribution. |
| * @param __param The new parameter set of the distribution. |
| */ |
| void |
| param(const param_type& __param) |
| { _M_param = __param; } |
| |
| /** |
| * @brief Returns the inclusive lower bound of the distribution range. |
| */ |
| result_type |
| min() const |
| { return this->a(); } |
| |
| /** |
| * @brief Returns the inclusive upper bound of the distribution range. |
| */ |
| result_type |
| max() const |
| { return this->b(); } |
| |
| /** |
| * @brief Generating functions. |
| */ |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { return this->operator()(__urng, this->param()); } |
| |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| return (__aurng() * (__p.b() - __p.a())) + __p.a(); |
| } |
| |
| private: |
| param_type _M_param; |
| }; |
| |
| /** |
| * @brief Return true if two uniform real distributions have |
| * the same parameters. |
| */ |
| template<typename _IntType> |
| inline bool |
| operator==(const std::uniform_real_distribution<_IntType>& __d1, |
| const std::uniform_real_distribution<_IntType>& __d2) |
| { return __d1.param() == __d2.param(); } |
| |
| /** |
| * @brief Return true if two uniform real distributions have |
| * different parameters. |
| */ |
| template<typename _IntType> |
| inline bool |
| operator!=(const std::uniform_real_distribution<_IntType>& __d1, |
| const std::uniform_real_distribution<_IntType>& __d2) |
| { return !(__d1 == __d2); } |
| |
| /** |
| * @brief Inserts a %uniform_real_distribution random number |
| * distribution @p __x into the output stream @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %uniform_real_distribution random number distribution. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::uniform_real_distribution<_RealType>&); |
| |
| /** |
| * @brief Extracts a %uniform_real_distribution random number distribution |
| * @p __x from the input stream @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %uniform_real_distribution random number generator engine. |
| * |
| * @returns The input stream with @p __x extracted or in an error state. |
| */ |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::uniform_real_distribution<_RealType>&); |
| |
| /* @} */ // group random_distributions_uniform |
| |
| /** |
| * @addtogroup random_distributions_normal Normal Distributions |
| * @ingroup random_distributions |
| * @{ |
| */ |
| |
| /** |
| * @brief A normal continuous distribution for random numbers. |
| * |
| * The formula for the normal probability density function is |
| * @f[ |
| * p(x|\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}} |
| * e^{- \frac{{x - \mu}^ {2}}{2 \sigma ^ {2}} } |
| * @f] |
| */ |
| template<typename _RealType = double> |
| class normal_distribution |
| { |
| static_assert(std::is_floating_point<_RealType>::value, |
| "template argument not a floating point type"); |
| |
| public: |
| /** The type of the range of the distribution. */ |
| typedef _RealType result_type; |
| /** Parameter type. */ |
| struct param_type |
| { |
| typedef normal_distribution<_RealType> distribution_type; |
| |
| explicit |
| param_type(_RealType __mean = _RealType(0), |
| _RealType __stddev = _RealType(1)) |
| : _M_mean(__mean), _M_stddev(__stddev) |
| { |
| _GLIBCXX_DEBUG_ASSERT(_M_stddev > _RealType(0)); |
| } |
| |
| _RealType |
| mean() const |
| { return _M_mean; } |
| |
| _RealType |
| stddev() const |
| { return _M_stddev; } |
| |
| friend bool |
| operator==(const param_type& __p1, const param_type& __p2) |
| { return (__p1._M_mean == __p2._M_mean |
| && __p1._M_stddev == __p2._M_stddev); } |
| |
| private: |
| _RealType _M_mean; |
| _RealType _M_stddev; |
| }; |
| |
| public: |
| /** |
| * Constructs a normal distribution with parameters @f$mean@f$ and |
| * standard deviation. |
| */ |
| explicit |
| normal_distribution(result_type __mean = result_type(0), |
| result_type __stddev = result_type(1)) |
| : _M_param(__mean, __stddev), _M_saved_available(false) |
| { } |
| |
| explicit |
| normal_distribution(const param_type& __p) |
| : _M_param(__p), _M_saved_available(false) |
| { } |
| |
| /** |
| * @brief Resets the distribution state. |
| */ |
| void |
| reset() |
| { _M_saved_available = false; } |
| |
| /** |
| * @brief Returns the mean of the distribution. |
| */ |
| _RealType |
| mean() const |
| { return _M_param.mean(); } |
| |
| /** |
| * @brief Returns the standard deviation of the distribution. |
| */ |
| _RealType |
| stddev() const |
| { return _M_param.stddev(); } |
| |
| /** |
| * @brief Returns the parameter set of the distribution. |
| */ |
| param_type |
| param() const |
| { return _M_param; } |
| |
| /** |
| * @brief Sets the parameter set of the distribution. |
| * @param __param The new parameter set of the distribution. |
| */ |
| void |
| param(const param_type& __param) |
| { _M_param = __param; } |
| |
| /** |
| * @brief Returns the greatest lower bound value of the distribution. |
| */ |
| result_type |
| min() const |
| { return std::numeric_limits<result_type>::min(); } |
| |
| /** |
| * @brief Returns the least upper bound value of the distribution. |
| */ |
| result_type |
| max() const |
| { return std::numeric_limits<result_type>::max(); } |
| |
| /** |
| * @brief Generating functions. |
| */ |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { return this->operator()(__urng, this->param()); } |
| |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p); |
| |
| /** |
| * @brief Return true if two normal distributions have |
| * the same parameters and the sequences that would |
| * be generated are equal. |
| */ |
| template<typename _RealType1> |
| friend bool |
| operator==(const std::normal_distribution<_RealType1>& __d1, |
| const std::normal_distribution<_RealType1>& __d2); |
| |
| /** |
| * @brief Inserts a %normal_distribution random number distribution |
| * @p __x into the output stream @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %normal_distribution random number distribution. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::normal_distribution<_RealType1>&); |
| |
| /** |
| * @brief Extracts a %normal_distribution random number distribution |
| * @p __x from the input stream @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %normal_distribution random number generator engine. |
| * |
| * @returns The input stream with @p __x extracted or in an error |
| * state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::normal_distribution<_RealType1>&); |
| |
| private: |
| param_type _M_param; |
| result_type _M_saved; |
| bool _M_saved_available; |
| }; |
| |
| /** |
| * @brief Return true if two normal distributions are different. |
| */ |
| template<typename _RealType> |
| inline bool |
| operator!=(const std::normal_distribution<_RealType>& __d1, |
| const std::normal_distribution<_RealType>& __d2) |
| { return !(__d1 == __d2); } |
| |
| |
| /** |
| * @brief A lognormal_distribution random number distribution. |
| * |
| * The formula for the normal probability mass function is |
| * @f[ |
| * p(x|m,s) = \frac{1}{sx\sqrt{2\pi}} |
| * \exp{-\frac{(\ln{x} - m)^2}{2s^2}} |
| * @f] |
| */ |
| template<typename _RealType = double> |
| class lognormal_distribution |
| { |
| static_assert(std::is_floating_point<_RealType>::value, |
| "template argument not a floating point type"); |
| |
| public: |
| /** The type of the range of the distribution. */ |
| typedef _RealType result_type; |
| /** Parameter type. */ |
| struct param_type |
| { |
| typedef lognormal_distribution<_RealType> distribution_type; |
| |
| explicit |
| param_type(_RealType __m = _RealType(0), |
| _RealType __s = _RealType(1)) |
| : _M_m(__m), _M_s(__s) |
| { } |
| |
| _RealType |
| m() const |
| { return _M_m; } |
| |
| _RealType |
| s() const |
| { return _M_s; } |
| |
| friend bool |
| operator==(const param_type& __p1, const param_type& __p2) |
| { return __p1._M_m == __p2._M_m && __p1._M_s == __p2._M_s; } |
| |
| private: |
| _RealType _M_m; |
| _RealType _M_s; |
| }; |
| |
| explicit |
| lognormal_distribution(_RealType __m = _RealType(0), |
| _RealType __s = _RealType(1)) |
| : _M_param(__m, __s), _M_nd() |
| { } |
| |
| explicit |
| lognormal_distribution(const param_type& __p) |
| : _M_param(__p), _M_nd() |
| { } |
| |
| /** |
| * Resets the distribution state. |
| */ |
| void |
| reset() |
| { _M_nd.reset(); } |
| |
| /** |
| * |
| */ |
| _RealType |
| m() const |
| { return _M_param.m(); } |
| |
| _RealType |
| s() const |
| { return _M_param.s(); } |
| |
| /** |
| * @brief Returns the parameter set of the distribution. |
| */ |
| param_type |
| param() const |
| { return _M_param; } |
| |
| /** |
| * @brief Sets the parameter set of the distribution. |
| * @param __param The new parameter set of the distribution. |
| */ |
| void |
| param(const param_type& __param) |
| { _M_param = __param; } |
| |
| /** |
| * @brief Returns the greatest lower bound value of the distribution. |
| */ |
| result_type |
| min() const |
| { return result_type(0); } |
| |
| /** |
| * @brief Returns the least upper bound value of the distribution. |
| */ |
| result_type |
| max() const |
| { return std::numeric_limits<result_type>::max(); } |
| |
| /** |
| * @brief Generating functions. |
| */ |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { return this->operator()(__urng, this->param()); } |
| |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { return std::exp(__p.s() * _M_nd(__urng) + __p.m()); } |
| |
| /** |
| * @brief Return true if two lognormal distributions have |
| * the same parameters and the sequences that would |
| * be generated are equal. |
| */ |
| template<typename _RealType1> |
| friend bool |
| operator==(const std::lognormal_distribution<_RealType1>& __d1, |
| const std::lognormal_distribution<_RealType1>& __d2) |
| { return (__d1.param() == __d2.param() |
| && __d1._M_nd == __d2._M_nd); } |
| |
| /** |
| * @brief Inserts a %lognormal_distribution random number distribution |
| * @p __x into the output stream @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %lognormal_distribution random number distribution. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::lognormal_distribution<_RealType1>&); |
| |
| /** |
| * @brief Extracts a %lognormal_distribution random number distribution |
| * @p __x from the input stream @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %lognormal_distribution random number |
| * generator engine. |
| * |
| * @returns The input stream with @p __x extracted or in an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::lognormal_distribution<_RealType1>&); |
| |
| private: |
| param_type _M_param; |
| |
| std::normal_distribution<result_type> _M_nd; |
| }; |
| |
| /** |
| * @brief Return true if two lognormal distributions are different. |
| */ |
| template<typename _RealType> |
| inline bool |
| operator!=(const std::lognormal_distribution<_RealType>& __d1, |
| const std::lognormal_distribution<_RealType>& __d2) |
| { return !(__d1 == __d2); } |
| |
| |
| /** |
| * @brief A gamma continuous distribution for random numbers. |
| * |
| * The formula for the gamma probability density function is: |
| * @f[ |
| * p(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)} |
| * (x/\beta)^{\alpha - 1} e^{-x/\beta} |
| * @f] |
| */ |
| template<typename _RealType = double> |
| class gamma_distribution |
| { |
| static_assert(std::is_floating_point<_RealType>::value, |
| "template argument not a floating point type"); |
| |
| public: |
| /** The type of the range of the distribution. */ |
| typedef _RealType result_type; |
| /** Parameter type. */ |
| struct param_type |
| { |
| typedef gamma_distribution<_RealType> distribution_type; |
| friend class gamma_distribution<_RealType>; |
| |
| explicit |
| param_type(_RealType __alpha_val = _RealType(1), |
| _RealType __beta_val = _RealType(1)) |
| : _M_alpha(__alpha_val), _M_beta(__beta_val) |
| { |
| _GLIBCXX_DEBUG_ASSERT(_M_alpha > _RealType(0)); |
| _M_initialize(); |
| } |
| |
| _RealType |
| alpha() const |
| { return _M_alpha; } |
| |
| _RealType |
| beta() const |
| { return _M_beta; } |
| |
| friend bool |
| operator==(const param_type& __p1, const param_type& __p2) |
| { return (__p1._M_alpha == __p2._M_alpha |
| && __p1._M_beta == __p2._M_beta); } |
| |
| private: |
| void |
| _M_initialize(); |
| |
| _RealType _M_alpha; |
| _RealType _M_beta; |
| |
| _RealType _M_malpha, _M_a2; |
| }; |
| |
| public: |
| /** |
| * @brief Constructs a gamma distribution with parameters |
| * @f$\alpha@f$ and @f$\beta@f$. |
| */ |
| explicit |
| gamma_distribution(_RealType __alpha_val = _RealType(1), |
| _RealType __beta_val = _RealType(1)) |
| : _M_param(__alpha_val, __beta_val), _M_nd() |
| { } |
| |
| explicit |
| gamma_distribution(const param_type& __p) |
| : _M_param(__p), _M_nd() |
| { } |
| |
| /** |
| * @brief Resets the distribution state. |
| */ |
| void |
| reset() |
| { _M_nd.reset(); } |
| |
| /** |
| * @brief Returns the @f$\alpha@f$ of the distribution. |
| */ |
| _RealType |
| alpha() const |
| { return _M_param.alpha(); } |
| |
| /** |
| * @brief Returns the @f$\beta@f$ of the distribution. |
| */ |
| _RealType |
| beta() const |
| { return _M_param.beta(); } |
| |
| /** |
| * @brief Returns the parameter set of the distribution. |
| */ |
| param_type |
| param() const |
| { return _M_param; } |
| |
| /** |
| * @brief Sets the parameter set of the distribution. |
| * @param __param The new parameter set of the distribution. |
| */ |
| void |
| param(const param_type& __param) |
| { _M_param = __param; } |
| |
| /** |
| * @brief Returns the greatest lower bound value of the distribution. |
| */ |
| result_type |
| min() const |
| { return result_type(0); } |
| |
| /** |
| * @brief Returns the least upper bound value of the distribution. |
| */ |
| result_type |
| max() const |
| { return std::numeric_limits<result_type>::max(); } |
| |
| /** |
| * @brief Generating functions. |
| */ |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { return this->operator()(__urng, this->param()); } |
| |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p); |
| |
| /** |
| * @brief Return true if two gamma distributions have the same |
| * parameters and the sequences that would be generated |
| * are equal. |
| */ |
| template<typename _RealType1> |
| friend bool |
| operator==(const std::gamma_distribution<_RealType1>& __d1, |
| const std::gamma_distribution<_RealType1>& __d2) |
| { return (__d1.param() == __d2.param() |
| && __d1._M_nd == __d2._M_nd); } |
| |
| /** |
| * @brief Inserts a %gamma_distribution random number distribution |
| * @p __x into the output stream @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %gamma_distribution random number distribution. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::gamma_distribution<_RealType1>&); |
| |
| /** |
| * @brief Extracts a %gamma_distribution random number distribution |
| * @p __x from the input stream @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %gamma_distribution random number generator engine. |
| * |
| * @returns The input stream with @p __x extracted or in an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::gamma_distribution<_RealType1>&); |
| |
| private: |
| param_type _M_param; |
| |
| std::normal_distribution<result_type> _M_nd; |
| }; |
| |
| /** |
| * @brief Return true if two gamma distributions are different. |
| */ |
| template<typename _RealType> |
| inline bool |
| operator!=(const std::gamma_distribution<_RealType>& __d1, |
| const std::gamma_distribution<_RealType>& __d2) |
| { return !(__d1 == __d2); } |
| |
| |
| /** |
| * @brief A chi_squared_distribution random number distribution. |
| * |
| * The formula for the normal probability mass function is |
| * @f$p(x|n) = \frac{x^{(n/2) - 1}e^{-x/2}}{\Gamma(n/2) 2^{n/2}}@f$ |
| */ |
| template<typename _RealType = double> |
| class chi_squared_distribution |
| { |
| static_assert(std::is_floating_point<_RealType>::value, |
| "template argument not a floating point type"); |
| |
| public: |
| /** The type of the range of the distribution. */ |
| typedef _RealType result_type; |
| /** Parameter type. */ |
| struct param_type |
| { |
| typedef chi_squared_distribution<_RealType> distribution_type; |
| |
| explicit |
| param_type(_RealType __n = _RealType(1)) |
| : _M_n(__n) |
| { } |
| |
| _RealType |
| n() const |
| { return _M_n; } |
| |
| friend bool |
| operator==(const param_type& __p1, const param_type& __p2) |
| { return __p1._M_n == __p2._M_n; } |
| |
| private: |
| _RealType _M_n; |
| }; |
| |
| explicit |
| chi_squared_distribution(_RealType __n = _RealType(1)) |
| : _M_param(__n), _M_gd(__n / 2) |
| { } |
| |
| explicit |
| chi_squared_distribution(const param_type& __p) |
| : _M_param(__p), _M_gd(__p.n() / 2) |
| { } |
| |
| /** |
| * @brief Resets the distribution state. |
| */ |
| void |
| reset() |
| { _M_gd.reset(); } |
| |
| /** |
| * |
| */ |
| _RealType |
| n() const |
| { return _M_param.n(); } |
| |
| /** |
| * @brief Returns the parameter set of the distribution. |
| */ |
| param_type |
| param() const |
| { return _M_param; } |
| |
| /** |
| * @brief Sets the parameter set of the distribution. |
| * @param __param The new parameter set of the distribution. |
| */ |
| void |
| param(const param_type& __param) |
| { _M_param = __param; } |
| |
| /** |
| * @brief Returns the greatest lower bound value of the distribution. |
| */ |
| result_type |
| min() const |
| { return result_type(0); } |
| |
| /** |
| * @brief Returns the least upper bound value of the distribution. |
| */ |
| result_type |
| max() const |
| { return std::numeric_limits<result_type>::max(); } |
| |
| /** |
| * @brief Generating functions. |
| */ |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { return 2 * _M_gd(__urng); } |
| |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| typedef typename std::gamma_distribution<result_type>::param_type |
| param_type; |
| return 2 * _M_gd(__urng, param_type(__p.n() / 2)); |
| } |
| |
| /** |
| * @brief Return true if two Chi-squared distributions have |
| * the same parameters and the sequences that would be |
| * generated are equal. |
| */ |
| template<typename _RealType1> |
| friend bool |
| operator==(const std::chi_squared_distribution<_RealType1>& __d1, |
| const std::chi_squared_distribution<_RealType1>& __d2) |
| { return __d1.param() == __d2.param() && __d1._M_gd == __d2._M_gd; } |
| |
| /** |
| * @brief Inserts a %chi_squared_distribution random number distribution |
| * @p __x into the output stream @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %chi_squared_distribution random number distribution. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::chi_squared_distribution<_RealType1>&); |
| |
| /** |
| * @brief Extracts a %chi_squared_distribution random number distribution |
| * @p __x from the input stream @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %chi_squared_distribution random number |
| * generator engine. |
| * |
| * @returns The input stream with @p __x extracted or in an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::chi_squared_distribution<_RealType1>&); |
| |
| private: |
| param_type _M_param; |
| |
| std::gamma_distribution<result_type> _M_gd; |
| }; |
| |
| /** |
| * @brief Return true if two Chi-squared distributions are different. |
| */ |
| template<typename _RealType> |
| inline bool |
| operator!=(const std::chi_squared_distribution<_RealType>& __d1, |
| const std::chi_squared_distribution<_RealType>& __d2) |
| { return !(__d1 == __d2); } |
| |
| |
| /** |
| * @brief A cauchy_distribution random number distribution. |
| * |
| * The formula for the normal probability mass function is |
| * @f$p(x|a,b) = (\pi b (1 + (\frac{x-a}{b})^2))^{-1}@f$ |
| */ |
| template<typename _RealType = double> |
| class cauchy_distribution |
| { |
| static_assert(std::is_floating_point<_RealType>::value, |
| "template argument not a floating point type"); |
| |
| public: |
| /** The type of the range of the distribution. */ |
| typedef _RealType result_type; |
| /** Parameter type. */ |
| struct param_type |
| { |
| typedef cauchy_distribution<_RealType> distribution_type; |
| |
| explicit |
| param_type(_RealType __a = _RealType(0), |
| _RealType __b = _RealType(1)) |
| : _M_a(__a), _M_b(__b) |
| { } |
| |
| _RealType |
| a() const |
| { return _M_a; } |
| |
| _RealType |
| b() const |
| { return _M_b; } |
| |
| friend bool |
| operator==(const param_type& __p1, const param_type& __p2) |
| { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| |
| private: |
| _RealType _M_a; |
| _RealType _M_b; |
| }; |
| |
| explicit |
| cauchy_distribution(_RealType __a = _RealType(0), |
| _RealType __b = _RealType(1)) |
| : _M_param(__a, __b) |
| { } |
| |
| explicit |
| cauchy_distribution(const param_type& __p) |
| : _M_param(__p) |
| { } |
| |
| /** |
| * @brief Resets the distribution state. |
| */ |
| void |
| reset() |
| { } |
| |
| /** |
| * |
| */ |
| _RealType |
| a() const |
| { return _M_param.a(); } |
| |
| _RealType |
| b() const |
| { return _M_param.b(); } |
| |
| /** |
| * @brief Returns the parameter set of the distribution. |
| */ |
| param_type |
| param() const |
| { return _M_param; } |
| |
| /** |
| * @brief Sets the parameter set of the distribution. |
| * @param __param The new parameter set of the distribution. |
| */ |
| void |
| param(const param_type& __param) |
| { _M_param = __param; } |
| |
| /** |
| * @brief Returns the greatest lower bound value of the distribution. |
| */ |
| result_type |
| min() const |
| { return std::numeric_limits<result_type>::min(); } |
| |
| /** |
| * @brief Returns the least upper bound value of the distribution. |
| */ |
| result_type |
| max() const |
| { return std::numeric_limits<result_type>::max(); } |
| |
| /** |
| * @brief Generating functions. |
| */ |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { return this->operator()(__urng, this->param()); } |
| |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p); |
| |
| private: |
| param_type _M_param; |
| }; |
| |
| /** |
| * @brief Return true if two Cauchy distributions have |
| * the same parameters. |
| */ |
| template<typename _RealType> |
| inline bool |
| operator==(const std::cauchy_distribution<_RealType>& __d1, |
| const std::cauchy_distribution<_RealType>& __d2) |
| { return __d1.param() == __d2.param(); } |
| |
| /** |
| * @brief Return true if two Cauchy distributions have |
| * different parameters. |
| */ |
| template<typename _RealType> |
| inline bool |
| operator!=(const std::cauchy_distribution<_RealType>& __d1, |
| const std::cauchy_distribution<_RealType>& __d2) |
| { return !(__d1 == __d2); } |
| |
| /** |
| * @brief Inserts a %cauchy_distribution random number distribution |
| * @p __x into the output stream @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %cauchy_distribution random number distribution. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::cauchy_distribution<_RealType>&); |
| |
| /** |
| * @brief Extracts a %cauchy_distribution random number distribution |
| * @p __x from the input stream @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %cauchy_distribution random number |
| * generator engine. |
| * |
| * @returns The input stream with @p __x extracted or in an error state. |
| */ |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::cauchy_distribution<_RealType>&); |
| |
| |
| /** |
| * @brief A fisher_f_distribution random number distribution. |
| * |
| * The formula for the normal probability mass function is |
| * @f[ |
| * p(x|m,n) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} |
| * (\frac{m}{n})^{m/2} x^{(m/2)-1} |
| * (1 + \frac{mx}{n})^{-(m+n)/2} |
| * @f] |
| */ |
| template<typename _RealType = double> |
| class fisher_f_distribution |
| { |
| static_assert(std::is_floating_point<_RealType>::value, |
| "template argument not a floating point type"); |
| |
| public: |
| /** The type of the range of the distribution. */ |
| typedef _RealType result_type; |
| /** Parameter type. */ |
| struct param_type |
| { |
| typedef fisher_f_distribution<_RealType> distribution_type; |
| |
| explicit |
| param_type(_RealType __m = _RealType(1), |
| _RealType __n = _RealType(1)) |
| : _M_m(__m), _M_n(__n) |
| { } |
| |
| _RealType |
| m() const |
| { return _M_m; } |
| |
| _RealType |
| n() const |
| { return _M_n; } |
| |
| friend bool |
| operator==(const param_type& __p1, const param_type& __p2) |
| { return __p1._M_m == __p2._M_m && __p1._M_n == __p2._M_n; } |
| |
| private: |
| _RealType _M_m; |
| _RealType _M_n; |
| }; |
| |
| explicit |
| fisher_f_distribution(_RealType __m = _RealType(1), |
| _RealType __n = _RealType(1)) |
| : _M_param(__m, __n), _M_gd_x(__m / 2), _M_gd_y(__n / 2) |
| { } |
| |
| explicit |
| fisher_f_distribution(const param_type& __p) |
| : _M_param(__p), _M_gd_x(__p.m() / 2), _M_gd_y(__p.n() / 2) |
| { } |
| |
| /** |
| * @brief Resets the distribution state. |
| */ |
| void |
| reset() |
| { |
| _M_gd_x.reset(); |
| _M_gd_y.reset(); |
| } |
| |
| /** |
| * |
| */ |
| _RealType |
| m() const |
| { return _M_param.m(); } |
| |
| _RealType |
| n() const |
| { return _M_param.n(); } |
| |
| /** |
| * @brief Returns the parameter set of the distribution. |
| */ |
| param_type |
| param() const |
| { return _M_param; } |
| |
| /** |
| * @brief Sets the parameter set of the distribution. |
| * @param __param The new parameter set of the distribution. |
| */ |
| void |
| param(const param_type& __param) |
| { _M_param = __param; } |
| |
| /** |
| * @brief Returns the greatest lower bound value of the distribution. |
| */ |
| result_type |
| min() const |
| { return result_type(0); } |
| |
| /** |
| * @brief Returns the least upper bound value of the distribution. |
| */ |
| result_type |
| max() const |
| { return std::numeric_limits<result_type>::max(); } |
| |
| /** |
| * @brief Generating functions. |
| */ |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { return (_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()); } |
| |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| typedef typename std::gamma_distribution<result_type>::param_type |
| param_type; |
| return ((_M_gd_x(__urng, param_type(__p.m() / 2)) * n()) |
| / (_M_gd_y(__urng, param_type(__p.n() / 2)) * m())); |
| } |
| |
| /** |
| * @brief Return true if two Fisher f distributions have |
| * the same parameters and the sequences that would |
| * be generated are equal. |
| */ |
| template<typename _RealType1> |
| friend bool |
| operator==(const std::fisher_f_distribution<_RealType1>& __d1, |
| const std::fisher_f_distribution<_RealType1>& __d2) |
| { return (__d1.param() == __d2.param() |
| && __d1._M_gd_x == __d2._M_gd_x |
| && __d1._M_gd_y == __d2._M_gd_y); } |
| |
| /** |
| * @brief Inserts a %fisher_f_distribution random number distribution |
| * @p __x into the output stream @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %fisher_f_distribution random number distribution. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::fisher_f_distribution<_RealType1>&); |
| |
| /** |
| * @brief Extracts a %fisher_f_distribution random number distribution |
| * @p __x from the input stream @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %fisher_f_distribution random number |
| * generator engine. |
| * |
| * @returns The input stream with @p __x extracted or in an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::fisher_f_distribution<_RealType1>&); |
| |
| private: |
| param_type _M_param; |
| |
| std::gamma_distribution<result_type> _M_gd_x, _M_gd_y; |
| }; |
| |
| /** |
| * @brief Return true if two Fisher f distributions are diferent. |
| */ |
| template<typename _RealType> |
| inline bool |
| operator!=(const std::fisher_f_distribution<_RealType>& __d1, |
| const std::fisher_f_distribution<_RealType>& __d2) |
| { return !(__d1 == __d2); } |
| |
| /** |
| * @brief A student_t_distribution random number distribution. |
| * |
| * The formula for the normal probability mass function is: |
| * @f[ |
| * p(x|n) = \frac{1}{\sqrt(n\pi)} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)} |
| * (1 + \frac{x^2}{n}) ^{-(n+1)/2} |
| * @f] |
| */ |
| template<typename _RealType = double> |
| class student_t_distribution |
| { |
| static_assert(std::is_floating_point<_RealType>::value, |
| "template argument not a floating point type"); |
| |
| public: |
| /** The type of the range of the distribution. */ |
| typedef _RealType result_type; |
| /** Parameter type. */ |
| struct param_type |
| { |
| typedef student_t_distribution<_RealType> distribution_type; |
| |
| explicit |
| param_type(_RealType __n = _RealType(1)) |
| : _M_n(__n) |
| { } |
| |
| _RealType |
| n() const |
| { return _M_n; } |
| |
| friend bool |
| operator==(const param_type& __p1, const param_type& __p2) |
| { return __p1._M_n == __p2._M_n; } |
| |
| private: |
| _RealType _M_n; |
| }; |
| |
| explicit |
| student_t_distribution(_RealType __n = _RealType(1)) |
| : _M_param(__n), _M_nd(), _M_gd(__n / 2, 2) |
| { } |
| |
| explicit |
| student_t_distribution(const param_type& __p) |
| : _M_param(__p), _M_nd(), _M_gd(__p.n() / 2, 2) |
| { } |
| |
| /** |
| * @brief Resets the distribution state. |
| */ |
| void |
| reset() |
| { |
| _M_nd.reset(); |
| _M_gd.reset(); |
| } |
| |
| /** |
| * |
| */ |
| _RealType |
| n() const |
| { return _M_param.n(); } |
| |
| /** |
| * @brief Returns the parameter set of the distribution. |
| */ |
| param_type |
| param() const |
| { return _M_param; } |
| |
| /** |
| * @brief Sets the parameter set of the distribution. |
| * @param __param The new parameter set of the distribution. |
| */ |
| void |
| param(const param_type& __param) |
| { _M_param = __param; } |
| |
| /** |
| * @brief Returns the greatest lower bound value of the distribution. |
| */ |
| result_type |
| min() const |
| { return std::numeric_limits<result_type>::min(); } |
| |
| /** |
| * @brief Returns the least upper bound value of the distribution. |
| */ |
| result_type |
| max() const |
| { return std::numeric_limits<result_type>::max(); } |
| |
| /** |
| * @brief Generating functions. |
| */ |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { return _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); } |
| |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| typedef typename std::gamma_distribution<result_type>::param_type |
| param_type; |
| |
| const result_type __g = _M_gd(__urng, param_type(__p.n() / 2, 2)); |
| return _M_nd(__urng) * std::sqrt(__p.n() / __g); |
| } |
| |
| /** |
| * @brief Return true if two Student t distributions have |
| * the same parameters and the sequences that would |
| * be generated are equal. |
| */ |
| template<typename _RealType1> |
| friend bool |
| operator==(const std::student_t_distribution<_RealType1>& __d1, |
| const std::student_t_distribution<_RealType1>& __d2) |
| { return (__d1.param() == __d2.param() |
| && __d1._M_nd == __d2._M_nd && __d1._M_gd == __d2._M_gd); } |
| |
| /** |
| * @brief Inserts a %student_t_distribution random number distribution |
| * @p __x into the output stream @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %student_t_distribution random number distribution. |
| * |
| * @returns The output stream with the state of @p __x inserted or in |
| * an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>&, |
| const std::student_t_distribution<_RealType1>&); |
| |
| /** |
| * @brief Extracts a %student_t_distribution random number distribution |
| * @p __x from the input stream @p __is. |
| * |
| * @param __is An input stream. |
| * @param __x A %student_t_distribution random number |
| * generator engine. |
| * |
| * @returns The input stream with @p __x extracted or in an error state. |
| */ |
| template<typename _RealType1, typename _CharT, typename _Traits> |
| friend std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>&, |
| std::student_t_distribution<_RealType1>&); |
| |
| private: |
| param_type _M_param; |
| |
| std::normal_distribution<result_type> _M_nd; |
| std::gamma_distribution<result_type> _M_gd; |
| }; |
| |
| /** |
| * @brief Return true if two Student t distributions are different. |
| */ |
| template<typename _RealType> |
| inline bool |
| operator!=(const std::student_t_distribution<_RealType>& __d1, |
| const std::student_t_distribution<_RealType>& __d2) |
| { return !(__d1 == __d2); } |
| |
| |
| /* @} */ // group random_distributions_normal |
| |
| /** |
| * @addtogroup random_distributions_bernoulli Bernoulli Distributions |
| * @ingroup random_distributions |
| * @{ |
| */ |
| |
| /** |
| * @brief A Bernoulli random number distribution. |
| * |
| * Generates a sequence of true and false values with likelihood @f$p@f$ |
| * that true will come up and @f$(1 - p)@f$ that false will appear. |
| */ |
| class bernoulli_distribution |
| { |
| public: |
| /** The type of the range of the distribution. */ |
| typedef bool result_type; |
| /** Parameter type. */ |
| struct param_type |
| { |
| typedef bernoulli_distribution distribution_type; |
| |
| explicit |
| param_type(double __p = 0.5) |
| : _M_p(__p) |
| { |
| _GLIBCXX_DEBUG_ASSERT((_M_p >= 0.0) && (_M_p <= 1.0)); |
| } |
| |
| double |
| p() const |
| { return _M_p; } |
| |
| friend bool |
| operator==(const param_type& __p1, const param_type& __p2) |
| { return __p1._M_p == __p2._M_p; } |
| |
| private: |
| double _M_p; |
| }; |
| |
| public: |
| /** |
| * @brief Constructs a Bernoulli distribution with likelihood @p p. |
| * |
| * @param __p [IN] The likelihood of a true result being returned. |
| * Must be in the interval @f$[0, 1]@f$. |
| */ |
| explicit |
| bernoulli_distribution(double __p = 0.5) |
| : _M_param(__p) |
| { } |
| |
| explicit |
| bernoulli_distribution(const param_type& __p) |
| : _M_param(__p) |
| { } |
| |
| /** |
| * @brief Resets the distribution state. |
| * |
| * Does nothing for a Bernoulli distribution. |
| */ |
| void |
| reset() { } |
| |
| /** |
| * @brief Returns the @p p parameter of the distribution. |
| */ |
| double |
| p() const |
| { return _M_param.p(); } |
| |
| /** |
| * @brief Returns the parameter set of the distribution. |
| */ |
| param_type |
| param() const |
| { return _M_param; } |
| |
| /** |
| * @brief Sets the parameter set of the distribution. |
| * @param __param The new parameter set of the distribution. |
| */ |
| void |
| param(const param_type& __param) |
| { _M_param = __param; } |
| |
| /** |
| * @brief Returns the greatest lower bound value of the distribution. |
| */ |
| result_type |
| min() const |
| { return std::numeric_limits<result_type>::min(); } |
| |
| /** |
| * @brief Returns the least upper bound value of the distribution. |
| */ |
| result_type |
| max() const |
| { return std::numeric_limits<result_type>::max(); } |
| |
| /** |
| * @brief Generating functions. |
| */ |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { return this->operator()(__urng, this->param()); } |
| |
| template<typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| if ((__aurng() - __aurng.min()) |
| < __p.p() * (__aurng.max() - __aurng.min())) |
| return true; |
| return false; |
| } |
| |
| private: |
| param_type _M_param; |
| }; |
| |
| /** |
| * @brief Return true if two Bernoulli distributions have |
| * the same parameters. |
| */ |
| inline bool |
| operator==(const std::bernoulli_distribution& __d1, |
| const std::bernoulli_distribution& __d2) |
| { return __d1.param() == __d2.param(); } |
| |
| /** |
| * @brief Return true if two Bernoulli distributions have |
| * different parameters. |
| */ |
| inline bool |
| operator!=(const std::bernoulli_distribution& __d1, |
| const std::bernoulli_distribution& __d2) |
| { return !(__d1 == __d2); } |
| |
| /** |
| * @brief Inserts a %bernoulli_distribution random number distribution |
| * @p __x into the output stream @p __os. |
| * |
| * @param __os An output stream. |
| * @param __x A %bernoulli_distribution random number distribution. |
|