| /* |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) 2000, 2001 Kanoj Sarcar |
| * Copyright (C) 2000, 2001 Ralf Baechle |
| * Copyright (C) 2000, 2001 Silicon Graphics, Inc. |
| * Copyright (C) 2000, 2001, 2003 Broadcom Corporation |
| */ |
| #include <linux/cache.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/threads.h> |
| #include <linux/module.h> |
| #include <linux/time.h> |
| #include <linux/timex.h> |
| #include <linux/sched.h> |
| #include <linux/cpumask.h> |
| #include <linux/cpu.h> |
| #include <linux/err.h> |
| #include <linux/ftrace.h> |
| |
| #include <linux/atomic.h> |
| #include <asm/cpu.h> |
| #include <asm/processor.h> |
| #include <asm/r4k-timer.h> |
| #include <asm/system.h> |
| #include <asm/mmu_context.h> |
| #include <asm/time.h> |
| |
| #ifdef CONFIG_MIPS_MT_SMTC |
| #include <asm/mipsmtregs.h> |
| #endif /* CONFIG_MIPS_MT_SMTC */ |
| |
| volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ |
| |
| int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ |
| EXPORT_SYMBOL(__cpu_number_map); |
| |
| int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ |
| EXPORT_SYMBOL(__cpu_logical_map); |
| |
| /* Number of TCs (or siblings in Intel speak) per CPU core */ |
| int smp_num_siblings = 1; |
| EXPORT_SYMBOL(smp_num_siblings); |
| |
| /* representing the TCs (or siblings in Intel speak) of each logical CPU */ |
| cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; |
| EXPORT_SYMBOL(cpu_sibling_map); |
| |
| /* representing cpus for which sibling maps can be computed */ |
| static cpumask_t cpu_sibling_setup_map; |
| |
| static inline void set_cpu_sibling_map(int cpu) |
| { |
| int i; |
| |
| cpu_set(cpu, cpu_sibling_setup_map); |
| |
| if (smp_num_siblings > 1) { |
| for_each_cpu_mask(i, cpu_sibling_setup_map) { |
| if (cpu_data[cpu].core == cpu_data[i].core) { |
| cpu_set(i, cpu_sibling_map[cpu]); |
| cpu_set(cpu, cpu_sibling_map[i]); |
| } |
| } |
| } else |
| cpu_set(cpu, cpu_sibling_map[cpu]); |
| } |
| |
| struct plat_smp_ops *mp_ops; |
| |
| __cpuinit void register_smp_ops(struct plat_smp_ops *ops) |
| { |
| if (mp_ops) |
| printk(KERN_WARNING "Overriding previously set SMP ops\n"); |
| |
| mp_ops = ops; |
| } |
| |
| /* |
| * First C code run on the secondary CPUs after being started up by |
| * the master. |
| */ |
| asmlinkage __cpuinit void start_secondary(void) |
| { |
| unsigned int cpu; |
| |
| #ifdef CONFIG_MIPS_MT_SMTC |
| /* Only do cpu_probe for first TC of CPU */ |
| if ((read_c0_tcbind() & TCBIND_CURTC) == 0) |
| #endif /* CONFIG_MIPS_MT_SMTC */ |
| cpu_probe(); |
| cpu_report(); |
| per_cpu_trap_init(); |
| mips_clockevent_init(); |
| mp_ops->init_secondary(); |
| |
| /* |
| * XXX parity protection should be folded in here when it's converted |
| * to an option instead of something based on .cputype |
| */ |
| |
| calibrate_delay(); |
| preempt_disable(); |
| cpu = smp_processor_id(); |
| cpu_data[cpu].udelay_val = loops_per_jiffy; |
| |
| notify_cpu_starting(cpu); |
| |
| mp_ops->smp_finish(); |
| set_cpu_sibling_map(cpu); |
| |
| cpu_set(cpu, cpu_callin_map); |
| |
| synchronise_count_slave(); |
| |
| cpu_idle(); |
| } |
| |
| /* |
| * Call into both interrupt handlers, as we share the IPI for them |
| */ |
| void __irq_entry smp_call_function_interrupt(void) |
| { |
| irq_enter(); |
| generic_smp_call_function_single_interrupt(); |
| generic_smp_call_function_interrupt(); |
| irq_exit(); |
| } |
| |
| static void stop_this_cpu(void *dummy) |
| { |
| /* |
| * Remove this CPU: |
| */ |
| cpu_clear(smp_processor_id(), cpu_online_map); |
| for (;;) { |
| if (cpu_wait) |
| (*cpu_wait)(); /* Wait if available. */ |
| } |
| } |
| |
| void smp_send_stop(void) |
