| // Special functions -*- C++ -*- |
| |
| // Copyright (C) 2006, 2007, 2008, 2009, 2010 |
| // Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| // |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| // |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** @file tr1/exp_integral.tcc |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{tr1/cmath} |
| */ |
| |
| // |
| // ISO C++ 14882 TR1: 5.2 Special functions |
| // |
| |
| // Written by Edward Smith-Rowland based on: |
| // |
| // (1) Handbook of Mathematical Functions, |
| // Ed. by Milton Abramowitz and Irene A. Stegun, |
| // Dover Publications, New-York, Section 5, pp. 228-251. |
| // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
| // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
| // 2nd ed, pp. 222-225. |
| // |
| |
| #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC |
| #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1 |
| |
| #include "special_function_util.h" |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| namespace tr1 |
| { |
| // [5.2] Special functions |
| |
| // Implementation-space details. |
| namespace __detail |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| /** |
| * @brief Return the exponential integral @f$ E_1(x) @f$ |
| * by series summation. This should be good |
| * for @f$ x < 1 @f$. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt |
| * \f] |
| * |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_E1_series(const _Tp __x) |
| { |
| const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| _Tp __term = _Tp(1); |
| _Tp __esum = _Tp(0); |
| _Tp __osum = _Tp(0); |
| const unsigned int __max_iter = 100; |
| for (unsigned int __i = 1; __i < __max_iter; ++__i) |
| { |
| __term *= - __x / __i; |
| if (std::abs(__term) < __eps) |
| break; |
| if (__term >= _Tp(0)) |
| __esum += __term / __i; |
| else |
| __osum += __term / __i; |
| } |
| |
| return - __esum - __osum |
| - __numeric_constants<_Tp>::__gamma_e() - std::log(__x); |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ E_1(x) @f$ |
| * by asymptotic expansion. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt |
| * \f] |
| * |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_E1_asymp(const _Tp __x) |
| { |
| _Tp __term = _Tp(1); |
| _Tp __esum = _Tp(1); |
| _Tp __osum = _Tp(0); |
| const unsigned int __max_iter = 1000; |
| for (unsigned int __i = 1; __i < __max_iter; ++__i) |
| { |
| _Tp __prev = __term; |
| __term *= - __i / __x; |
| if (std::abs(__term) > std::abs(__prev)) |
| break; |
| if (__term >= _Tp(0)) |
| __esum += __term; |
| else |
| __osum += __term; |
| } |
| |
| return std::exp(- __x) * (__esum + __osum) / __x; |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ E_n(x) @f$ |
| * by series summation. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| * \f] |
| * |
| * @param __n The order of the exponential integral function. |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_En_series(const unsigned int __n, const _Tp __x) |
| { |
| const unsigned int __max_iter = 100; |
| const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| const int __nm1 = __n - 1; |
| _Tp __ans = (__nm1 != 0 |
| ? _Tp(1) / __nm1 : -std::log(__x) |
| - __numeric_constants<_Tp>::__gamma_e()); |
| _Tp __fact = _Tp(1); |
| for (int __i = 1; __i <= __max_iter; ++__i) |
| { |
| __fact *= -__x / _Tp(__i); |
| _Tp __del; |
| if ( __i != __nm1 ) |
| __del = -__fact / _Tp(__i - __nm1); |
| else |
| { |
| _Tp __psi = -__numeric_constants<_Tp>::gamma_e(); |
| for (int __ii = 1; __ii <= __nm1; ++__ii) |
| __psi += _Tp(1) / _Tp(__ii); |
| __del = __fact * (__psi - std::log(__x)); |
| } |
| __ans += __del; |
| if (std::abs(__del) < __eps * std::abs(__ans)) |
| return __ans; |
| } |
| std::__throw_runtime_error(__N("Series summation failed " |
| "in __expint_En_series.")); |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ E_n(x) @f$ |
| * by continued fractions. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| * \f] |
| * |
| * @param __n The order of the exponential integral function. |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_En_cont_frac(const unsigned int __n, const _Tp __x) |
| { |
| const unsigned int __max_iter = 100; |
| const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| const _Tp __fp_min = std::numeric_limits<_Tp>::min(); |
| const int __nm1 = __n - 1; |
| _Tp __b = __x + _Tp(__n); |
| _Tp __c = _Tp(1) / __fp_min; |
| _Tp __d = _Tp(1) / __b; |
| _Tp __h = __d; |
| for ( unsigned int __i = 1; __i <= __max_iter; ++__i ) |
| { |
| _Tp __a = -_Tp(__i * (__nm1 + __i)); |
| __b += _Tp(2); |
| __d = _Tp(1) / (__a * __d + __b); |
| __c = __b + __a / __c; |
| const _Tp __del = __c * __d; |
| __h *= __del; |
| if (std::abs(__del - _Tp(1)) < __eps) |
| { |
| const _Tp __ans = __h * std::exp(-__x); |
| return __ans; |
| } |
| } |
| std::__throw_runtime_error(__N("Continued fraction failed " |
| "in __expint_En_cont_frac.")); |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ E_n(x) @f$ |
| * by recursion. Use upward recursion for @f$ x < n @f$ |
| * and downward recursion (Miller's algorithm) otherwise. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| * \f] |
| * |
| * @param __n The order of the exponential integral function. |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_En_recursion(const unsigned int __n, const _Tp __x) |
| { |
| _Tp __En; |
| _Tp __E1 = __expint_E1(__x); |
| if (__x < _Tp(__n)) |
| { |
| // Forward recursion is stable only for n < x. |
| __En = __E1; |
| for (unsigned int __j = 2; __j < __n; ++__j) |
