blob: 00a26ed7249d235d7607eb1cf3799b4e97b6d430 [file] [log] [blame]
// <forward_list.tcc> -*- C++ -*-
// Copyright (C) 2008-2015 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file bits/forward_list.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{forward_list}
*/
#ifndef _FORWARD_LIST_TCC
#define _FORWARD_LIST_TCC 1
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
template<typename _Tp, typename _Alloc>
_Fwd_list_base<_Tp, _Alloc>::
_Fwd_list_base(_Fwd_list_base&& __lst, const _Node_alloc_type& __a)
: _M_impl(__a)
{
if (__lst._M_get_Node_allocator() == __a)
{
this->_M_impl._M_head._M_next = __lst._M_impl._M_head._M_next;
__lst._M_impl._M_head._M_next = 0;
}
else
{
this->_M_impl._M_head._M_next = 0;
_Fwd_list_node_base* __to = &this->_M_impl._M_head;
_Node* __curr = static_cast<_Node*>(__lst._M_impl._M_head._M_next);
while (__curr)
{
__to->_M_next =
_M_create_node(std::move_if_noexcept(*__curr->_M_valptr()));
__to = __to->_M_next;
__curr = static_cast<_Node*>(__curr->_M_next);
}
}
}
template<typename _Tp, typename _Alloc>
template<typename... _Args>
_Fwd_list_node_base*
_Fwd_list_base<_Tp, _Alloc>::
_M_insert_after(const_iterator __pos, _Args&&... __args)
{
_Fwd_list_node_base* __to
= const_cast<_Fwd_list_node_base*>(__pos._M_node);
_Node* __thing = _M_create_node(std::forward<_Args>(__args)...);
__thing->_M_next = __to->_M_next;
__to->_M_next = __thing;
return __to->_M_next;
}
template<typename _Tp, typename _Alloc>
_Fwd_list_node_base*
_Fwd_list_base<_Tp, _Alloc>::
_M_erase_after(_Fwd_list_node_base* __pos)
{
_Node* __curr = static_cast<_Node*>(__pos->_M_next);
__pos->_M_next = __curr->_M_next;
_Tp_alloc_type __a(_M_get_Node_allocator());
allocator_traits<_Tp_alloc_type>::destroy(__a, __curr->_M_valptr());
__curr->~_Node();
_M_put_node(__curr);
return __pos->_M_next;
}
template<typename _Tp, typename _Alloc>
_Fwd_list_node_base*
_Fwd_list_base<_Tp, _Alloc>::
_M_erase_after(_Fwd_list_node_base* __pos,
_Fwd_list_node_base* __last)
{
_Node* __curr = static_cast<_Node*>(__pos->_M_next);
while (__curr != __last)
{
_Node* __temp = __curr;
__curr = static_cast<_Node*>(__curr->_M_next);
_Tp_alloc_type __a(_M_get_Node_allocator());
allocator_traits<_Tp_alloc_type>::destroy(__a, __temp->_M_valptr());
__temp->~_Node();
_M_put_node(__temp);
}
__pos->_M_next = __last;
return __last;
}
// Called by the range constructor to implement [23.3.4.2]/9
template<typename _Tp, typename _Alloc>
template<typename _InputIterator>
void
forward_list<_Tp, _Alloc>::
_M_range_initialize(_InputIterator __first, _InputIterator __last)
{
_Node_base* __to = &this->_M_impl._M_head;
for (; __first != __last; ++__first)
{
__to->_M_next = this->_M_create_node(*__first);
__to = __to->_M_next;
}
}
// Called by forward_list(n,v,a).
template<typename _Tp, typename _Alloc>
void
forward_list<_Tp, _Alloc>::
_M_fill_initialize(size_type __n, const value_type& __value)
{
_Node_base* __to = &this->_M_impl._M_head;
for (; __n; --__n)
{
__to->_M_next = this->_M_create_node(__value);
__to = __to->_M_next;
}
}
template<typename _Tp, typename _Alloc>
void
forward_list<_Tp, _Alloc>::
_M_default_initialize(size_type __n)
{
_Node_base* __to = &this->_M_impl._M_head;
for (; __n; --__n)
{
__to->_M_next = this->_M_create_node();
__to = __to->_M_next;
}
}
template<typename _Tp, typename _Alloc>
forward_list<_Tp, _Alloc>&
forward_list<_Tp, _Alloc>::
operator=(const forward_list& __list)
{
if (&__list != this)
{
if (_Node_alloc_traits::_S_propagate_on_copy_assign())
{
auto& __this_alloc = this->_M_get_Node_allocator();
auto& __that_alloc = __list._M_get_Node_allocator();
if (!_Node_alloc_traits::_S_always_equal()
&& __this_alloc != __that_alloc)
{
// replacement allocator cannot free existing storage
clear();
}
std::__alloc_on_copy(__this_alloc, __that_alloc);
}
assign(__list.cbegin(), __list.cend());
}
return *this;
}
template<typename _Tp, typename _Alloc>
void
forward_list<_Tp, _Alloc>::
_M_default_insert_after(const_iterator __pos, size_type __n)
{
const_iterator __saved_pos = __pos;
__try
{
for (; __n; --__n)
