| // hashtable.h header -*- C++ -*- |
| |
| // Copyright (C) 2007-2015 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** @file bits/hashtable.h |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{unordered_map, unordered_set} |
| */ |
| |
| #ifndef _HASHTABLE_H |
| #define _HASHTABLE_H 1 |
| |
| #pragma GCC system_header |
| |
| #include <bits/hashtable_policy.h> |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| template<typename _Tp, typename _Hash> |
| using __cache_default |
| = __not_<__and_<// Do not cache for fast hasher. |
| __is_fast_hash<_Hash>, |
| // Mandatory to have erase not throwing. |
| __detail::__is_noexcept_hash<_Tp, _Hash>>>; |
| |
| /** |
| * Primary class template _Hashtable. |
| * |
| * @ingroup hashtable-detail |
| * |
| * @tparam _Value CopyConstructible type. |
| * |
| * @tparam _Key CopyConstructible type. |
| * |
| * @tparam _Alloc An allocator type |
| * ([lib.allocator.requirements]) whose _Alloc::value_type is |
| * _Value. As a conforming extension, we allow for |
| * _Alloc::value_type != _Value. |
| * |
| * @tparam _ExtractKey Function object that takes an object of type |
| * _Value and returns a value of type _Key. |
| * |
| * @tparam _Equal Function object that takes two objects of type k |
| * and returns a bool-like value that is true if the two objects |
| * are considered equal. |
| * |
| * @tparam _H1 The hash function. A unary function object with |
| * argument type _Key and result type size_t. Return values should |
| * be distributed over the entire range [0, numeric_limits<size_t>:::max()]. |
| * |
| * @tparam _H2 The range-hashing function (in the terminology of |
| * Tavori and Dreizin). A binary function object whose argument |
| * types and result type are all size_t. Given arguments r and N, |
| * the return value is in the range [0, N). |
| * |
| * @tparam _Hash The ranged hash function (Tavori and Dreizin). A |
| * binary function whose argument types are _Key and size_t and |
| * whose result type is size_t. Given arguments k and N, the |
| * return value is in the range [0, N). Default: hash(k, N) = |
| * h2(h1(k), N). If _Hash is anything other than the default, _H1 |
| * and _H2 are ignored. |
| * |
| * @tparam _RehashPolicy Policy class with three members, all of |
| * which govern the bucket count. _M_next_bkt(n) returns a bucket |
| * count no smaller than n. _M_bkt_for_elements(n) returns a |
| * bucket count appropriate for an element count of n. |
| * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the |
| * current bucket count is n_bkt and the current element count is |
| * n_elt, we need to increase the bucket count. If so, returns |
| * make_pair(true, n), where n is the new bucket count. If not, |
| * returns make_pair(false, <anything>) |
| * |
| * @tparam _Traits Compile-time class with three boolean |
| * std::integral_constant members: __cache_hash_code, __constant_iterators, |
| * __unique_keys. |
| * |
| * Each _Hashtable data structure has: |
| * |
| * - _Bucket[] _M_buckets |
| * - _Hash_node_base _M_before_begin |
| * - size_type _M_bucket_count |
| * - size_type _M_element_count |
| * |
| * with _Bucket being _Hash_node* and _Hash_node containing: |
| * |
| * - _Hash_node* _M_next |
| * - Tp _M_value |
| * - size_t _M_hash_code if cache_hash_code is true |
| * |
| * In terms of Standard containers the hashtable is like the aggregation of: |
| * |
| * - std::forward_list<_Node> containing the elements |
| * - std::vector<std::forward_list<_Node>::iterator> representing the buckets |
| * |
| * The non-empty buckets contain the node before the first node in the |
| * bucket. This design makes it possible to implement something like a |
| * std::forward_list::insert_after on container insertion and |
| * std::forward_list::erase_after on container erase |
| * calls. _M_before_begin is equivalent to |
| * std::forward_list::before_begin. Empty buckets contain |
| * nullptr. Note that one of the non-empty buckets contains |
| * &_M_before_begin which is not a dereferenceable node so the |
| * node pointer in a bucket shall never be dereferenced, only its |
| * next node can be. |
| * |
| * Walking through a bucket's nodes requires a check on the hash code to |
| * see if each node is still in the bucket. Such a design assumes a |
| * quite efficient hash functor and is one of the reasons it is |
| * highly advisable to set __cache_hash_code to true. |
| * |
| * The container iterators are simply built from nodes. This way |
| * incrementing the iterator is perfectly efficient independent of |
| * how many empty buckets there are in the container. |
| * |
| * On insert we compute the element's hash code and use it to find the |
| * bucket index. If the element must be inserted in an empty bucket |
| * we add it at the beginning of the singly linked list and make the |
| * bucket point to _M_before_begin. The bucket that used to point to |
| * _M_before_begin, if any, is updated to point to its new before |
| * begin node. |
| * |
| * On erase, the simple iterator design requires using the hash |
| * functor to get the index of the bucket to update. For this |
| * reason, when __cache_hash_code is set to false the hash functor must |
| * not throw and this is enforced by a static assertion. |
| * |
| * Functionality is implemented by decomposition into base classes, |
| * where the derived _Hashtable class is used in _Map_base, |
| * _Insert, _Rehash_base, and _Equality base classes to access the |
| * "this" pointer. _Hashtable_base is used in the base classes as a |
| * non-recursive, fully-completed-type so that detailed nested type |
| * information, such as iterator type and node type, can be |
| * used. This is similar to the "Curiously Recurring Template |
| * Pattern" (CRTP) technique, but uses a reconstructed, not |
| * explicitly passed, template pattern. |
| * |
| * Base class templates are: |
| * - __detail::_Hashtable_base |
| * - __detail::_Map_base |
| * - __detail::_Insert |
| * - __detail::_Rehash_base |
| * - __detail::_Equality |
| */ |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, |
| typename _RehashPolicy, typename _Traits> |
| class _Hashtable |
| : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _Traits>, |
| public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>, |
| public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>, |
| public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>, |
| public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>, |
| private __detail::_Hashtable_alloc< |
| typename __alloctr_rebind<_Alloc, |
| __detail::_Hash_node<_Value, |
| _Traits::__hash_cached::value> >::__type> |
| { |
| using __traits_type = _Traits; |
| using __hash_cached = typename __traits_type::__hash_cached; |
| using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>; |
| using __node_alloc_type = |
| typename __alloctr_rebind<_Alloc, __node_type>::__type; |
| |
| using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>; |
| |
| using __value_alloc_traits = |
| typename __hashtable_alloc::__value_alloc_traits; |