| __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1); |
| } |
| else |
| { |
| // Backward recursion is stable only for n >= x. |
| __En = _Tp(1); |
| const int __N = __n + 20; // TODO: Check this starting number. |
| _Tp __save = _Tp(0); |
| for (int __j = __N; __j > 0; --__j) |
| { |
| __En = (std::exp(-__x) - __j * __En) / __x; |
| if (__j == __n) |
| __save = __En; |
| } |
| _Tp __norm = __En / __E1; |
| __En /= __norm; |
| } |
| |
| return __En; |
| } |
| |
| /** |
| * @brief Return the exponential integral @f$ Ei(x) @f$ |
| * by series summation. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
| * \f] |
| * |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_Ei_series(const _Tp __x) |
| { |
| _Tp __term = _Tp(1); |
| _Tp __sum = _Tp(0); |
| const unsigned int __max_iter = 1000; |
| for (unsigned int __i = 1; __i < __max_iter; ++__i) |
| { |
| __term *= __x / __i; |
| __sum += __term / __i; |
| if (__term < std::numeric_limits<_Tp>::epsilon() * __sum) |
| break; |
| } |
| |
| return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x); |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ Ei(x) @f$ |
| * by asymptotic expansion. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
| * \f] |
| * |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_Ei_asymp(const _Tp __x) |
| { |
| _Tp __term = _Tp(1); |
| _Tp __sum = _Tp(1); |
| const unsigned int __max_iter = 1000; |
| for (unsigned int __i = 1; __i < __max_iter; ++__i) |
| { |
| _Tp __prev = __term; |
| __term *= __i / __x; |
| if (__term < std::numeric_limits<_Tp>::epsilon()) |
| break; |
| if (__term >= __prev) |
| break; |
| __sum += __term; |
| } |
| |
| return std::exp(__x) * __sum / __x; |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ Ei(x) @f$. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
| * \f] |
| * |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_Ei(const _Tp __x) |
| { |
| if (__x < _Tp(0)) |
| return -__expint_E1(-__x); |
| else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon())) |
| return __expint_Ei_series(__x); |
| else |
| return __expint_Ei_asymp(__x); |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ E_1(x) @f$. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt |
| * \f] |
| * |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_E1(const _Tp __x) |
| { |
| if (__x < _Tp(0)) |
| return -__expint_Ei(-__x); |
| else if (__x < _Tp(1)) |
| return __expint_E1_series(__x); |
| else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point. |
| return __expint_En_cont_frac(1, __x); |
| else |
| return __expint_E1_asymp(__x); |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ E_n(x) @f$ |
| * for large argument. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| * \f] |
| * |
| * This is something of an extension. |
| * |
| * @param __n The order of the exponential integral function. |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_asymp(const unsigned int __n, const _Tp __x) |
| { |
| _Tp __term = _Tp(1); |
| _Tp __sum = _Tp(1); |
| for (unsigned int __i = 1; __i <= __n; ++__i) |
| { |
| _Tp __prev = __term; |
| __term *= -(__n - __i + 1) / __x; |
| if (std::abs(__term) > std::abs(__prev)) |
| break; |
| __sum += __term; |
| } |
| |
| return std::exp(-__x) * __sum / __x; |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ E_n(x) @f$ |
| * for large order. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| * \f] |
| * |
| * This is something of an extension. |
| * |
| * @param __n The order of the exponential integral function. |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint_large_n(const unsigned int __n, const _Tp __x) |
| { |
| const _Tp __xpn = __x + __n; |
| const _Tp __xpn2 = __xpn * __xpn; |
| _Tp __term = _Tp(1); |
| _Tp __sum = _Tp(1); |
| for (unsigned int __i = 1; __i <= __n; ++__i) |
| { |
| _Tp __prev = __term; |
| __term *= (__n - 2 * (__i - 1) * __x) / __xpn2; |
| if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) |
| break; |
| __sum += __term; |
| } |
| |
| return std::exp(-__x) * __sum / __xpn; |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ E_n(x) @f$. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| * \f] |
| * This is something of an extension. |
| * |
| * @param __n The order of the exponential integral function. |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| _Tp |
| __expint(const unsigned int __n, const _Tp __x) |
| { |
| // Return NaN on NaN input. |
| if (__isnan(__x)) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else if (__n <= 1 && __x == _Tp(0)) |
| return std::numeric_limits<_Tp>::infinity(); |
| else |
| { |
| _Tp __E0 = std::exp(__x) / __x; |
| if (__n == 0) |
| return __E0; |
| |
| _Tp __E1 = __expint_E1(__x); |
| if (__n == 1) |
| return __E1; |
| |
| if (__x == _Tp(0)) |
| return _Tp(1) / static_cast<_Tp>(__n - 1); |
| |
| _Tp __En = __expint_En_recursion(__n, __x); |
| |
| return __En; |
| } |
| } |
| |
| |
| /** |
| * @brief Return the exponential integral @f$ Ei(x) @f$. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
| * \f] |
| * |
| * @param __x The argument of the exponential integral function. |
| * @return The exponential integral. |
| */ |
| template<typename _Tp> |
| inline _Tp |
| __expint(const _Tp __x) |
| { |
| if (__isnan(__x)) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else |
| return __expint_Ei(__x); |
| } |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace std::tr1::__detail |
| } |
| } |
| |
| #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC |