blob: ca882b8d8e129f739d4dbc7a9a7f6692f3855577 [file] [log] [blame]
// <forward_list.h> -*- C++ -*-
// Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file forward_list.h
* This is a Standard C++ Library header.
*/
#ifndef _FORWARD_LIST_H
#define _FORWARD_LIST_H 1
#pragma GCC system_header
#include <memory>
#include <initializer_list>
_GLIBCXX_BEGIN_NAMESPACE(std)
/**
* @brief A helper basic node class for %forward_list.
* This is just a linked list with nothing inside it.
* There are purely list shuffling utility methods here.
*/
struct _Fwd_list_node_base
{
_Fwd_list_node_base() : _M_next(0) { }
_Fwd_list_node_base* _M_next;
static void
swap(_Fwd_list_node_base& __x, _Fwd_list_node_base& __y)
{ std::swap(__x._M_next, __y._M_next); }
_Fwd_list_node_base*
_M_transfer_after(_Fwd_list_node_base* __begin)
{
_Fwd_list_node_base* __end = __begin;
while (__end && __end->_M_next)
__end = __end->_M_next;
return _M_transfer_after(__begin, __end);
}
_Fwd_list_node_base*
_M_transfer_after(_Fwd_list_node_base* __begin,
_Fwd_list_node_base* __end)
{
_Fwd_list_node_base* __keep = __begin->_M_next;
if (__end)
{
__begin->_M_next = __end->_M_next;
__end->_M_next = _M_next;
}
else
__begin->_M_next = 0;
_M_next = __keep;
return __end;
}
void
_M_reverse_after()
{
_Fwd_list_node_base* __tail = _M_next;
if (!__tail)
return;
while (_Fwd_list_node_base* __temp = __tail->_M_next)
{
_Fwd_list_node_base* __keep = _M_next;
_M_next = __temp;
__tail->_M_next = __temp->_M_next;
_M_next->_M_next = __keep;
}
}
};
/**
* @brief A helper node class for %forward_list.
* This is just a linked list with a data value in each node.
* There is a sorting utility method.
*/
template<typename _Tp>
struct _Fwd_list_node
: public _Fwd_list_node_base
{
template<typename... _Args>
_Fwd_list_node(_Args&&... __args)
: _Fwd_list_node_base(),
_M_value(std::forward<_Args>(__args)...) { }
_Tp _M_value;
};
/**
* @brief A forward_list::iterator.
*
* All the functions are op overloads.
*/
template<typename _Tp>
struct _Fwd_list_iterator
{
typedef _Fwd_list_iterator<_Tp> _Self;
typedef _Fwd_list_node<_Tp> _Node;
typedef _Tp value_type;
typedef _Tp* pointer;
typedef _Tp& reference;
typedef ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Fwd_list_iterator()
: _M_node() { }
explicit
_Fwd_list_iterator(_Fwd_list_node_base* __n)
: _M_node(__n) { }
reference
operator*() const
{ return static_cast<_Node*>(this->_M_node)->_M_value; }
pointer
operator->() const
{ return &static_cast<_Node*>(this->_M_node)->_M_value; }
_Self&
operator++()
{
_M_node = _M_node->_M_next;
return *this;
}
_Self
operator++(int)
{
_Self __tmp(*this);
_M_node = _M_node->_M_next;
return __tmp;
}
bool
operator==(const _Self& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Self& __x) const
{ return _M_node != __x._M_node; }
_Self
_M_next() const
{
if (_M_node)
return _Fwd_list_iterator(_M_node->_M_next);
else
return _Fwd_list_iterator(0);
}
_Fwd_list_node_base* _M_node;
};
/**
* @brief A forward_list::const_iterator.
*
* All the functions are op overloads.
