blob: 23fe8de0947e5e795a4ce1334cc18025f5acaaed [file] [log] [blame]
// Allocator traits -*- C++ -*-
// Copyright (C) 2011-2014 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file bits/alloc_traits.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{memory}
*/
#ifndef _ALLOC_TRAITS_H
#define _ALLOC_TRAITS_H 1
#if __cplusplus >= 201103L
#include <bits/memoryfwd.h>
#include <bits/ptr_traits.h>
#include <ext/numeric_traits.h>
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<typename _Alloc, typename _Tp>
class __alloctr_rebind_helper
{
template<typename _Alloc2, typename _Tp2>
static constexpr true_type
_S_chk(typename _Alloc2::template rebind<_Tp2>::other*);
template<typename, typename>
static constexpr false_type
_S_chk(...);
public:
using __type = decltype(_S_chk<_Alloc, _Tp>(nullptr));
};
template<typename _Alloc, typename _Tp,
bool = __alloctr_rebind_helper<_Alloc, _Tp>::__type::value>
struct __alloctr_rebind;
template<typename _Alloc, typename _Tp>
struct __alloctr_rebind<_Alloc, _Tp, true>
{
typedef typename _Alloc::template rebind<_Tp>::other __type;
};
template<template<typename, typename...> class _Alloc, typename _Tp,
typename _Up, typename... _Args>
struct __alloctr_rebind<_Alloc<_Up, _Args...>, _Tp, false>
{
typedef _Alloc<_Tp, _Args...> __type;
};
/**
* @brief Uniform interface to all allocator types.
* @ingroup allocators
*/
template<typename _Alloc>
struct allocator_traits
{
/// The allocator type
typedef _Alloc allocator_type;
/// The allocated type
typedef typename _Alloc::value_type value_type;
#define _GLIBCXX_ALLOC_TR_NESTED_TYPE(_NTYPE, _ALT) \
private: \
template<typename _Tp> \
static typename _Tp::_NTYPE _S_##_NTYPE##_helper(_Tp*); \
static _ALT _S_##_NTYPE##_helper(...); \
typedef decltype(_S_##_NTYPE##_helper((_Alloc*)0)) __##_NTYPE; \
public:
_GLIBCXX_ALLOC_TR_NESTED_TYPE(pointer, value_type*)
/**
* @brief The allocator's pointer type.
*
* @c Alloc::pointer if that type exists, otherwise @c value_type*
*/
typedef __pointer pointer;
_GLIBCXX_ALLOC_TR_NESTED_TYPE(const_pointer,
typename pointer_traits<pointer>::template rebind<const value_type>)
/**
* @brief The allocator's const pointer type.
*
* @c Alloc::const_pointer if that type exists, otherwise
* <tt> pointer_traits<pointer>::rebind<const value_type> </tt>
*/
typedef __const_pointer const_pointer;
_GLIBCXX_ALLOC_TR_NESTED_TYPE(void_pointer,
typename pointer_traits<pointer>::template rebind<void>)
/**
* @brief The allocator's void pointer type.
*
* @c Alloc::void_pointer if that type exists, otherwise
* <tt> pointer_traits<pointer>::rebind<void> </tt>
*/
typedef __void_pointer void_pointer;
_GLIBCXX_ALLOC_TR_NESTED_TYPE(const_void_pointer,
typename pointer_traits<pointer>::template rebind<const void>)
/**
* @brief The allocator's const void pointer type.