__pos = emplace_after(__pos);
}
__catch(...)
{
erase_after(__saved_pos, ++__pos);
__throw_exception_again;
}
}
template<typename _Tp, typename _Alloc>
void
forward_list<_Tp, _Alloc>::
resize(size_type __sz)
{
iterator __k = before_begin();
size_type __len = 0;
while (__k._M_next() != end() && __len < __sz)
{
++__k;
++__len;
}
if (__len == __sz)
erase_after(__k, end());
else
_M_default_insert_after(__k, __sz - __len);
}
template<typename _Tp, typename _Alloc>
void
forward_list<_Tp, _Alloc>::
resize(size_type __sz, const value_type& __val)
{
iterator __k = before_begin();
size_type __len = 0;
while (__k._M_next() != end() && __len < __sz)
{
++__k;
++__len;
}
if (__len == __sz)
erase_after(__k, end());
else
insert_after(__k, __sz - __len, __val);
}
template<typename _Tp, typename _Alloc>
typename forward_list<_Tp, _Alloc>::iterator
forward_list<_Tp, _Alloc>::
_M_splice_after(const_iterator __pos,
const_iterator __before, const_iterator __last)
{
_Node_base* __tmp = const_cast<_Node_base*>(__pos._M_node);
_Node_base* __b = const_cast<_Node_base*>(__before._M_node);
_Node_base* __end = __b;
while (__end && __end->_M_next != __last._M_node)
__end = __end->_M_next;
if (__b != __end)
return iterator(__tmp->_M_transfer_after(__b, __end));
else
return iterator(__tmp);
}
template<typename _Tp, typename _Alloc>
void
forward_list<_Tp, _Alloc>::
splice_after(const_iterator __pos, forward_list&&,
const_iterator __i)
{
const_iterator __j = __i;
++__j;
if (__pos == __i || __pos == __j)
return;
_Node_base* __tmp = const_cast<_Node_base*>(__pos._M_node);
__tmp->_M_transfer_after(const_cast<_Node_base*>(__i._M_node),
const_cast<_Node_base*>(__j._M_node));
}
template<typename _Tp, typename _Alloc>
typename forward_list<_Tp, _Alloc>::iterator
forward_list<_Tp, _Alloc>::
insert_after(const_iterator __pos, size_type __n, const _Tp& __val)
{
if (__n)
{
forward_list __tmp(__n, __val, get_allocator());
return _M_splice_after(__pos, __tmp.before_begin(), __tmp.end());
}
else
return iterator(const_cast<_Node_base*>(__pos._M_node));
}
template<typename _Tp, typename _Alloc>
template<typename _InputIterator, typename>
typename forward_list<_Tp, _Alloc>::iterator
forward_list<_Tp, _Alloc>::
insert_after(const_iterator __pos,
_InputIterator __first, _InputIterator __last)
{
forward_list __tmp(__first, __last, get_allocator());
if (!__tmp.empty())
return _M_splice_after(__pos, __tmp.before_begin(), __tmp.end());
else
return iterator(const_cast<_Node_base*>(__pos._M_node));
}
template<typename _Tp, typename _Alloc>
void
forward_list<_Tp, _Alloc>::
remove(const _Tp& __val)
{
_Node* __curr = static_cast<_Node*>(&this->_M_impl._M_head);
_Node* __extra = 0;
while (_Node* __tmp = static_cast<_Node*>(__curr->_M_next))
{
if (*__tmp->_M_valptr() == __val)
{
if (__tmp->_M_valptr() != std::__addressof(__val))
{
this->_M_erase_after(__curr);
continue;
}
else
__extra = __curr;
}
__curr = static_cast<_Node*>(__curr->_M_next);
}
if (__extra)
this->_M_erase_after(__extra);
}
template<typename _Tp, typename _Alloc>
template<typename _Pred>
void
forward_list<_Tp, _Alloc>::
remove_if(_Pred __pred)
{
_Node* __curr = static_cast<_Node*>(&this->_M_impl._M_head);
while (_Node* __tmp = static_cast<_Node*>(__curr->_M_next))
{
if (__pred(*__tmp->_M_valptr()))
this->_M_erase_after(__curr);
else
__curr = static_cast<_Node*>(__curr->_M_next);
}
}
template<typename _Tp, typename _Alloc>