| using __node_alloc_traits = |
| typename __hashtable_alloc::__node_alloc_traits; |
| using __node_base = typename __hashtable_alloc::__node_base; |
| using __bucket_type = typename __hashtable_alloc::__bucket_type; |
| |
| public: |
| typedef _Key key_type; |
| typedef _Value value_type; |
| typedef _Alloc allocator_type; |
| typedef _Equal key_equal; |
| |
| // mapped_type, if present, comes from _Map_base. |
| // hasher, if present, comes from _Hash_code_base/_Hashtable_base. |
| typedef typename __value_alloc_traits::pointer pointer; |
| typedef typename __value_alloc_traits::const_pointer const_pointer; |
| typedef value_type& reference; |
| typedef const value_type& const_reference; |
| |
| private: |
| using __rehash_type = _RehashPolicy; |
| using __rehash_state = typename __rehash_type::_State; |
| |
| using __constant_iterators = typename __traits_type::__constant_iterators; |
| using __unique_keys = typename __traits_type::__unique_keys; |
| |
| using __key_extract = typename std::conditional< |
| __constant_iterators::value, |
| __detail::_Identity, |
| __detail::_Select1st>::type; |
| |
| using __hashtable_base = __detail:: |
| _Hashtable_base<_Key, _Value, _ExtractKey, |
| _Equal, _H1, _H2, _Hash, _Traits>; |
| |
| using __hash_code_base = typename __hashtable_base::__hash_code_base; |
| using __hash_code = typename __hashtable_base::__hash_code; |
| using __ireturn_type = typename __hashtable_base::__ireturn_type; |
| |
| using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, |
| _Equal, _H1, _H2, _Hash, |
| _RehashPolicy, _Traits>; |
| |
| using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc, |
| _ExtractKey, _Equal, |
| _H1, _H2, _Hash, |
| _RehashPolicy, _Traits>; |
| |
| using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, |
| _Equal, _H1, _H2, _Hash, |
| _RehashPolicy, _Traits>; |
| |
| using __reuse_or_alloc_node_type = |
| __detail::_ReuseOrAllocNode<__node_alloc_type>; |
| |
| // Metaprogramming for picking apart hash caching. |
| template<typename _Cond> |
| using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>; |
| |
| template<typename _Cond> |
| using __if_hash_not_cached = __or_<__hash_cached, _Cond>; |
| |
| // Compile-time diagnostics. |
| |
| // _Hash_code_base has everything protected, so use this derived type to |
| // access it. |
| struct __hash_code_base_access : __hash_code_base |
| { using __hash_code_base::_M_bucket_index; }; |
| |
| // Getting a bucket index from a node shall not throw because it is used |
| // in methods (erase, swap...) that shall not throw. |
| static_assert(noexcept(declval<const __hash_code_base_access&>() |
| ._M_bucket_index((const __node_type*)nullptr, |
| (std::size_t)0)), |
| "Cache the hash code or qualify your functors involved" |
| " in hash code and bucket index computation with noexcept"); |
| |
| // Following two static assertions are necessary to guarantee |
| // that local_iterator will be default constructible. |
| |
| // When hash codes are cached local iterator inherits from H2 functor |
| // which must then be default constructible. |
| static_assert(__if_hash_cached<is_default_constructible<_H2>>::value, |
| "Functor used to map hash code to bucket index" |
| " must be default constructible"); |
| |
| template<typename _Keya, typename _Valuea, typename _Alloca, |
| typename _ExtractKeya, typename _Equala, |
| typename _H1a, typename _H2a, typename _Hasha, |
| typename _RehashPolicya, typename _Traitsa, |
| bool _Unique_keysa> |
| friend struct __detail::_Map_base; |
| |
| template<typename _Keya, typename _Valuea, typename _Alloca, |
| typename _ExtractKeya, typename _Equala, |
| typename _H1a, typename _H2a, typename _Hasha, |
| typename _RehashPolicya, typename _Traitsa> |
| friend struct __detail::_Insert_base; |
| |
| template<typename _Keya, typename _Valuea, typename _Alloca, |
| typename _ExtractKeya, typename _Equala, |
| typename _H1a, typename _H2a, typename _Hasha, |
| typename _RehashPolicya, typename _Traitsa, |
| bool _Constant_iteratorsa, bool _Unique_keysa> |
| friend struct __detail::_Insert; |
| |
| public: |
| using size_type = typename __hashtable_base::size_type; |
| using difference_type = typename __hashtable_base::difference_type; |
| |
| using iterator = typename __hashtable_base::iterator; |
| using const_iterator = typename __hashtable_base::const_iterator; |
| |
| using local_iterator = typename __hashtable_base::local_iterator; |
| using const_local_iterator = typename __hashtable_base:: |
| const_local_iterator; |
| |
| private: |
| __bucket_type* _M_buckets = &_M_single_bucket; |
| size_type _M_bucket_count = 1; |
| __node_base _M_before_begin; |
| size_type _M_element_count = 0; |
| _RehashPolicy _M_rehash_policy; |
| |
| // A single bucket used when only need for 1 bucket. Especially |
| // interesting in move semantic to leave hashtable with only 1 buckets |
| // which is not allocated so that we can have those operations noexcept |
| // qualified. |
| // Note that we can't leave hashtable with 0 bucket without adding |
| // numerous checks in the code to avoid 0 modulus. |
| __bucket_type _M_single_bucket = nullptr; |
| |
| bool |
| _M_uses_single_bucket(__bucket_type* __bkts) const |
| { return __builtin_expect(__bkts == &_M_single_bucket, false); } |
| |
| bool |
| _M_uses_single_bucket() const |
| { return _M_uses_single_bucket(_M_buckets); } |
| |
| __hashtable_alloc& |
| _M_base_alloc() { return *this; } |
| |
| __bucket_type* |
| _M_allocate_buckets(size_type __n) |
| { |
| if (__builtin_expect(__n == 1, false)) |
| { |
| _M_single_bucket = nullptr; |
| return &_M_single_bucket; |
| } |
| |
| return __hashtable_alloc::_M_allocate_buckets(__n); |
| } |
| |
| void |
| _M_deallocate_buckets(__bucket_type* __bkts, size_type __n) |
| { |
| if (_M_uses_single_bucket(__bkts)) |
| return; |
| |
| __hashtable_alloc::_M_deallocate_buckets(__bkts, __n); |
| } |
| |
| void |
| _M_deallocate_buckets() |
| { _M_deallocate_buckets(_M_buckets, _M_bucket_count); } |
| |
| // Gets bucket begin, deals with the fact that non-empty buckets contain |
| // their before begin node. |
| __node_type* |
| _M_bucket_begin(size_type __bkt) const; |
| |
| __node_type* |
| _M_begin() const |
| { return static_cast<__node_type*>(_M_before_begin._M_nxt); } |
| |
| template<typename _NodeGenerator> |
| void |
| _M_assign(const _Hashtable&, const _NodeGenerator&); |
| |
| void |
| _M_move_assign(_Hashtable&&, std::true_type); |
| |
| void |
| _M_move_assign(_Hashtable&&, std::false_type); |
| |
| void |
| _M_reset() noexcept; |
| |
| _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h, |
| const _Equal& __eq, const _ExtractKey& __exk, |
| const allocator_type& __a) |
| : __hashtable_base(__exk, __h1, __h2, __h, __eq), |
| __hashtable_alloc(__node_alloc_type(__a)) |
| { } |
| |
| public: |
| // Constructor, destructor, assignment, swap |
| _Hashtable() = default; |
| _Hashtable(size_type __bucket_hint, |
| const _H1&, const _H2&, const _Hash&, |
| const _Equal&, const _ExtractKey&, |
| const allocator_type&); |
| |
| template<typename _InputIterator> |