*/
template<typename _Tp>
struct _Fwd_list_const_iterator
{
typedef _Fwd_list_const_iterator<_Tp> _Self;
typedef const _Fwd_list_node<_Tp> _Node;
typedef _Fwd_list_iterator<_Tp> iterator;
typedef _Tp value_type;
typedef const _Tp* pointer;
typedef const _Tp& reference;
typedef ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Fwd_list_const_iterator()
: _M_node() { }
explicit
_Fwd_list_const_iterator(const _Fwd_list_node_base* __n)
: _M_node(__n) { }
_Fwd_list_const_iterator(const iterator& __iter)
: _M_node(__iter._M_node) { }
reference
operator*() const
{ return static_cast<_Node*>(this->_M_node)->_M_value; }
pointer
operator->() const
{ return &static_cast<_Node*>(this->_M_node)->_M_value; }
_Self&
operator++()
{
_M_node = _M_node->_M_next;
return *this;
}
_Self
operator++(int)
{
_Self __tmp(*this);
_M_node = _M_node->_M_next;
return __tmp;
}
bool
operator==(const _Self& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Self& __x) const
{ return _M_node != __x._M_node; }
_Self
_M_next() const
{
if (this->_M_node)
return _Fwd_list_const_iterator(_M_node->_M_next);
else
return _Fwd_list_const_iterator(0);
}
const _Fwd_list_node_base* _M_node;
};
/**
* @brief Forward list iterator equality comparison.
*/
template<typename _Tp>
inline bool
operator==(const _Fwd_list_iterator<_Tp>& __x,
const _Fwd_list_const_iterator<_Tp>& __y)
{ return __x._M_node == __y._M_node; }
/**
* @brief Forward list iterator inequality comparison.
*/
template<typename _Tp>
inline bool
operator!=(const _Fwd_list_iterator<_Tp>& __x,
const _Fwd_list_const_iterator<_Tp>& __y)
{ return __x._M_node != __y._M_node; }
/**
* @brief Base class for %forward_list.
*/
template<typename _Tp, typename _Alloc>
struct _Fwd_list_base
{
protected:
typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
typedef typename _Alloc::template
rebind<_Fwd_list_node<_Tp>>::other _Node_alloc_type;
struct _Fwd_list_impl
: public _Node_alloc_type
{
_Fwd_list_node_base _M_head;
_Fwd_list_impl()
: _Node_alloc_type(), _M_head()
{ }
_Fwd_list_impl(const _Node_alloc_type& __a)
: _Node_alloc_type(__a), _M_head()
{ }
};
_Fwd_list_impl _M_impl;
public:
typedef _Fwd_list_iterator<_Tp> iterator;
typedef _Fwd_list_const_iterator<_Tp> const_iterator;
typedef _Fwd_list_node<_Tp> _Node;
_Node_alloc_type&
_M_get_Node_allocator()
{ return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
const _Node_alloc_type&
_M_get_Node_allocator() const
{ return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
_Fwd_list_base()
: _M_impl()
{ this->_M_impl._M_head._M_next = 0; }
_Fwd_list_base(const _Alloc& __a)
: _M_impl(__a)
{ this->_M_impl._M_head._M_next = 0; }
_Fwd_list_base(const _Fwd_list_base& __lst, const _Alloc& __a);
_Fwd_list_base(_Fwd_list_base&& __lst, const _Alloc& __a)
: _M_impl(__a)
{ _Fwd_list_node_base::swap(this->_M_impl._M_head,
__lst._M_impl._M_head); }
_Fwd_list_base(_Fwd_list_base&& __lst)
: _M_impl(__lst._M_get_Node_allocator())
{ _Fwd_list_node_base::swap(this->_M_impl._M_head,
__lst._M_impl._M_head); }
~_Fwd_list_base()
{ _M_erase_after(&_M_impl._M_head, 0); }
protected:
_Node*
_M_get_node()
{ return _M_get_Node_allocator().allocate(1); }
template<typename... _Args>
_Node*
_M_create_node(_Args&&... __args)
{
_Node* __node = this->_M_get_node();
__try
{
_M_get_Node_allocator().construct(__node,
std::forward<_Args>(__args)...);
__node->_M_next = 0;
}
__catch(...)
{
this->_M_put_node(__node);
__throw_exception_again;
}
return __node;
}
template<typename... _Args>
_Fwd_list_node_base*
_M_insert_after(const_iterator __pos, _Args&&... __args);
void
_M_put_node(_Node* __p)
{ _M_get_Node_allocator().deallocate(__p, 1); }
void
_M_erase_after(_Fwd_list_node_base* __pos);
void
_M_erase_after(_Fwd_list_node_base* __pos,
_Fwd_list_node_base* __last);
};
/**
* @brief A standard container with linear time access to elements,
* and fixed time insertion/deletion at any point in the sequence.