*
* @c Alloc::const_void_pointer if that type exists, otherwise
* <tt> pointer_traits<pointer>::rebind<const void> </tt>
*/
typedef __const_void_pointer const_void_pointer;
_GLIBCXX_ALLOC_TR_NESTED_TYPE(difference_type,
typename pointer_traits<pointer>::difference_type)
/**
* @brief The allocator's difference type
*
* @c Alloc::difference_type if that type exists, otherwise
* <tt> pointer_traits<pointer>::difference_type </tt>
*/
typedef __difference_type difference_type;
_GLIBCXX_ALLOC_TR_NESTED_TYPE(size_type,
typename make_unsigned<difference_type>::type)
/**
* @brief The allocator's size type
*
* @c Alloc::size_type if that type exists, otherwise
* <tt> make_unsigned<difference_type>::type </tt>
*/
typedef __size_type size_type;
_GLIBCXX_ALLOC_TR_NESTED_TYPE(propagate_on_container_copy_assignment,
false_type)
/**
* @brief How the allocator is propagated on copy assignment
*
* @c Alloc::propagate_on_container_copy_assignment if that type exists,
* otherwise @c false_type
*/
typedef __propagate_on_container_copy_assignment
propagate_on_container_copy_assignment;
_GLIBCXX_ALLOC_TR_NESTED_TYPE(propagate_on_container_move_assignment,
false_type)
/**
* @brief How the allocator is propagated on move assignment
*
* @c Alloc::propagate_on_container_move_assignment if that type exists,
* otherwise @c false_type
*/
typedef __propagate_on_container_move_assignment
propagate_on_container_move_assignment;
_GLIBCXX_ALLOC_TR_NESTED_TYPE(propagate_on_container_swap,
false_type)
/**
* @brief How the allocator is propagated on swap
*
* @c Alloc::propagate_on_container_swap if that type exists,
* otherwise @c false_type
*/
typedef __propagate_on_container_swap propagate_on_container_swap;
#undef _GLIBCXX_ALLOC_TR_NESTED_TYPE
template<typename _Tp>
using rebind_alloc = typename __alloctr_rebind<_Alloc, _Tp>::__type;
template<typename _Tp>
using rebind_traits = allocator_traits<rebind_alloc<_Tp>>;
private:
template<typename _Alloc2>
struct __allocate_helper
{
template<typename _Alloc3,
typename = decltype(std::declval<_Alloc3*>()->allocate(
std::declval<size_type>(),
std::declval<const_void_pointer>()))>
static true_type __test(int);
template<typename>
static false_type __test(...);
using type = decltype(__test<_Alloc>(0));
};
template<typename _Alloc2>
using __has_allocate = typename __allocate_helper<_Alloc2>::type;
template<typename _Alloc2,
typename = _Require<__has_allocate<_Alloc2>>>
static pointer
_S_allocate(_Alloc2& __a, size_type __n, const_void_pointer __hint)
{ return __a.allocate(__n, __hint); }
template<typename _Alloc2, typename _UnusedHint,
typename = _Require<__not_<__has_allocate<_Alloc2>>>>
static pointer
_S_allocate(_Alloc2& __a, size_type __n, _UnusedHint)
{ return __a.allocate(__n); }
template<typename _Tp, typename... _Args>
struct __construct_helper
{
template<typename _Alloc2,
typename = decltype(std::declval<_Alloc2*>()->construct(
std::declval<_Tp*>(), std::declval<_Args>()...))>
static true_type __test(int);
template<typename>
static false_type __test(...);
using type = decltype(__test<_Alloc>(0));
};
template<typename _Tp, typename... _Args>
using __has_construct
= typename __construct_helper<_Tp, _Args...>::type;
template<typename _Tp, typename... _Args>
static _Require<__has_construct<_Tp, _Args...>>
_S_construct(_Alloc& __a, _Tp* __p, _Args&&... __args)
{ __a.construct(__p, std::forward<_Args>(__args)...); }
template<typename _Tp, typename... _Args>
static
_Require<__and_<__not_<__has_construct<_Tp, _Args...>>,
is_constructible<_Tp, _Args...>>>
_S_construct(_Alloc&, _Tp* __p, _Args&&... __args)
{ ::new((void*)__p) _Tp(std::forward<_Args>(__args)...); }
template<typename _Tp>
struct __destroy_helper