| { |
| smp_call_function(stop_this_cpu, NULL, 0); |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| mp_ops->cpus_done(); |
| synchronise_count_master(); |
| } |
| |
| /* called from main before smp_init() */ |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| init_new_context(current, &init_mm); |
| current_thread_info()->cpu = 0; |
| mp_ops->prepare_cpus(max_cpus); |
| set_cpu_sibling_map(0); |
| #ifndef CONFIG_HOTPLUG_CPU |
| init_cpu_present(&cpu_possible_map); |
| #endif |
| } |
| |
| /* preload SMP state for boot cpu */ |
| void __devinit smp_prepare_boot_cpu(void) |
| { |
| set_cpu_possible(0, true); |
| set_cpu_online(0, true); |
| cpu_set(0, cpu_callin_map); |
| } |
| |
| /* |
| * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu |
| * and keep control until "cpu_online(cpu)" is set. Note: cpu is |
| * physical, not logical. |
| */ |
| static struct task_struct *cpu_idle_thread[NR_CPUS]; |
| |
| struct create_idle { |
| struct work_struct work; |
| struct task_struct *idle; |
| struct completion done; |
| int cpu; |
| }; |
| |
| static void __cpuinit do_fork_idle(struct work_struct *work) |
| { |
| struct create_idle *c_idle = |
| container_of(work, struct create_idle, work); |
| |
| c_idle->idle = fork_idle(c_idle->cpu); |
| complete(&c_idle->done); |
| } |
| |
| int __cpuinit __cpu_up(unsigned int cpu) |
| { |
| struct task_struct *idle; |
| |
| /* |
| * Processor goes to start_secondary(), sets online flag |
| * The following code is purely to make sure |
| * Linux can schedule processes on this slave. |
| */ |
| if (!cpu_idle_thread[cpu]) { |
| /* |
| * Schedule work item to avoid forking user task |
| * Ported from arch/x86/kernel/smpboot.c |
| */ |
| struct create_idle c_idle = { |
| .cpu = cpu, |
| .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done), |
| }; |
| |
| INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle); |
| schedule_work(&c_idle.work); |
| wait_for_completion(&c_idle.done); |
| idle = cpu_idle_thread[cpu] = c_idle.idle; |
| |
| if (IS_ERR(idle)) |
| panic(KERN_ERR "Fork failed for CPU %d", cpu); |
| } else { |
| idle = cpu_idle_thread[cpu]; |
| init_idle(idle, cpu); |
| } |
| |
| mp_ops->boot_secondary(cpu, idle); |
| |
| /* |
| * Trust is futile. We should really have timeouts ... |
| */ |
| while (!cpu_isset(cpu, cpu_callin_map)) |
| udelay(100); |
| |
| cpu_set(cpu, cpu_online_map); |
| |
| return 0; |
| } |
| |
| /* Not really SMP stuff ... */ |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return 0; |
| } |
| |
| static void flush_tlb_all_ipi(void *info) |
| { |
| local_flush_tlb_all(); |
| } |
| |
| void flush_tlb_all(void) |
| { |
| on_each_cpu(flush_tlb_all_ipi, NULL, 1); |
| } |
| |
| static void flush_tlb_mm_ipi(void *mm) |
| { |
| local_flush_tlb_mm((struct mm_struct *)mm); |
| } |
| |
| /* |
| * Special Variant of smp_call_function for use by TLB functions: |
| * |
| * o No return value |
| * o collapses to normal function call on UP kernels |
| * o collapses to normal function call on systems with a single shared |
| * primary cache. |
| * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. |
| */ |
| static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) |
| { |
| #ifndef CONFIG_MIPS_MT_SMTC |
| smp_call_function(func, info, 1); |
| #endif |
| } |
| |
| static inline void smp_on_each_tlb(void (*func) (void *info), void *info) |
| { |
| preempt_disable(); |
| |
| smp_on_other_tlbs(func, info); |
| func(info); |
| |
| preempt_enable(); |
| } |
| |
| /* |
| * The following tlb flush calls are invoked when old translations are |
| * being torn down, or pte attributes are changing. For single threaded |
| * address spaces, a new context is obtained on the current cpu, and tlb |
| * context on other cpus are invalidated to force a new context allocation |
| * at switch_mm time, should the mm ever be used on other cpus. For |
| * multithreaded address spaces, intercpu interrupts have to be sent. |
| * Another case where intercpu interrupts are required is when the target |
| * mm might be active on another cpu (eg debuggers doing the flushes on |
| * behalf of debugees, kswapd stealing pages from another process etc). |
| * Kanoj 07/00. |
| */ |
| |
| void flush_tlb_mm(struct mm_struct *mm) |
| { |
| preempt_disable(); |
| |
| if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { |
| smp_on_other_tlbs(flush_tlb_mm_ipi, mm); |
| } else { |
| cpumask_t mask = cpu_online_map; |
| unsigned int cpu; |
| |
| cpu_clear(smp_processor_id(), mask); |
| for_each_cpu_mask(cpu, mask) |
| if (cpu_context(cpu, mm)) |
| cpu_context(cpu, mm) = 0; |
| } |
| local_flush_tlb_mm(mm); |
| |
| preempt_enable(); |
| } |
| |
| struct flush_tlb_data { |
| struct vm_area_struct *vma; |
| unsigned long addr1; |
| unsigned long addr2; |
| }; |
| |
| static void flush_tlb_range_ipi(void *info) |
| { |
| struct flush_tlb_data *fd = info; |
| |
| local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); |
| } |
| |
| void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| preempt_disable(); |
| if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { |
| struct flush_tlb_data fd = { |
| .vma = vma, |
| .addr1 = start, |
| .addr2 = end, |
| }; |
| |
| smp_on_other_tlbs(flush_tlb_range_ipi, &fd); |
| } else { |
| cpumask_t mask = cpu_online_map; |
| unsigned int cpu; |
| |
| cpu_clear(smp_processor_id(), mask); |
| for_each_cpu_mask(cpu, mask) |
| if (cpu_context(cpu, mm)) |
| cpu_context(cpu, mm) = 0; |
| } |
| local_flush_tlb_range(vma, start, end); |
| preempt_enable(); |
| } |
| |
| static void flush_tlb_kernel_range_ipi(void *info) |
| { |
| struct flush_tlb_data *fd = info; |
| |
| local_flush_tlb_kernel_range(fd->addr1, fd->addr2); |
| } |
| |
| void flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| { |
| struct flush_tlb_data fd = { |
| .addr1 = start, |
| .addr2 = end, |
| }; |
| |
| on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); |
| } |
| |
| static void flush_tlb_page_ipi(void *info) |
| { |
| struct flush_tlb_data *fd = info; |
| |
| local_flush_tlb_page(fd->vma, fd->addr1); |
| } |
| |
| void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| preempt_disable(); |
| if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { |
| struct flush_tlb_data fd = { |
| .vma = vma, |
| .addr1 = page, |
| }; |
| |
| smp_on_other_tlbs(flush_tlb_page_ipi, &fd); |
| } else { |
| cpumask_t mask = cpu_online_map; |
| unsigned int cpu; |
| |
| cpu_clear(smp_processor_id(), mask); |
| for_each_cpu_mask(cpu, mask) |
| if (cpu_context(cpu, vma->vm_mm)) |
| cpu_context(cpu, vma->vm_mm) = 0; |
| } |
| local_flush_tlb_page(vma, page); |
| preempt_enable(); |
| } |
| |
| static void flush_tlb_one_ipi(void *info) |
| { |
| unsigned long vaddr = (unsigned long) info; |
| |
| local_flush_tlb_one(vaddr); |
| } |
| |
| void flush_tlb_one(unsigned long vaddr) |
| { |
| smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); |
| } |
| |
| EXPORT_SYMBOL(flush_tlb_page); |
| EXPORT_SYMBOL(flush_tlb_one); |
| |
| #if defined(CONFIG_KEXEC) |
| void (*dump_ipi_function_ptr)(void *) = NULL; |
| void dump_send_ipi(void (*dump_ipi_callback)(void *)) |
| { |
| int i; |
| int cpu = smp_processor_id(); |
| |
| dump_ipi_function_ptr = dump_ipi_callback; |
| smp_mb(); |
| for_each_online_cpu(i) |
| if (i != cpu) |
| core_send_ipi(i, SMP_DUMP); |
| |
| } |
| EXPORT_SYMBOL(dump_send_ipi); |
| #endif |
| |