*
* @ingroup sequences
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#67">sequence</a>, including the
* <a href="tables.html#68">optional sequence requirements</a> with the
* %exception of @c at and @c operator[].
*
* This is a @e singly @e linked %list. Traversal up the
* %list requires linear time, but adding and removing elements (or
* @e nodes) is done in constant time, regardless of where the
* change takes place. Unlike std::vector and std::deque,
* random-access iterators are not provided, so subscripting ( @c
* [] ) access is not allowed. For algorithms which only need
* sequential access, this lack makes no difference.
*
* Also unlike the other standard containers, std::forward_list provides
* specialized algorithms %unique to linked lists, such as
* splicing, sorting, and in-place reversal.
*
* A couple points on memory allocation for forward_list<Tp>:
*
* First, we never actually allocate a Tp, we allocate
* Fwd_list_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
* that after elements from %forward_list<X,Alloc1> are spliced into
* %forward_list<X,Alloc2>, destroying the memory of the second %list is a
* valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
*/
template<typename _Tp, typename _Alloc = allocator<_Tp> >
class forward_list : private _Fwd_list_base<_Tp, _Alloc>
{
private:
typedef _Fwd_list_base<_Tp, _Alloc> _Base;
typedef _Fwd_list_node<_Tp> _Node;
typedef _Fwd_list_node_base _Node_base;
typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
public:
// types:
typedef _Tp value_type;
typedef typename _Tp_alloc_type::pointer pointer;
typedef typename _Tp_alloc_type::const_pointer const_pointer;
typedef typename _Tp_alloc_type::reference reference;
typedef typename _Tp_alloc_type::const_reference const_reference;
typedef _Fwd_list_iterator<_Tp> iterator;
typedef _Fwd_list_const_iterator<_Tp> const_iterator;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Alloc allocator_type;
// 23.2.3.1 construct/copy/destroy:
/**
* @brief Creates a %forward_list with no elements.
* @param al An allocator object.
*/
explicit
forward_list(const _Alloc& __al = _Alloc())
: _Base(__al)
{ }
/**
* @brief Copy constructor with allocator argument.
* @param list Input list to copy.
* @param al An allocator object.
*/
forward_list(const forward_list& __list, const _Alloc& __al)
: _Base(__list, __al)
{ }
/**
* @brief Move constructor with allocator argument.
* @param list Input list to move.
* @param al An allocator object.
*/
forward_list(forward_list&& __list, const _Alloc& __al)
: _Base(std::forward<_Base>(__list), __al)
{ }
/**
* @brief Creates a %forward_list with default constructed elements.
* @param n The number of elements to initially create.
*
* This constructor creates the %forward_list with @a n default
* constructed elements.
*/
explicit
forward_list(size_type __n)
: _Base()
{ _M_default_initialize(__n); }
/**
* @brief Creates a %forward_list with copies of an exemplar element.
* @param n The number of elements to initially create.
* @param value An element to copy.
* @param al An allocator object.
*
* This constructor fills the %forward_list with @a n copies of @a
* value.
*/
forward_list(size_type __n, const _Tp& __value,
const _Alloc& __al = _Alloc())
: _Base(__al)
{ _M_fill_initialize(__n, __value); }
/**
* @brief Builds a %forward_list from a range.
* @param first An input iterator.
* @param last An input iterator.
* @param al An allocator object.
*
* Create a %forward_list consisting of copies of the elements from
* [@a first,@a last). This is linear in N (where N is
* distance(@a first,@a last)).