{
template<typename _Alloc2,
typename = decltype(std::declval<_Alloc2*>()->destroy(
std::declval<_Tp*>()))>
static true_type __test(int);
template<typename>
static false_type __test(...);
using type = decltype(__test<_Alloc>(0));
};
template<typename _Tp>
using __has_destroy = typename __destroy_helper<_Tp>::type;
template<typename _Tp>
static _Require<__has_destroy<_Tp>>
_S_destroy(_Alloc& __a, _Tp* __p)
{ __a.destroy(__p); }
template<typename _Tp>
static _Require<__not_<__has_destroy<_Tp>>>
_S_destroy(_Alloc&, _Tp* __p)
{ __p->~_Tp(); }
template<typename _Alloc2>
struct __maxsize_helper
{
template<typename _Alloc3,
typename = decltype(std::declval<_Alloc3*>()->max_size())>
static true_type __test(int);
template<typename>
static false_type __test(...);
using type = decltype(__test<_Alloc2>(0));
};
template<typename _Alloc2>
using __has_max_size = typename __maxsize_helper<_Alloc2>::type;
template<typename _Alloc2,
typename = _Require<__has_max_size<_Alloc2>>>
static size_type
_S_max_size(_Alloc2& __a, int)
{ return __a.max_size(); }
template<typename _Alloc2,
typename = _Require<__not_<__has_max_size<_Alloc2>>>>
static size_type
_S_max_size(_Alloc2&, ...)
{ return __gnu_cxx::__numeric_traits<size_type>::__max; }
template<typename _Alloc2>
struct __select_helper
{
template<typename _Alloc3, typename
= decltype(std::declval<_Alloc3*>()
->select_on_container_copy_construction())>
static true_type __test(int);
template<typename>
static false_type __test(...);
using type = decltype(__test<_Alloc2>(0));
};
template<typename _Alloc2>
using __has_soccc = typename __select_helper<_Alloc2>::type;
template<typename _Alloc2,
typename = _Require<__has_soccc<_Alloc2>>>
static _Alloc2
_S_select(_Alloc2& __a, int)
{ return __a.select_on_container_copy_construction(); }
template<typename _Alloc2,
typename = _Require<__not_<__has_soccc<_Alloc2>>>>
static _Alloc2
_S_select(_Alloc2& __a, ...)
{ return __a; }
public:
/**
* @brief Allocate memory.
* @param __a An allocator.
* @param __n The number of objects to allocate space for.
*
* Calls @c a.allocate(n)
*/
static pointer
allocate(_Alloc& __a, size_type __n)
{ return __a.allocate(__n); }
/**
* @brief Allocate memory.
* @param __a An allocator.
* @param __n The number of objects to allocate space for.
* @param __hint Aid to locality.
* @return Memory of suitable size and alignment for @a n objects
* of type @c value_type
*
* Returns <tt> a.allocate(n, hint) </tt> if that expression is
* well-formed, otherwise returns @c a.allocate(n)
*/
static pointer
allocate(_Alloc& __a, size_type __n, const_void_pointer __hint)
{ return _S_allocate(__a, __n, __hint); }
/**
* @brief Deallocate memory.
* @param __a An allocator.
* @param __p Pointer to the memory to deallocate.
* @param __n The number of objects space was allocated for.
*
* Calls <tt> a.deallocate(p, n) </tt>
*/
static void deallocate(_Alloc& __a, pointer __p, size_type __n)
{ __a.deallocate(__p, __n); }
/**
* @brief Construct an object of type @a _Tp
* @param __a An allocator.
* @param __p Pointer to memory of suitable size and alignment for Tp
* @param __args Constructor arguments.
*
* Calls <tt> __a.construct(__p, std::forward<Args>(__args)...) </tt>
* if that expression is well-formed, otherwise uses placement-new
* to construct an object of type @a _Tp at location @a __p from the
* arguments @a __args...
*/
template<typename _Tp, typename... _Args>
static auto construct(_Alloc& __a, _Tp* __p, _Args&&... __args)
-> decltype(_S_construct(__a, __p, std::forward<_Args>(__args)...))
{ _S_construct(__a, __p, std::forward<_Args>(__args)...); }
/**
* @brief Destroy an object of type @a _Tp
* @param __a An allocator.