| _Hashtable(_InputIterator __first, _InputIterator __last, |
| size_type __bucket_hint, |
| const _H1&, const _H2&, const _Hash&, |
| const _Equal&, const _ExtractKey&, |
| const allocator_type&); |
| |
| _Hashtable(const _Hashtable&); |
| |
| _Hashtable(_Hashtable&&) noexcept; |
| |
| _Hashtable(const _Hashtable&, const allocator_type&); |
| |
| _Hashtable(_Hashtable&&, const allocator_type&); |
| |
| // Use delegating constructors. |
| explicit |
| _Hashtable(const allocator_type& __a) |
| : __hashtable_alloc(__node_alloc_type(__a)) |
| { } |
| |
| explicit |
| _Hashtable(size_type __n, |
| const _H1& __hf = _H1(), |
| const key_equal& __eql = key_equal(), |
| const allocator_type& __a = allocator_type()) |
| : _Hashtable(__n, __hf, _H2(), _Hash(), __eql, |
| __key_extract(), __a) |
| { } |
| |
| template<typename _InputIterator> |
| _Hashtable(_InputIterator __f, _InputIterator __l, |
| size_type __n = 0, |
| const _H1& __hf = _H1(), |
| const key_equal& __eql = key_equal(), |
| const allocator_type& __a = allocator_type()) |
| : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql, |
| __key_extract(), __a) |
| { } |
| |
| _Hashtable(initializer_list<value_type> __l, |
| size_type __n = 0, |
| const _H1& __hf = _H1(), |
| const key_equal& __eql = key_equal(), |
| const allocator_type& __a = allocator_type()) |
| : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql, |
| __key_extract(), __a) |
| { } |
| |
| _Hashtable& |
| operator=(const _Hashtable& __ht); |
| |
| _Hashtable& |
| operator=(_Hashtable&& __ht) |
| noexcept(__node_alloc_traits::_S_nothrow_move()) |
| { |
| constexpr bool __move_storage = |
| __node_alloc_traits::_S_propagate_on_move_assign() |
| || __node_alloc_traits::_S_always_equal(); |
| _M_move_assign(std::move(__ht), |
| integral_constant<bool, __move_storage>()); |
| return *this; |
| } |
| |
| _Hashtable& |
| operator=(initializer_list<value_type> __l) |
| { |
| __reuse_or_alloc_node_type __roan(_M_begin(), *this); |
| _M_before_begin._M_nxt = nullptr; |
| clear(); |
| this->_M_insert_range(__l.begin(), __l.end(), __roan); |
| return *this; |
| } |
| |
| ~_Hashtable() noexcept; |
| |
| void |
| swap(_Hashtable&) |
| noexcept(__node_alloc_traits::_S_nothrow_swap()); |
| |
| // Basic container operations |
| iterator |
| begin() noexcept |
| { return iterator(_M_begin()); } |
| |
| const_iterator |
| begin() const noexcept |
| { return const_iterator(_M_begin()); } |
| |
| iterator |
| end() noexcept |
| { return iterator(nullptr); } |
| |
| const_iterator |
| end() const noexcept |
| { return const_iterator(nullptr); } |
| |
| const_iterator |
| cbegin() const noexcept |
| { return const_iterator(_M_begin()); } |
| |
| const_iterator |
| cend() const noexcept |
| { return const_iterator(nullptr); } |
| |
| size_type |
| size() const noexcept |
| { return _M_element_count; } |
| |
| bool |
| empty() const noexcept |
| { return size() == 0; } |
| |
| allocator_type |
| get_allocator() const noexcept |
| { return allocator_type(this->_M_node_allocator()); } |
| |
| size_type |
| max_size() const noexcept |
| { return __node_alloc_traits::max_size(this->_M_node_allocator()); } |
| |
| // Observers |
| key_equal |
| key_eq() const |
| { return this->_M_eq(); } |
| |
| // hash_function, if present, comes from _Hash_code_base. |
| |
| // Bucket operations |
| size_type |
| bucket_count() const noexcept |
| { return _M_bucket_count; } |
| |
| size_type |
| max_bucket_count() const noexcept |
| { return max_size(); } |
| |
| size_type |
| bucket_size(size_type __n) const |
| { return std::distance(begin(__n), end(__n)); } |
| |
| size_type |
| bucket(const key_type& __k) const |
| { return _M_bucket_index(__k, this->_M_hash_code(__k)); } |
| |
| local_iterator |
| begin(size_type __n) |
| { |
| return local_iterator(*this, _M_bucket_begin(__n), |
| __n, _M_bucket_count); |
| } |
| |
| local_iterator |
| end(size_type __n) |
| { return local_iterator(*this, nullptr, __n, _M_bucket_count); } |
| |
| const_local_iterator |
| begin(size_type __n) const |
| { |
| return const_local_iterator(*this, _M_bucket_begin(__n), |
| __n, _M_bucket_count); |
| } |
| |
| const_local_iterator |
| end(size_type __n) const |
| { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); } |
| |
| // DR 691. |
| const_local_iterator |
| cbegin(size_type __n) const |
| { |
| return const_local_iterator(*this, _M_bucket_begin(__n), |
| __n, _M_bucket_count); |
| } |
| |
| const_local_iterator |
| cend(size_type __n) const |
| { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); } |
| |
| float |
| load_factor() const noexcept |
| { |
| return static_cast<float>(size()) / static_cast<float>(bucket_count()); |
| } |
| |
| // max_load_factor, if present, comes from _Rehash_base. |
| |
| // Generalization of max_load_factor. Extension, not found in |
| // TR1. Only useful if _RehashPolicy is something other than |
| // the default. |
| const _RehashPolicy& |
| __rehash_policy() const |
| { return _M_rehash_policy; } |
| |
| void |
| __rehash_policy(const _RehashPolicy&); |
| |
| // Lookup. |
| iterator |
| find(const key_type& __k); |
| |
| const_iterator |
| find(const key_type& __k) const; |
| |
| size_type |
| count(const key_type& __k) const; |
| |
| std::pair<iterator, iterator> |
| equal_range(const key_type& __k); |
| |
| std::pair<const_iterator, const_iterator> |
| equal_range(const key_type& __k) const; |
| |
| protected: |
| // Bucket index computation helpers. |
| size_type |
| _M_bucket_index(__node_type* __n) const noexcept |
| { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); } |
| |
| size_type |
| _M_bucket_index(const key_type& __k, __hash_code __c) const |
| { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); } |
| |
| // Find and insert helper functions and types |
| // Find the node before the one matching the criteria. |
| __node_base* |
| _M_find_before_node(size_type, const key_type&, __hash_code) const; |
| |
| __node_type* |
| _M_find_node(size_type __bkt, const key_type& __key, |
| __hash_code __c) const |
| { |
| __node_base* __before_n = _M_find_before_node(__bkt, __key, __c); |
| if (__before_n) |
| return static_cast<__node_type*>(__before_n->_M_nxt); |
| return nullptr; |
| } |
| |
| // Insert a node at the beginning of a bucket. |
| void |
| _M_insert_bucket_begin(size_type, __node_type*); |
| |
| // Remove the bucket first node |
| void |
| _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n, |
| size_type __next_bkt); |
| |
| // Get the node before __n in the bucket __bkt |
| __node_base* |
| _M_get_previous_node(size_type __bkt, __node_base* __n); |
| |
| // Insert node with hash code __code, in bucket bkt if no rehash (assumes |
| // no element with its key already present). Take ownership of the node, |
| // deallocate it on exception. |
| iterator |
| _M_insert_unique_node(size_type __bkt, __hash_code __code, |
| __node_type* __n); |
| |
| // Insert node with hash code __code. Take ownership of the node, |
| // deallocate it on exception. |
| iterator |
| _M_insert_multi_node(__node_type* __hint, |