*/
template<typename _InputIterator>
forward_list(_InputIterator __first, _InputIterator __last,
const _Alloc& __al = _Alloc())
: _Base(__al)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
/**
* @brief The %forward_list copy constructor.
* @param list A %forward_list of identical element and allocator
* types.
*
* The newly-created %forward_list uses a copy of the allocation
* object used by @a list.
*/
forward_list(const forward_list& __list)
: _Base(__list._M_get_Node_allocator())
{ _M_initialize_dispatch(__list.begin(), __list.end(), __false_type()); }
/**
* @brief The %forward_list move constructor.
* @param list A %forward_list of identical element and allocator
* types.
*
* The newly-created %forward_list contains the exact contents of @a
* forward_list. The contents of @a list are a valid, but unspecified
* %forward_list.
*/
forward_list(forward_list&& __list)
: _Base(std::forward<_Base>(__list)) { }
/**
* @brief Builds a %forward_list from an initializer_list
* @param il An initializer_list of value_type.
* @param al An allocator object.
*
* Create a %forward_list consisting of copies of the elements
* in the initializer_list @a il. This is linear in il.size().
*/
forward_list(std::initializer_list<_Tp> __il,
const _Alloc& __al = _Alloc())
: _Base(__al)
{ _M_initialize_dispatch(__il.begin(), __il.end(), __false_type()); }
/**
* @brief The forward_list dtor.
*/
~forward_list()
{ }
/**
* @brief The %forward_list assignment operator.
* @param list A %forward_list of identical element and allocator
* types.
*
* All the elements of @a list are copied, but unlike the copy
* constructor, the allocator object is not copied.
*/
forward_list&
operator=(const forward_list& __list);
/**
* @brief The %forward_list move assignment operator.
* @param list A %forward_list of identical element and allocator
* types.
*
* The contents of @a list are moved into this %forward_list
* (without copying). @a list is a valid, but unspecified
* %forward_list
*/
forward_list&
operator=(forward_list&& __list)
{
// NB: DR 1204.
// NB: DR 675.
this->clear();
this->swap(__list);
return *this;
}
/**
* @brief The %forward_list initializer list assignment operator.
* @param il An initializer_list of value_type.
*
* Replace the contents of the %forward_list with copies of the
* elements in the initializer_list @a il. This is linear in
* il.size().
*/
forward_list&
operator=(std::initializer_list<_Tp> __il)
{
assign(__il);
return *this;
}
/**
* @brief Assigns a range to a %forward_list.
* @param first An input iterator.
* @param last An input iterator.
*
* This function fills a %forward_list with copies of the elements
* in the range [@a first,@a last).
*
* Note that the assignment completely changes the %forward_list and
* that the resulting %forward_list's size is the same as the number
* of elements assigned. Old data may be lost.
*/
template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
clear();
insert_after(cbefore_begin(), __first, __last);
}
/**
* @brief Assigns a given value to a %forward_list.
* @param n Number of elements to be assigned.
* @param val Value to be assigned.
*
* This function fills a %forward_list with @a n copies of the given
* value. Note that the assignment completely changes the
* %forward_list and that the resulting %forward_list's size is the
* same as the number of elements assigned. Old data may be lost.
*/
void
assign(size_type __n, const _Tp& __val)
{
clear();
insert_after(cbefore_begin(), __n, __val);
}
/**
* @brief Assigns an initializer_list to a %forward_list.
* @param il An initializer_list of value_type.
*
* Replace the contents of the %forward_list with copies of the
* elements in the initializer_list @a il. This is linear in
* il.size().
*/
void
assign(std::initializer_list<_Tp> __il)
{
clear();
insert_after(cbefore_begin(), __il);
}
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const
{ return this->_M_get_Node_allocator(); }
// 23.2.3.2 iterators:
/**
* Returns a read/write iterator that points before the first element
* in the %forward_list. Iteration is done in ordinary element order.