template<typename _BinPred>
void
forward_list<_Tp, _Alloc>::
unique(_BinPred __binary_pred)
{
iterator __first = begin();
iterator __last = end();
if (__first == __last)
return;
iterator __next = __first;
while (++__next != __last)
{
if (__binary_pred(*__first, *__next))
erase_after(__first);
else
__first = __next;
__next = __first;
}
}
template<typename _Tp, typename _Alloc>
template<typename _Comp>
void
forward_list<_Tp, _Alloc>::
merge(forward_list&& __list, _Comp __comp)
{
_Node_base* __node = &this->_M_impl._M_head;
while (__node->_M_next && __list._M_impl._M_head._M_next)
{
if (__comp(*static_cast<_Node*>
(__list._M_impl._M_head._M_next)->_M_valptr(),
*static_cast<_Node*>
(__node->_M_next)->_M_valptr()))
__node->_M_transfer_after(&__list._M_impl._M_head,
__list._M_impl._M_head._M_next);
__node = __node->_M_next;
}
if (__list._M_impl._M_head._M_next)
{
__node->_M_next = __list._M_impl._M_head._M_next;
__list._M_impl._M_head._M_next = 0;
}
}
template<typename _Tp, typename _Alloc>
bool
operator==(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{
// We don't have size() so we need to walk through both lists
// making sure both iterators are valid.
auto __ix = __lx.cbegin();
auto __iy = __ly.cbegin();
while (__ix != __lx.cend() && __iy != __ly.cend())
{
if (*__ix != *__iy)
return false;
++__ix;
++__iy;
}
if (__ix == __lx.cend() && __iy == __ly.cend())
return true;
else
return false;
}
template<typename _Tp, class _Alloc>
template<typename _Comp>
void
forward_list<_Tp, _Alloc>::
sort(_Comp __comp)
{
// If `next' is 0, return immediately.
_Node* __list = static_cast<_Node*>(this->_M_impl._M_head._M_next);
if (!__list)
return;
unsigned long __insize = 1;
while (1)
{
_Node* __p = __list;
__list = 0;
_Node* __tail = 0;
// Count number of merges we do in this pass.
unsigned long __nmerges = 0;
while (__p)
{
++__nmerges;
// There exists a merge to be done.
// Step `insize' places along from p.
_Node* __q = __p;
unsigned long __psize = 0;
for (unsigned long __i = 0; __i < __insize; ++__i)
{
++__psize;
__q = static_cast<_Node*>(__q->_M_next);
if (!__q)
break;
}
// If q hasn't fallen off end, we have two lists to merge.
unsigned long __qsize = __insize;
// Now we have two lists; merge them.
while (__psize > 0 || (__qsize > 0 && __q))
{
// Decide whether next node of merge comes from p or q.
_Node* __e;
if (__psize == 0)
{
// p is empty; e must come from q.
__e = __q;
__q = static_cast<_Node*>(__q->_M_next);
--__qsize;
}
else if (__qsize == 0 || !__q)
{
// q is empty; e must come from p.
__e = __p;
__p = static_cast<_Node*>(__p->_M_next);
--__psize;
}
else if (__comp(*__p->_M_valptr(), *__q->_M_valptr()))
{
// First node of p is lower; e must come from p.
__e = __p;
__p = static_cast<_Node*>(__p->_M_next);
--__psize;
}
else
{
// First node of q is lower; e must come from q.
__e = __q;
__q = static_cast<_Node*>(__q->_M_next);
--__qsize;
}
// Add the next node to the merged list.
if (__tail)
__tail->_M_next = __e;
else
__list = __e;
__tail = __e;
}
// Now p has stepped `insize' places along, and q has too.
__p = __q;
}
__tail->_M_next = 0;
// If we have done only one merge, we're finished.
// Allow for nmerges == 0, the empty list case.
if (__nmerges <= 1)
{
this->_M_impl._M_head._M_next = __list;
return;
}
// Otherwise repeat, merging lists twice the size.
__insize *= 2;
}
}
_GLIBCXX_END_NAMESPACE_CONTAINER
} // namespace std
#endif /* _FORWARD_LIST_TCC */