| __hash_code __code, __node_type* __n); |
| |
| template<typename... _Args> |
| std::pair<iterator, bool> |
| _M_emplace(std::true_type, _Args&&... __args); |
| |
| template<typename... _Args> |
| iterator |
| _M_emplace(std::false_type __uk, _Args&&... __args) |
| { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); } |
| |
| // Emplace with hint, useless when keys are unique. |
| template<typename... _Args> |
| iterator |
| _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args) |
| { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; } |
| |
| template<typename... _Args> |
| iterator |
| _M_emplace(const_iterator, std::false_type, _Args&&... __args); |
| |
| template<typename _Arg, typename _NodeGenerator> |
| std::pair<iterator, bool> |
| _M_insert(_Arg&&, const _NodeGenerator&, std::true_type); |
| |
| template<typename _Arg, typename _NodeGenerator> |
| iterator |
| _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen, |
| std::false_type __uk) |
| { |
| return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen, |
| __uk); |
| } |
| |
| // Insert with hint, not used when keys are unique. |
| template<typename _Arg, typename _NodeGenerator> |
| iterator |
| _M_insert(const_iterator, _Arg&& __arg, |
| const _NodeGenerator& __node_gen, std::true_type __uk) |
| { |
| return |
| _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first; |
| } |
| |
| // Insert with hint when keys are not unique. |
| template<typename _Arg, typename _NodeGenerator> |
| iterator |
| _M_insert(const_iterator, _Arg&&, |
| const _NodeGenerator&, std::false_type); |
| |
| size_type |
| _M_erase(std::true_type, const key_type&); |
| |
| size_type |
| _M_erase(std::false_type, const key_type&); |
| |
| iterator |
| _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n); |
| |
| public: |
| // Emplace |
| template<typename... _Args> |
| __ireturn_type |
| emplace(_Args&&... __args) |
| { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); } |
| |
| template<typename... _Args> |
| iterator |
| emplace_hint(const_iterator __hint, _Args&&... __args) |
| { |
| return _M_emplace(__hint, __unique_keys(), |
| std::forward<_Args>(__args)...); |
| } |
| |
| // Insert member functions via inheritance. |
| |
| // Erase |
| iterator |
| erase(const_iterator); |
| |
| // LWG 2059. |
| iterator |
| erase(iterator __it) |
| { return erase(const_iterator(__it)); } |
| |
| size_type |
| erase(const key_type& __k) |
| { return _M_erase(__unique_keys(), __k); } |
| |
| iterator |
| erase(const_iterator, const_iterator); |
| |
| void |
| clear() noexcept; |
| |
| // Set number of buckets to be appropriate for container of n element. |
| void rehash(size_type __n); |
| |
| // DR 1189. |
| // reserve, if present, comes from _Rehash_base. |
| |
| private: |
| // Helper rehash method used when keys are unique. |
| void _M_rehash_aux(size_type __n, std::true_type); |
| |
| // Helper rehash method used when keys can be non-unique. |
| void _M_rehash_aux(size_type __n, std::false_type); |
| |
| // Unconditionally change size of bucket array to n, restore |
| // hash policy state to __state on exception. |
| void _M_rehash(size_type __n, const __rehash_state& __state); |
| }; |
| |
| |
| // Definitions of class template _Hashtable's out-of-line member functions. |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_bucket_begin(size_type __bkt) const |
| -> __node_type* |
| { |
| __node_base* __n = _M_buckets[__bkt]; |
| return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _Hashtable(size_type __bucket_hint, |
| const _H1& __h1, const _H2& __h2, const _Hash& __h, |
| const _Equal& __eq, const _ExtractKey& __exk, |
| const allocator_type& __a) |
| : _Hashtable(__h1, __h2, __h, __eq, __exk, __a) |
| { |
| auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint); |
| if (__bkt > _M_bucket_count) |
| { |
| _M_buckets = _M_allocate_buckets(__bkt); |
| _M_bucket_count = __bkt; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| template<typename _InputIterator> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _Hashtable(_InputIterator __f, _InputIterator __l, |
| size_type __bucket_hint, |
| const _H1& __h1, const _H2& __h2, const _Hash& __h, |
| const _Equal& __eq, const _ExtractKey& __exk, |
| const allocator_type& __a) |
| : _Hashtable(__h1, __h2, __h, __eq, __exk, __a) |
| { |
| auto __nb_elems = __detail::__distance_fw(__f, __l); |
| auto __bkt_count = |
| _M_rehash_policy._M_next_bkt( |
| std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems), |
| __bucket_hint)); |
| |
| if (__bkt_count > _M_bucket_count) |
| { |
| _M_buckets = _M_allocate_buckets(__bkt_count); |
| _M_bucket_count = __bkt_count; |
| } |
| |
| __try |
| { |
| for (; __f != __l; ++__f) |
| this->insert(*__f); |
| } |
| __catch(...) |
| { |
| clear(); |
| _M_deallocate_buckets(); |
| __throw_exception_again; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| operator=(const _Hashtable& __ht) |
| -> _Hashtable& |
| { |
| if (&__ht == this) |
| return *this; |
| |
| if (__node_alloc_traits::_S_propagate_on_copy_assign()) |
| { |
| auto& __this_alloc = this->_M_node_allocator(); |
| auto& __that_alloc = __ht._M_node_allocator(); |
| if (!__node_alloc_traits::_S_always_equal() |
| && __this_alloc != __that_alloc) |
| { |
| // Replacement allocator cannot free existing storage. |
| this->_M_deallocate_nodes(_M_begin()); |
| _M_before_begin._M_nxt = nullptr; |
| _M_deallocate_buckets(); |
| _M_buckets = nullptr; |
| std::__alloc_on_copy(__this_alloc, __that_alloc); |
| __hashtable_base::operator=(__ht); |
| _M_bucket_count = __ht._M_bucket_count; |
| _M_element_count = __ht._M_element_count; |
| _M_rehash_policy = __ht._M_rehash_policy; |
| __try |
| { |
| _M_assign(__ht, |
| [this](const __node_type* __n) |
| { return this->_M_allocate_node(__n->_M_v()); }); |
| } |
| __catch(...) |
| { |
| // _M_assign took care of deallocating all memory. Now we |
| // must make sure this instance remains in a usable state. |
| _M_reset(); |
| __throw_exception_again; |
| } |
| return *this; |
| } |
| std::__alloc_on_copy(__this_alloc, __that_alloc); |
| } |
| |
| // Reuse allocated buckets and nodes. |
| __bucket_type* __former_buckets = nullptr; |
| std::size_t __former_bucket_count = _M_bucket_count; |
| const __rehash_state& __former_state = _M_rehash_policy._M_state(); |
| |
| if (_M_bucket_count != __ht._M_bucket_count) |
| { |
| __former_buckets = _M_buckets; |
| _M_buckets = _M_allocate_buckets(__ht._M_bucket_count); |
| _M_bucket_count = __ht._M_bucket_count; |
| } |
| else |
| __builtin_memset(_M_buckets, 0, |
| _M_bucket_count * sizeof(__bucket_type)); |
| |
| __try |
| { |
| __hashtable_base::operator=(__ht); |
| _M_element_count = __ht._M_element_count; |
| _M_rehash_policy = __ht._M_rehash_policy; |
| __reuse_or_alloc_node_type __roan(_M_begin(), *this); |
| _M_before_begin._M_nxt = nullptr; |
| _M_assign(__ht, |
| [&__roan](const __node_type* __n) |
| { return __roan(__n->_M_v()); }); |
| if (__former_buckets) |
| _M_deallocate_buckets(__former_buckets, __former_bucket_count); |
| } |
| __catch(...) |
| { |
| if (__former_buckets) |
| { |
| // Restore previous buckets. |
| _M_deallocate_buckets(); |
| _M_rehash_policy._M_reset(__former_state); |
| _M_buckets = __former_buckets; |
| _M_bucket_count = __former_bucket_count; |
| } |
| __builtin_memset(_M_buckets, 0, |
| _M_bucket_count * sizeof(__bucket_type)); |
| __throw_exception_again; |
| } |
| return *this; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| template<typename _NodeGenerator> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen) |
| { |
| __bucket_type* __buckets = nullptr; |
| if (!_M_buckets) |
| _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count); |
| |
| __try |
| { |
| if (!__ht._M_before_begin._M_nxt) |
| return; |
| |
| // First deal with the special first node pointed to by |
| // _M_before_begin. |
| __node_type* __ht_n = __ht._M_begin(); |
| __node_type* __this_n = __node_gen(__ht_n); |
| this->_M_copy_code(__this_n, __ht_n); |
| _M_before_begin._M_nxt = __this_n; |
| _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin; |
| |
| // Then deal with other nodes. |
| __node_base* __prev_n = __this_n; |
| for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next()) |
| { |
| __this_n = __node_gen(__ht_n); |
| __prev_n->_M_nxt = __this_n; |
| this->_M_copy_code(__this_n, __ht_n); |
| size_type __bkt = _M_bucket_index(__this_n); |
| if (!_M_buckets[__bkt]) |
| _M_buckets[__bkt] = __prev_n; |
| __prev_n = __this_n; |
| } |
| } |
| __catch(...) |
| { |
| clear(); |
| if (__buckets) |
| _M_deallocate_buckets(); |
| __throw_exception_again; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_reset() noexcept |
| { |
| _M_rehash_policy._M_reset(); |
| _M_bucket_count = 1; |
| _M_single_bucket = nullptr; |
| _M_buckets = &_M_single_bucket; |
| _M_before_begin._M_nxt = nullptr; |
| _M_element_count = 0; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_move_assign(_Hashtable&& __ht, std::true_type) |
| { |
| this->_M_deallocate_nodes(_M_begin()); |
| _M_deallocate_buckets(); |
| __hashtable_base::operator=(std::move(__ht)); |
| _M_rehash_policy = __ht._M_rehash_policy; |
| if (!__ht._M_uses_single_bucket()) |
| _M_buckets = __ht._M_buckets; |
| else |
| { |
| _M_buckets = &_M_single_bucket; |
| _M_single_bucket = __ht._M_single_bucket; |
| } |
| _M_bucket_count = __ht._M_bucket_count; |
| _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt; |
| _M_element_count = __ht._M_element_count; |
| std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator()); |
| |
| // Fix buckets containing the _M_before_begin pointers that can't be |
| // moved. |
| if (_M_begin()) |
| _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin; |
| __ht._M_reset(); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_move_assign(_Hashtable&& __ht, std::false_type) |
| { |
| if (__ht._M_node_allocator() == this->_M_node_allocator()) |
| _M_move_assign(std::move(__ht), std::true_type()); |
| else |
| { |
| // Can't move memory, move elements then. |
| __bucket_type* __former_buckets = nullptr; |
| size_type __former_bucket_count = _M_bucket_count; |
| const __rehash_state& __former_state = _M_rehash_policy._M_state(); |
| |
| if (_M_bucket_count != __ht._M_bucket_count) |
| { |
| __former_buckets = _M_buckets; |
| _M_buckets = _M_allocate_buckets(__ht._M_bucket_count); |
| _M_bucket_count = __ht._M_bucket_count; |
| } |
| else |
| __builtin_memset(_M_buckets, 0, |
| _M_bucket_count * sizeof(__bucket_type)); |
| |
| __try |
| { |
| __hashtable_base::operator=(std::move(__ht)); |
| _M_element_count = __ht._M_element_count; |
| _M_rehash_policy = __ht._M_rehash_policy; |
| __reuse_or_alloc_node_type __roan(_M_begin(), *this); |
| _M_before_begin._M_nxt = nullptr; |
| _M_assign(__ht, |
| [&__roan](__node_type* __n) |
| { return __roan(std::move_if_noexcept(__n->_M_v())); }); |
| __ht.clear(); |
| } |
| __catch(...) |
| { |
| if (__former_buckets) |
| { |
| _M_deallocate_buckets(); |
| _M_rehash_policy._M_reset(__former_state); |
| _M_buckets = __former_buckets; |
| _M_bucket_count = __former_bucket_count; |
| } |
| __builtin_memset(_M_buckets, 0, |
| _M_bucket_count * sizeof(__bucket_type)); |
| __throw_exception_again; |
| } |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _Hashtable(const _Hashtable& __ht) |
| : __hashtable_base(__ht), |
| __map_base(__ht), |
| __rehash_base(__ht), |
| __hashtable_alloc( |
| __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())), |
| _M_buckets(nullptr), |
| _M_bucket_count(__ht._M_bucket_count), |
| _M_element_count(__ht._M_element_count), |
| _M_rehash_policy(__ht._M_rehash_policy) |
| { |
| _M_assign(__ht, |
| [this](const __node_type* __n) |
| { return this->_M_allocate_node(__n->_M_v()); }); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _Hashtable(_Hashtable&& __ht) noexcept |
| : __hashtable_base(__ht), |
| __map_base(__ht), |
| __rehash_base(__ht), |
| __hashtable_alloc(std::move(__ht._M_base_alloc())), |
| _M_buckets(__ht._M_buckets), |
| _M_bucket_count(__ht._M_bucket_count), |
| _M_before_begin(__ht._M_before_begin._M_nxt), |
| _M_element_count(__ht._M_element_count), |
| _M_rehash_policy(__ht._M_rehash_policy) |
| { |
| // Update, if necessary, buckets if __ht is using its single bucket. |
| if (__ht._M_uses_single_bucket()) |
| { |
| _M_buckets = &_M_single_bucket; |
| _M_single_bucket = __ht._M_single_bucket; |
| } |
| |
| // Update, if necessary, bucket pointing to before begin that hasn't |
| // moved. |
| if (_M_begin()) |
| _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin; |
| |
| __ht._M_reset(); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _Hashtable(const _Hashtable& __ht, const allocator_type& __a) |
| : __hashtable_base(__ht), |
| __map_base(__ht), |
| __rehash_base(__ht), |
| __hashtable_alloc(__node_alloc_type(__a)), |
| _M_buckets(), |
| _M_bucket_count(__ht._M_bucket_count), |
| _M_element_count(__ht._M_element_count), |
| _M_rehash_policy(__ht._M_rehash_policy) |
| { |
| _M_assign(__ht, |
| [this](const __node_type* __n) |
| { return this->_M_allocate_node(__n->_M_v()); }); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _Hashtable(_Hashtable&& __ht, const allocator_type& __a) |
| : __hashtable_base(__ht), |
| __map_base(__ht), |
| __rehash_base(__ht), |
| __hashtable_alloc(__node_alloc_type(__a)), |
| _M_buckets(nullptr), |
| _M_bucket_count(__ht._M_bucket_count), |
| _M_element_count(__ht._M_element_count), |
| _M_rehash_policy(__ht._M_rehash_policy) |
| { |
| if (__ht._M_node_allocator() == this->_M_node_allocator()) |
| { |
| if (__ht._M_uses_single_bucket()) |
| { |
| _M_buckets = &_M_single_bucket; |
| _M_single_bucket = __ht._M_single_bucket; |
| } |
| else |
| _M_buckets = __ht._M_buckets; |
| |
| _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt; |
| // Update, if necessary, bucket pointing to before begin that hasn't |
| // moved. |
| if (_M_begin()) |
| _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin; |
| __ht._M_reset(); |
| } |
| else |
| { |
| _M_assign(__ht, |
| [this](__node_type* __n) |
| { |
| return this->_M_allocate_node( |
| std::move_if_noexcept(__n->_M_v())); |