*/
iterator
before_begin()
{ return iterator(&this->_M_impl._M_head); }
/**
* Returns a read-only (constant) iterator that points before the
* first element in the %forward_list. Iteration is done in ordinary
* element order.
*/
const_iterator
before_begin() const
{ return const_iterator(&this->_M_impl._M_head); }
/**
* Returns a read/write iterator that points to the first element
* in the %forward_list. Iteration is done in ordinary element order.
*/
iterator
begin()
{ return iterator(this->_M_impl._M_head._M_next); }
/**
* Returns a read-only (constant) iterator that points to the first
* element in the %forward_list. Iteration is done in ordinary
* element order.
*/
const_iterator
begin() const
{ return const_iterator(this->_M_impl._M_head._M_next); }
/**
* Returns a read/write iterator that points one past the last
* element in the %forward_list. Iteration is done in ordinary
* element order.
*/
iterator
end()
{ return iterator(0); }
/**
* Returns a read-only iterator that points one past the last
* element in the %forward_list. Iteration is done in ordinary
* element order.
*/
const_iterator
end() const
{ return const_iterator(0); }
/**
* Returns a read-only (constant) iterator that points to the
* first element in the %forward_list. Iteration is done in ordinary
* element order.
*/
const_iterator
cbegin() const
{ return const_iterator(this->_M_impl._M_head._M_next); }
/**
* Returns a read-only (constant) iterator that points before the
* first element in the %forward_list. Iteration is done in ordinary
* element order.
*/
const_iterator
cbefore_begin() const
{ return const_iterator(&this->_M_impl._M_head); }
/**
* Returns a read-only (constant) iterator that points one past
* the last element in the %forward_list. Iteration is done in
* ordinary element order.
*/
const_iterator
cend() const
{ return const_iterator(0); }
/**
* Returns true if the %forward_list is empty. (Thus begin() would
* equal end().)
*/
bool
empty() const
{ return this->_M_impl._M_head._M_next == 0; }
/**
* Returns the largest possible size of %forward_list.
*/
size_type
max_size() const
{ return this->_M_get_Node_allocator().max_size(); }
// 23.2.3.3 element access:
/**
* Returns a read/write reference to the data at the first
* element of the %forward_list.
*/
reference
front()
{
_Node* __front = static_cast<_Node*>(this->_M_impl._M_head._M_next);
return __front->_M_value;
}
/**
* Returns a read-only (constant) reference to the data at the first
* element of the %forward_list.
*/
const_reference
front() const
{
_Node* __front = static_cast<_Node*>(this->_M_impl._M_head._M_next);
return __front->_M_value;
}
// 23.2.3.4 modifiers:
/**
* @brief Constructs object in %forward_list at the front of the
* list.
* @param args Arguments.
*
* This function will insert an object of type Tp constructed
* with Tp(std::forward<Args>(args)...) at the front of the list
* Due to the nature of a %forward_list this operation can
* be done in constant time, and does not invalidate iterators
* and references.
*/
template<typename... _Args>
void
emplace_front(_Args&&... __args)
{ this->_M_insert_after(cbefore_begin(),
std::forward<_Args>(__args)...); }
/**
* @brief Add data to the front of the %forward_list.
* @param val Data to be added.
*
* This is a typical stack operation. The function creates an
* element at the front of the %forward_list and assigns the given
* data to it. Due to the nature of a %forward_list this operation
* can be done in constant time, and does not invalidate iterators
* and references.
*/
void
push_front(const _Tp& __val)
{ this->_M_insert_after(cbefore_begin(), __val); }
/**
*
*/
void
push_front(_Tp&& __val)
{ this->_M_insert_after(cbefore_begin(), std::move(__val)); }
/**
* @brief Removes first element.
*
* This is a typical stack operation. It shrinks the %forward_list
* by one. Due to the nature of a %forward_list this operation can
* be done in constant time, and only invalidates iterators/references
* to the element being removed.
*
* Note that no data is returned, and if the first element's data
* is needed, it should be retrieved before pop_front() is
* called.