* @param __p Pointer to the object to destroy
*
* Calls @c __a.destroy(__p) if that expression is well-formed,
* otherwise calls @c __p->~_Tp()
*/
template <class _Tp>
static void destroy(_Alloc& __a, _Tp* __p)
{ _S_destroy(__a, __p); }
/**
* @brief The maximum supported allocation size
* @param __a An allocator.
* @return @c __a.max_size() or @c numeric_limits<size_type>::max()
*
* Returns @c __a.max_size() if that expression is well-formed,
* otherwise returns @c numeric_limits<size_type>::max()
*/
static size_type max_size(const _Alloc& __a) noexcept
{ return _S_max_size(__a, 0); }
/**
* @brief Obtain an allocator to use when copying a container.
* @param __rhs An allocator.
* @return @c __rhs.select_on_container_copy_construction() or @a __rhs
*
* Returns @c __rhs.select_on_container_copy_construction() if that
* expression is well-formed, otherwise returns @a __rhs
*/
static _Alloc
select_on_container_copy_construction(const _Alloc& __rhs)
{ return _S_select(__rhs, 0); }
};
template<typename _Alloc>
inline void
__do_alloc_on_copy(_Alloc& __one, const _Alloc& __two, true_type)
{ __one = __two; }
template<typename _Alloc>
inline void
__do_alloc_on_copy(_Alloc&, const _Alloc&, false_type)
{ }
template<typename _Alloc>
inline void __alloc_on_copy(_Alloc& __one, const _Alloc& __two)
{
typedef allocator_traits<_Alloc> __traits;
typedef typename __traits::propagate_on_container_copy_assignment __pocca;
__do_alloc_on_copy(__one, __two, __pocca());
}
template<typename _Alloc>
inline _Alloc __alloc_on_copy(const _Alloc& __a)
{
typedef allocator_traits<_Alloc> __traits;
return __traits::select_on_container_copy_construction(__a);
}
template<typename _Alloc>
inline void __do_alloc_on_move(_Alloc& __one, _Alloc& __two, true_type)
{ __one = std::move(__two); }
template<typename _Alloc>
inline void __do_alloc_on_move(_Alloc&, _Alloc&, false_type)
{ }
template<typename _Alloc>
inline void __alloc_on_move(_Alloc& __one, _Alloc& __two)
{
typedef allocator_traits<_Alloc> __traits;
typedef typename __traits::propagate_on_container_move_assignment __pocma;
__do_alloc_on_move(__one, __two, __pocma());
}
template<typename _Alloc>
inline void __do_alloc_on_swap(_Alloc& __one, _Alloc& __two, true_type)
{
using std::swap;
swap(__one, __two);
}
template<typename _Alloc>
inline void __do_alloc_on_swap(_Alloc&, _Alloc&, false_type)
{ }
template<typename _Alloc>
inline void __alloc_on_swap(_Alloc& __one, _Alloc& __two)
{
typedef allocator_traits<_Alloc> __traits;
typedef typename __traits::propagate_on_container_swap __pocs;
__do_alloc_on_swap(__one, __two, __pocs());
}
template<typename _Alloc>
class __is_copy_insertable_impl
{
typedef allocator_traits<_Alloc> _Traits;
template<typename _Up, typename
= decltype(_Traits::construct(std::declval<_Alloc&>(),
std::declval<_Up*>(),
std::declval<const _Up&>()))>
static true_type
_M_select(int);
template<typename _Up>
static false_type
_M_select(...);
public:
typedef decltype(_M_select<typename _Alloc::value_type>(0)) type;
};
// true if _Alloc::value_type is CopyInsertable into containers using _Alloc
template<typename _Alloc>
struct __is_copy_insertable
: __is_copy_insertable_impl<_Alloc>::type
{ };
// std::allocator<_Tp> just requires CopyConstructible
template<typename _Tp>
struct __is_copy_insertable<allocator<_Tp>>
: is_copy_constructible<_Tp>
{ };
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#endif
#endif