| }); |
| __ht.clear(); |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| ~_Hashtable() noexcept |
| { |
| clear(); |
| _M_deallocate_buckets(); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| swap(_Hashtable& __x) |
| noexcept(__node_alloc_traits::_S_nothrow_swap()) |
| { |
| // The only base class with member variables is hash_code_base. |
| // We define _Hash_code_base::_M_swap because different |
| // specializations have different members. |
| this->_M_swap(__x); |
| |
| std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator()); |
| std::swap(_M_rehash_policy, __x._M_rehash_policy); |
| |
| // Deal properly with potentially moved instances. |
| if (this->_M_uses_single_bucket()) |
| { |
| if (!__x._M_uses_single_bucket()) |
| { |
| _M_buckets = __x._M_buckets; |
| __x._M_buckets = &__x._M_single_bucket; |
| } |
| } |
| else if (__x._M_uses_single_bucket()) |
| { |
| __x._M_buckets = _M_buckets; |
| _M_buckets = &_M_single_bucket; |
| } |
| else |
| std::swap(_M_buckets, __x._M_buckets); |
| |
| std::swap(_M_bucket_count, __x._M_bucket_count); |
| std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt); |
| std::swap(_M_element_count, __x._M_element_count); |
| std::swap(_M_single_bucket, __x._M_single_bucket); |
| |
| // Fix buckets containing the _M_before_begin pointers that can't be |
| // swapped. |
| if (_M_begin()) |
| _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin; |
| |
| if (__x._M_begin()) |
| __x._M_buckets[__x._M_bucket_index(__x._M_begin())] |
| = &__x._M_before_begin; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| __rehash_policy(const _RehashPolicy& __pol) |
| { |
| auto __do_rehash = |
| __pol._M_need_rehash(_M_bucket_count, _M_element_count, 0); |
| if (__do_rehash.first) |
| _M_rehash(__do_rehash.second, _M_rehash_policy._M_state()); |
| _M_rehash_policy = __pol; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| find(const key_type& __k) |
| -> iterator |
| { |
| __hash_code __code = this->_M_hash_code(__k); |
| std::size_t __n = _M_bucket_index(__k, __code); |
| __node_type* __p = _M_find_node(__n, __k, __code); |
| return __p ? iterator(__p) : end(); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| find(const key_type& __k) const |
| -> const_iterator |
| { |
| __hash_code __code = this->_M_hash_code(__k); |
| std::size_t __n = _M_bucket_index(__k, __code); |
| __node_type* __p = _M_find_node(__n, __k, __code); |
| return __p ? const_iterator(__p) : end(); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| count(const key_type& __k) const |
| -> size_type |
| { |
| __hash_code __code = this->_M_hash_code(__k); |
| std::size_t __n = _M_bucket_index(__k, __code); |
| __node_type* __p = _M_bucket_begin(__n); |
| if (!__p) |
| return 0; |
| |
| std::size_t __result = 0; |
| for (;; __p = __p->_M_next()) |
| { |
| if (this->_M_equals(__k, __code, __p)) |
| ++__result; |
| else if (__result) |
| // All equivalent values are next to each other, if we |
| // found a non-equivalent value after an equivalent one it |
| // means that we won't find any new equivalent value. |
| break; |
| if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n) |
| break; |
| } |
| return __result; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| equal_range(const key_type& __k) |
| -> pair<iterator, iterator> |
| { |
| __hash_code __code = this->_M_hash_code(__k); |
| std::size_t __n = _M_bucket_index(__k, __code); |
| __node_type* __p = _M_find_node(__n, __k, __code); |
| |
| if (__p) |
| { |
| __node_type* __p1 = __p->_M_next(); |
| while (__p1 && _M_bucket_index(__p1) == __n |
| && this->_M_equals(__k, __code, __p1)) |
| __p1 = __p1->_M_next(); |
| |
| return std::make_pair(iterator(__p), iterator(__p1)); |
| } |
| else |
| return std::make_pair(end(), end()); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| equal_range(const key_type& __k) const |
| -> pair<const_iterator, const_iterator> |
| { |
| __hash_code __code = this->_M_hash_code(__k); |
| std::size_t __n = _M_bucket_index(__k, __code); |
| __node_type* __p = _M_find_node(__n, __k, __code); |
| |
| if (__p) |
| { |
| __node_type* __p1 = __p->_M_next(); |
| while (__p1 && _M_bucket_index(__p1) == __n |
| && this->_M_equals(__k, __code, __p1)) |
| __p1 = __p1->_M_next(); |
| |
| return std::make_pair(const_iterator(__p), const_iterator(__p1)); |
| } |
| else |
| return std::make_pair(end(), end()); |
| } |
| |
| // Find the node whose key compares equal to k in the bucket n. |
| // Return nullptr if no node is found. |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_find_before_node(size_type __n, const key_type& __k, |
| __hash_code __code) const |
| -> __node_base* |
| { |
| __node_base* __prev_p = _M_buckets[__n]; |
| if (!__prev_p) |
| return nullptr; |
| |
| for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);; |
| __p = __p->_M_next()) |
| { |
| if (this->_M_equals(__k, __code, __p)) |
| return __prev_p; |
| |
| if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n) |
| break; |
| __prev_p = __p; |
| } |
| return nullptr; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_insert_bucket_begin(size_type __bkt, __node_type* __node) |
| { |
| if (_M_buckets[__bkt]) |
| { |
| // Bucket is not empty, we just need to insert the new node |
| // after the bucket before begin. |
| __node->_M_nxt = _M_buckets[__bkt]->_M_nxt; |
| _M_buckets[__bkt]->_M_nxt = __node; |
| } |
| else |
| { |
| // The bucket is empty, the new node is inserted at the |
| // beginning of the singly-linked list and the bucket will |
| // contain _M_before_begin pointer. |
| __node->_M_nxt = _M_before_begin._M_nxt; |
| _M_before_begin._M_nxt = __node; |
| if (__node->_M_nxt) |
| // We must update former begin bucket that is pointing to |
| // _M_before_begin. |
| _M_buckets[_M_bucket_index(__node->_M_next())] = __node; |
| _M_buckets[__bkt] = &_M_before_begin; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_remove_bucket_begin(size_type __bkt, __node_type* __next, |
| size_type __next_bkt) |
| { |
| if (!__next || __next_bkt != __bkt) |
| { |
| // Bucket is now empty |
| // First update next bucket if any |
| if (__next) |
| _M_buckets[__next_bkt] = _M_buckets[__bkt]; |
| |
| // Second update before begin node if necessary |
| if (&_M_before_begin == _M_buckets[__bkt]) |
| _M_before_begin._M_nxt = __next; |
| _M_buckets[__bkt] = nullptr; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_get_previous_node(size_type __bkt, __node_base* __n) |
| -> __node_base* |
| { |
| __node_base* __prev_n = _M_buckets[__bkt]; |
| while (__prev_n->_M_nxt != __n) |
| __prev_n = __prev_n->_M_nxt; |
| return __prev_n; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| template<typename... _Args> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_emplace(std::true_type, _Args&&... __args) |
| -> pair<iterator, bool> |
| { |
| // First build the node to get access to the hash code |
| __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...); |
| const key_type& __k = this->_M_extract()(__node->_M_v()); |
| __hash_code __code; |
| __try |
| { |