*/
void
pop_front()
{ this->_M_erase_after(&this->_M_impl._M_head); }
/**
* @brief Constructs object in %forward_list after the specified
* iterator.
* @param pos A const_iterator into the %forward_list.
* @param args Arguments.
* @return An iterator that points to the inserted data.
*
* This function will insert an object of type T constructed
* with T(std::forward<Args>(args)...) after the specified
* location. Due to the nature of a %forward_list this operation can
* be done in constant time, and does not invalidate iterators
* and references.
*/
template<typename... _Args>
iterator
emplace_after(const_iterator __pos, _Args&&... __args)
{ return iterator(this->_M_insert_after(__pos,
std::forward<_Args>(__args)...)); }
/**
* @brief Inserts given value into %forward_list after specified
* iterator.
* @param pos An iterator into the %forward_list.
* @param val Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value after
* the specified location. Due to the nature of a %forward_list this
* operation can be done in constant time, and does not
* invalidate iterators and references.
*/
iterator
insert_after(const_iterator __pos, const _Tp& __val)
{ return iterator(this->_M_insert_after(__pos, __val)); }
/**
*
*/
iterator
insert_after(const_iterator __pos, _Tp&& __val)
{ return iterator(this->_M_insert_after(__pos, std::move(__val))); }
/**
* @brief Inserts a number of copies of given data into the
* %forward_list.
* @param pos An iterator into the %forward_list.
* @param n Number of elements to be inserted.
* @param val Data to be inserted.
* @return An iterator pointing to the last inserted copy of
* @a val or @a pos if @a n == 0.
*
* This function will insert a specified number of copies of the
* given data after the location specified by @a pos.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
iterator
insert_after(const_iterator __pos, size_type __n, const _Tp& __val);
/**
* @brief Inserts a range into the %forward_list.
* @param position An iterator into the %forward_list.
* @param first An input iterator.
* @param last An input iterator.
* @return An iterator pointing to the last inserted element or
* @a pos if @a first == @a last.
*
* This function will insert copies of the data in the range [@a
* first,@a last) into the %forward_list after the location specified
* by @a pos.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
template<typename _InputIterator>
iterator
insert_after(const_iterator __pos,
_InputIterator __first, _InputIterator __last);
/**
* @brief Inserts the contents of an initializer_list into
* %forward_list after the specified iterator.
* @param pos An iterator into the %forward_list.
* @param il An initializer_list of value_type.
* @return An iterator pointing to the last inserted element
* or @a pos if @a il is empty.
*
* This function will insert copies of the data in the
* initializer_list @a il into the %forward_list before the location
* specified by @a pos.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
iterator
insert_after(const_iterator __pos, std::initializer_list<_Tp> __il);
/**
* @brief Removes the element pointed to by the iterator following
* @c pos.
* @param pos Iterator pointing before element to be erased.
*
* This function will erase the element at the given position and
* thus shorten the %forward_list by one.
*
* Due to the nature of a %forward_list this operation can be done
* in constant time, and only invalidates iterators/references to
* the element being removed. The user is also cautioned that
* this function only erases the element, and that if the element
* is itself a pointer, the pointed-to memory is not touched in
* any way. Managing the pointer is the user's responsibility.
*/
void
erase_after(const_iterator __pos)
{ this->_M_erase_after(const_cast<_Node_base*>(__pos._M_node)); }
/**
* @brief Remove a range of elements.
* @param pos Iterator pointing before the first element to be
* erased.
* @param last Iterator pointing to one past the last element to be
* erased.
*
* This function will erase the elements in the range @a
* (pos,last) and shorten the %forward_list accordingly.
*
* This operation is linear time in the size of the range and only
* invalidates iterators/references to the element being removed.
* The user is also cautioned that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer
* is the user's responsibility.
*/
void
erase_after(const_iterator __pos, const_iterator __last)
{ this->_M_erase_after(const_cast<_Node_base*>(__pos._M_node),
const_cast<_Node_base*>(__last._M_node)); }
/**
* @brief Swaps data with another %forward_list.