| __code = this->_M_hash_code(__k); |
| } |
| __catch(...) |
| { |
| this->_M_deallocate_node(__node); |
| __throw_exception_again; |
| } |
| |
| size_type __bkt = _M_bucket_index(__k, __code); |
| if (__node_type* __p = _M_find_node(__bkt, __k, __code)) |
| { |
| // There is already an equivalent node, no insertion |
| this->_M_deallocate_node(__node); |
| return std::make_pair(iterator(__p), false); |
| } |
| |
| // Insert the node |
| return std::make_pair(_M_insert_unique_node(__bkt, __code, __node), |
| true); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| template<typename... _Args> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args) |
| -> iterator |
| { |
| // First build the node to get its hash code. |
| __node_type* __node = |
| this->_M_allocate_node(std::forward<_Args>(__args)...); |
| |
| __hash_code __code; |
| __try |
| { |
| __code = this->_M_hash_code(this->_M_extract()(__node->_M_v())); |
| } |
| __catch(...) |
| { |
| this->_M_deallocate_node(__node); |
| __throw_exception_again; |
| } |
| |
| return _M_insert_multi_node(__hint._M_cur, __code, __node); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_insert_unique_node(size_type __bkt, __hash_code __code, |
| __node_type* __node) |
| -> iterator |
| { |
| const __rehash_state& __saved_state = _M_rehash_policy._M_state(); |
| std::pair<bool, std::size_t> __do_rehash |
| = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1); |
| |
| __try |
| { |
| if (__do_rehash.first) |
| { |
| _M_rehash(__do_rehash.second, __saved_state); |
| __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code); |
| } |
| |
| this->_M_store_code(__node, __code); |
| |
| // Always insert at the beginning of the bucket. |
| _M_insert_bucket_begin(__bkt, __node); |
| ++_M_element_count; |
| return iterator(__node); |
| } |
| __catch(...) |
| { |
| this->_M_deallocate_node(__node); |
| __throw_exception_again; |
| } |
| } |
| |
| // Insert node, in bucket bkt if no rehash (assumes no element with its key |
| // already present). Take ownership of the node, deallocate it on exception. |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_insert_multi_node(__node_type* __hint, __hash_code __code, |
| __node_type* __node) |
| -> iterator |
| { |
| const __rehash_state& __saved_state = _M_rehash_policy._M_state(); |
| std::pair<bool, std::size_t> __do_rehash |
| = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1); |
| |
| __try |
| { |
| if (__do_rehash.first) |
| _M_rehash(__do_rehash.second, __saved_state); |
| |
| this->_M_store_code(__node, __code); |
| const key_type& __k = this->_M_extract()(__node->_M_v()); |
| size_type __bkt = _M_bucket_index(__k, __code); |
| |
| // Find the node before an equivalent one or use hint if it exists and |
| // if it is equivalent. |
| __node_base* __prev |
| = __builtin_expect(__hint != nullptr, false) |
| && this->_M_equals(__k, __code, __hint) |
| ? __hint |
| : _M_find_before_node(__bkt, __k, __code); |
| if (__prev) |
| { |
| // Insert after the node before the equivalent one. |
| __node->_M_nxt = __prev->_M_nxt; |
| __prev->_M_nxt = __node; |
| if (__builtin_expect(__prev == __hint, false)) |
| // hint might be the last bucket node, in this case we need to |
| // update next bucket. |
| if (__node->_M_nxt |
| && !this->_M_equals(__k, __code, __node->_M_next())) |
| { |
| size_type __next_bkt = _M_bucket_index(__node->_M_next()); |
| if (__next_bkt != __bkt) |
| _M_buckets[__next_bkt] = __node; |
| } |
| } |
| else |
| // The inserted node has no equivalent in the |
| // hashtable. We must insert the new node at the |
| // beginning of the bucket to preserve equivalent |
| // elements' relative positions. |
| _M_insert_bucket_begin(__bkt, __node); |
| ++_M_element_count; |
| return iterator(__node); |
| } |
| __catch(...) |
| { |
| this->_M_deallocate_node(__node); |
| __throw_exception_again; |
| } |
| } |
| |
| // Insert v if no element with its key is already present. |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| template<typename _Arg, typename _NodeGenerator> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type) |
| -> pair<iterator, bool> |
| { |
| const key_type& __k = this->_M_extract()(__v); |
| __hash_code __code = this->_M_hash_code(__k); |
| size_type __bkt = _M_bucket_index(__k, __code); |
| |
| __node_type* __n = _M_find_node(__bkt, __k, __code); |
| if (__n) |
| return std::make_pair(iterator(__n), false); |
| |
| __n = __node_gen(std::forward<_Arg>(__v)); |
| return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true); |
| } |
| |
| // Insert v unconditionally. |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| template<typename _Arg, typename _NodeGenerator> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_insert(const_iterator __hint, _Arg&& __v, |
| const _NodeGenerator& __node_gen, std::false_type) |
| -> iterator |
| { |
| // First compute the hash code so that we don't do anything if it |
| // throws. |
| __hash_code __code = this->_M_hash_code(this->_M_extract()(__v)); |
| |
| // Second allocate new node so that we don't rehash if it throws. |
| __node_type* __node = __node_gen(std::forward<_Arg>(__v)); |
| |
| return _M_insert_multi_node(__hint._M_cur, __code, __node); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| erase(const_iterator __it) |
| -> iterator |
| { |
| __node_type* __n = __it._M_cur; |
| std::size_t __bkt = _M_bucket_index(__n); |
| |
| // Look for previous node to unlink it from the erased one, this |
| // is why we need buckets to contain the before begin to make |
| // this search fast. |
| __node_base* __prev_n = _M_get_previous_node(__bkt, __n); |
| return _M_erase(__bkt, __prev_n, __n); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n) |
| -> iterator |
| { |
| if (__prev_n == _M_buckets[__bkt]) |
| _M_remove_bucket_begin(__bkt, __n->_M_next(), |
| __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0); |
| else if (__n->_M_nxt) |
| { |
| size_type __next_bkt = _M_bucket_index(__n->_M_next()); |
| if (__next_bkt != __bkt) |
| _M_buckets[__next_bkt] = __prev_n; |
| } |
| |
| __prev_n->_M_nxt = __n->_M_nxt; |
| iterator __result(__n->_M_next()); |
| this->_M_deallocate_node(__n); |
| --_M_element_count; |
| |
| return __result; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_erase(std::true_type, const key_type& __k) |
| -> size_type |
| { |
| __hash_code __code = this->_M_hash_code(__k); |
| std::size_t __bkt = _M_bucket_index(__k, __code); |
| |
| // Look for the node before the first matching node. |
| __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code); |
| if (!__prev_n) |
| return 0; |
| |
| // We found a matching node, erase it. |
| __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt); |
| _M_erase(__bkt, __prev_n, __n); |
| return 1; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_erase(std::false_type, const key_type& __k) |
| -> size_type |
| { |
| __hash_code __code = this->_M_hash_code(__k); |
| std::size_t __bkt = _M_bucket_index(__k, __code); |
| |
| // Look for the node before the first matching node. |
| __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code); |
| if (!__prev_n) |
| return 0; |
| |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 526. Is it undefined if a function in the standard changes |
| // in parameters? |
| // We use one loop to find all matching nodes and another to deallocate |
| // them so that the key stays valid during the first loop. It might be |
| // invalidated indirectly when destroying nodes. |
| __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt); |
| __node_type* __n_last = __n; |
| std::size_t __n_last_bkt = __bkt; |
| do |
| { |
| __n_last = __n_last->_M_next(); |
| if (!__n_last) |
| break; |
| __n_last_bkt = _M_bucket_index(__n_last); |
| } |
| while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last)); |
| |
| // Deallocate nodes. |
| size_type __result = 0; |
| do |
| { |
| __node_type* __p = __n->_M_next(); |
| this->_M_deallocate_node(__n); |
| __n = __p; |
| ++__result; |
| --_M_element_count; |
| } |
| while (__n != __n_last); |
| |
| if (__prev_n == _M_buckets[__bkt]) |
| _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt); |
| else if (__n_last && __n_last_bkt != __bkt) |
| _M_buckets[__n_last_bkt] = __prev_n; |
| __prev_n->_M_nxt = __n_last; |
| return __result; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| auto |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| erase(const_iterator __first, const_iterator __last) |
| -> iterator |
| { |
| __node_type* __n = __first._M_cur; |
| __node_type* __last_n = __last._M_cur; |
| if (__n == __last_n) |
| return iterator(__n); |
| |
| std::size_t __bkt = _M_bucket_index(__n); |
| |
| __node_base* __prev_n = _M_get_previous_node(__bkt, __n); |
| bool __is_bucket_begin = __n == _M_bucket_begin(__bkt); |
| std::size_t __n_bkt = __bkt; |
| for (;;) |
| { |
| do |
| { |
| __node_type* __tmp = __n; |
| __n = __n->_M_next(); |
| this->_M_deallocate_node(__tmp); |
| --_M_element_count; |
| if (!__n) |
| break; |
| __n_bkt = _M_bucket_index(__n); |
| } |
| while (__n != __last_n && __n_bkt == __bkt); |
| if (__is_bucket_begin) |
| _M_remove_bucket_begin(__bkt, __n, __n_bkt); |
| if (__n == __last_n) |
| break; |
| __is_bucket_begin = true; |
| __bkt = __n_bkt; |
| } |
| |
| if (__n && (__n_bkt != __bkt || __is_bucket_begin)) |
| _M_buckets[__n_bkt] = __prev_n; |
| __prev_n->_M_nxt = __n; |
| return iterator(__n); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| clear() noexcept |
| { |
| this->_M_deallocate_nodes(_M_begin()); |
| __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type)); |
| _M_element_count = 0; |
| _M_before_begin._M_nxt = nullptr; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| rehash(size_type __n) |
| { |
| const __rehash_state& __saved_state = _M_rehash_policy._M_state(); |
| std::size_t __buckets |
| = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1), |
| __n); |
| __buckets = _M_rehash_policy._M_next_bkt(__buckets); |
| |
| if (__buckets != _M_bucket_count) |
| _M_rehash(__buckets, __saved_state); |
| else |
| // No rehash, restore previous state to keep a consistent state. |
| _M_rehash_policy._M_reset(__saved_state); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_rehash(size_type __n, const __rehash_state& __state) |
| { |
| __try |
| { |
| _M_rehash_aux(__n, __unique_keys()); |
| } |
| __catch(...) |
| { |
| // A failure here means that buckets allocation failed. We only |
| // have to restore hash policy previous state. |
| _M_rehash_policy._M_reset(__state); |
| __throw_exception_again; |
| } |
| } |
| |
| // Rehash when there is no equivalent elements. |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_rehash_aux(size_type __n, std::true_type) |
| { |
| __bucket_type* __new_buckets = _M_allocate_buckets(__n); |
| __node_type* __p = _M_begin(); |
| _M_before_begin._M_nxt = nullptr; |
| std::size_t __bbegin_bkt = 0; |
| while (__p) |
| { |
| __node_type* __next = __p->_M_next(); |
| std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n); |
| if (!__new_buckets[__bkt]) |
| { |
| __p->_M_nxt = _M_before_begin._M_nxt; |
| _M_before_begin._M_nxt = __p; |
| __new_buckets[__bkt] = &_M_before_begin; |
| if (__p->_M_nxt) |
| __new_buckets[__bbegin_bkt] = __p; |
| __bbegin_bkt = __bkt; |
| } |
| else |
| { |
| __p->_M_nxt = __new_buckets[__bkt]->_M_nxt; |
| __new_buckets[__bkt]->_M_nxt = __p; |
| } |
| __p = __next; |
| } |
| |
| _M_deallocate_buckets(); |
| _M_bucket_count = __n; |
| _M_buckets = __new_buckets; |
| } |
| |
| // Rehash when there can be equivalent elements, preserve their relative |
| // order. |
| template<typename _Key, typename _Value, |
| typename _Alloc, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| typename _Traits> |
| void |
| _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, _Traits>:: |
| _M_rehash_aux(size_type __n, std::false_type) |
| { |
| __bucket_type* __new_buckets = _M_allocate_buckets(__n); |
| |
| __node_type* __p = _M_begin(); |
| _M_before_begin._M_nxt = nullptr; |
| std::size_t __bbegin_bkt = 0; |
| std::size_t __prev_bkt = 0; |
| __node_type* __prev_p = nullptr; |
| bool __check_bucket = false; |
| |
| while (__p) |
| { |
| __node_type* __next = __p->_M_next(); |
| std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n); |
| |
| if (__prev_p && __prev_bkt == __bkt) |
| { |
| // Previous insert was already in this bucket, we insert after |
| // the previously inserted one to preserve equivalent elements |
| // relative order. |
| __p->_M_nxt = __prev_p->_M_nxt; |
| __prev_p->_M_nxt = __p; |
| |
| // Inserting after a node in a bucket require to check that we |
| // haven't change the bucket last node, in this case next |
| // bucket containing its before begin node must be updated. We |
| // schedule a check as soon as we move out of the sequence of |
| // equivalent nodes to limit the number of checks. |
| __check_bucket = true; |
| } |
| else |
| { |
| if (__check_bucket) |
| { |
| // Check if we shall update the next bucket because of |
| // insertions into __prev_bkt bucket. |
| if (__prev_p->_M_nxt) |
| { |
| std::size_t __next_bkt |
| = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), |
| __n); |
| if (__next_bkt != __prev_bkt) |
| __new_buckets[__next_bkt] = __prev_p; |
| } |
| __check_bucket = false; |
| } |
| |
| if (!__new_buckets[__bkt]) |
| { |
| __p->_M_nxt = _M_before_begin._M_nxt; |
| _M_before_begin._M_nxt = __p; |
| __new_buckets[__bkt] = &_M_before_begin; |
| if (__p->_M_nxt) |
| __new_buckets[__bbegin_bkt] = __p; |
| __bbegin_bkt = __bkt; |
| } |
| else |
| { |
| __p->_M_nxt = __new_buckets[__bkt]->_M_nxt; |
| __new_buckets[__bkt]->_M_nxt = __p; |
| } |
| } |
| __prev_p = __p; |
| __prev_bkt = __bkt; |
| __p = __next; |
| } |
| |
| if (__check_bucket && __prev_p->_M_nxt) |
| { |
| std::size_t __next_bkt |
| = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n); |
| if (__next_bkt != __prev_bkt) |
| __new_buckets[__next_bkt] = __prev_p; |
| } |
| |
| _M_deallocate_buckets(); |
| _M_bucket_count = __n; |
| _M_buckets = __new_buckets; |
| } |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace std |
| |
| #endif // _HASHTABLE_H |