* @param list A %forward_list of the same element and allocator
* types.
*
* This exchanges the elements between two lists in constant
* time. Note that the global std::swap() function is
* specialized such that std::swap(l1,l2) will feed to this
* function.
*/
void
swap(forward_list& __list)
{ _Node_base::swap(this->_M_impl._M_head, __list._M_impl._M_head); }
/**
* @brief Resizes the %forward_list to the specified number of
* elements.
* @param sz Number of elements the %forward_list should contain.
*
* This function will %resize the %forward_list to the specified
* number of elements. If the number is smaller than the
* %forward_list's current size the %forward_list is truncated,
* otherwise the %forward_list is extended and the new elements
* are default constructed.
*/
void
resize(size_type __sz);
/**
* @brief Resizes the %forward_list to the specified number of
* elements.
* @param sz Number of elements the %forward_list should contain.
* @param val Data with which new elements should be populated.
*
* This function will %resize the %forward_list to the specified
* number of elements. If the number is smaller than the
* %forward_list's current size the %forward_list is truncated,
* otherwise the %forward_list is extended and new elements are
* populated with given data.
*/
void
resize(size_type __sz, value_type __val);
/**
* @brief Erases all the elements.
*
* Note that this function only erases
* the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibility.
*/
void
clear()
{ this->_M_erase_after(&this->_M_impl._M_head, 0); }
// 23.2.3.5 forward_list operations:
/**
* @brief Insert contents of another %forward_list.
* @param pos Iterator referencing the element to insert after.
* @param list Source list.
*
* The elements of @a list are inserted in constant time after
* the element referenced by @a pos. @a list becomes an empty
* list.
*
* Requires this != @a x.
*/
void
splice_after(const_iterator __pos, forward_list&& __list)
{
if (!__list.empty())
_M_splice_after(__pos, std::move(__list));
}
/**
* @brief Insert element from another %forward_list.
* @param pos Iterator referencing the element to insert after.
* @param list Source list.
* @param i Iterator referencing the element before the element
* to move.
*
* Removes the element in list @a list referenced by @a i and
* inserts it into the current list after @a pos.
*/
void
splice_after(const_iterator __pos, forward_list&& __list,
const_iterator __i)
{
const_iterator __j = __i;
++__j;
if (__pos == __i || __pos == __j)
return;
splice_after(__pos, std::move(__list), __i, __j);
}
/**
* @brief Insert range from another %forward_list.
* @param pos Iterator referencing the element to insert after.
* @param list Source list.
* @param before Iterator referencing before the start of range
* in list.
* @param last Iterator referencing the end of range in list.
*
* Removes elements in the range (before,last) and inserts them
* after @a pos in constant time.
*
* Undefined if @a pos is in (before,last).
*/
void
splice_after(const_iterator __pos, forward_list&& __list,
const_iterator __before, const_iterator __last);
/**
* @brief Remove all elements equal to value.
* @param val The value to remove.
*
* Removes every element in the list equal to @a value.
* Remaining elements stay in list order. Note that this
* function only erases the elements, and that if the elements
* themselves are pointers, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's
* responsibility.
*/
void
remove(const _Tp& __val);
/**
* @brief Remove all elements satisfying a predicate.
* @param pred Unary predicate function or object.
*
* Removes every element in the list for which the predicate
* returns true. Remaining elements stay in list order. Note
* that this function only erases the elements, and that if the
* elements themselves are pointers, the pointed-to memory is
* not touched in any way. Managing the pointer is the user's
* responsibility.
*/
template<typename _Pred>
void
remove_if(_Pred __pred);
/**
* @brief Remove consecutive duplicate elements.
*
* For each consecutive set of elements with the same value,
* remove all but the first one. Remaining elements stay in
* list order. Note that this function only erases the
* elements, and that if the elements themselves are pointers,
* the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibility.
*/
void
unique()
{ this->unique(std::equal_to<_Tp>()); }
/**
* @brief Remove consecutive elements satisfying a predicate.
* @param binary_pred Binary predicate function or object.
*
* For each consecutive set of elements [first,last) that
* satisfy predicate(first,i) where i is an iterator in
* [first,last), remove all but the first one. Remaining
* elements stay in list order. Note that this function only
* erases the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibility.
*/
template<typename _BinPred>
void
unique(_BinPred __binary_pred);
/**
* @brief Merge sorted lists.
* @param list Sorted list to merge.
*
* Assumes that both @a list and this list are sorted according to
* operator<(). Merges elements of @a list into this list in
* sorted order, leaving @a list empty when complete. Elements in
* this list precede elements in @a list that are equal.
*/
void
merge(forward_list&& __list)
{ this->merge(std::move(__list), std::less<_Tp>()); }
/**
* @brief Merge sorted lists according to comparison function.
* @param list Sorted list to merge.
* @param comp Comparison function defining sort order.
*
* Assumes that both @a list and this list are sorted according to
* comp. Merges elements of @a list into this list
* in sorted order, leaving @a list empty when complete. Elements
* in this list precede elements in @a list that are equivalent
* according to comp().
*/
template<typename _Comp>
void
merge(forward_list&& __list, _Comp __comp);
/**
* @brief Sort the elements of the list.
*
* Sorts the elements of this list in NlogN time. Equivalent
* elements remain in list order.
*/
void
sort()
{ this->sort(std::less<_Tp>()); }
/**
* @brief Sort the forward_list using a comparison function.
*
* Sorts the elements of this list in NlogN time. Equivalent
* elements remain in list order.
*/
template<typename _Comp>
void
sort(_Comp __comp);
/**
* @brief Reverse the elements in list.
*
* Reverse the order of elements in the list in linear time.
*/
void
reverse()
{ this->_M_impl._M_head._M_reverse_after(); }
private:
template<typename _Integer>
void
_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
{ _M_fill_initialize(static_cast<size_type>(__n), __x); }
// Called by the range constructor to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type);
// Called by forward_list(n,v,a), and the range constructor when it
// turns out to be the same thing.
void
_M_fill_initialize(size_type __n, const value_type& __value);
// Called by splice_after and insert_after.
iterator
_M_splice_after(const_iterator __pos, forward_list&& __list);
// Called by forward_list(n).
void
_M_default_initialize(size_type __n);
// Called by resize(sz).
void
_M_default_insert_after(const_iterator __pos, size_type __n);
};
/**
* @brief Forward list equality comparison.
* @param lx A %forward_list
* @param ly A %forward_list of the same type as @a lx.
* @return True iff the size and elements of the forward lists are equal.
*
* This is an equivalence relation. It is linear in the size of the
* forward lists. Deques are considered equivalent if corresponding
* elements compare equal.
*/
template<typename _Tp, typename _Alloc>
bool
operator==(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly);
/**
* @brief Forward list ordering relation.
* @param lx A %forward_list.
* @param ly A %forward_list of the same type as @a lx.
* @return True iff @a lx is lexicographically less than @a ly.
*
* This is a total ordering relation. It is linear in the size of the
* forward lists. The elements must be comparable with @c <.
*
* See std::lexicographical_compare() for how the determination is made.
*/
template<typename _Tp, typename _Alloc>
inline bool
operator<(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{ return std::lexicographical_compare(__lx.cbegin(), __lx.cend(),
__ly.cbegin(), __ly.cend()); }
/// Based on operator==
template<typename _Tp, typename _Alloc>
inline bool
operator!=(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{ return !(__lx == __ly); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator>(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{ return (__ly < __lx); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator>=(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{ return !(__lx < __ly); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator<=(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{ return !(__ly < __lx); }
/// See std::forward_list::swap().
template<typename _Tp, typename _Alloc>
inline void
swap(forward_list<_Tp, _Alloc>& __lx,
forward_list<_Tp, _Alloc>& __ly)
{ __lx.swap(__ly); }
_GLIBCXX_END_NAMESPACE // namespace std
#endif // _FORWARD_LIST_H