| // vim:tw=110:ts=4: |
| /************************************************************************************************************ |
| * |
| * FILE : HCF.C |
| * |
| * DATE : $Date: 2004/08/05 11:47:10 $ $Revision: 1.10 $ |
| * Original: 2004/06/02 10:22:22 Revision: 1.85 Tag: hcf7_t20040602_01 |
| * Original: 2004/04/15 09:24:41 Revision: 1.63 Tag: hcf7_t7_20040415_01 |
| * Original: 2004/04/13 14:22:44 Revision: 1.62 Tag: t7_20040413_01 |
| * Original: 2004/04/01 15:32:55 Revision: 1.59 Tag: t7_20040401_01 |
| * Original: 2004/03/10 15:39:27 Revision: 1.55 Tag: t20040310_01 |
| * Original: 2004/03/04 11:03:37 Revision: 1.53 Tag: t20040304_01 |
| * Original: 2004/03/02 14:51:21 Revision: 1.50 Tag: t20040302_03 |
| * Original: 2004/02/24 13:00:27 Revision: 1.43 Tag: t20040224_01 |
| * Original: 2004/02/19 10:57:25 Revision: 1.39 Tag: t20040219_01 |
| * |
| * AUTHOR : Nico Valster |
| * |
| * SPECIFICATION: ........ |
| * |
| * DESCRIPTION : HCF Routines for Hermes-II (callable via the Wireless Connection I/F or WCI) |
| * Local Support Routines for above procedures |
| * |
| * Customizable via HCFCFG.H, which is included by HCF.H |
| * |
| ************************************************************************************************************* |
| * |
| * |
| * SOFTWARE LICENSE |
| * |
| * This software is provided subject to the following terms and conditions, |
| * which you should read carefully before using the software. Using this |
| * software indicates your acceptance of these terms and conditions. If you do |
| * not agree with these terms and conditions, do not use the software. |
| * |
| * COPYRIGHT © 1994 - 1995 by AT&T. All Rights Reserved |
| * COPYRIGHT © 1996 - 2000 by Lucent Technologies. All Rights Reserved |
| * COPYRIGHT © 2001 - 2004 by Agere Systems Inc. All Rights Reserved |
| * All rights reserved. |
| * |
| * Redistribution and use in source or binary forms, with or without |
| * modifications, are permitted provided that the following conditions are met: |
| * |
| * . Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following Disclaimer as comments in the code as |
| * well as in the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * . Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following Disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * . Neither the name of Agere Systems Inc. nor the names of the contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * Disclaimer |
| * |
| * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, |
| * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY |
| * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN |
| * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| * DAMAGE. |
| * |
| * |
| ************************************************************************************************************/ |
| |
| |
| /************************************************************************************************************ |
| ** |
| ** Implementation Notes |
| ** |
| * - a leading marker of //! is used. The purpose of such a sequence is to help to understand the flow |
| * An example is: //!rc = HCF_SUCCESS; |
| * if this is superfluous because rc is already guaranteed to be 0 but it shows to the (maintenance) |
| * programmer it is an intentional omission at the place where someone could consider it most appropriate at |
| * first glance |
| * - using near pointers in a model where ss!=ds is an invitation for disaster, so be aware of how you specify |
| * your model and how you define variables which are used at interrupt time |
| * - remember that sign extension on 32 bit platforms may cause problems unless code is carefully constructed, |
| * e.g. use "(hcf_16)~foo" rather than "~foo" |
| * |
| ************************************************************************************************************/ |
| |
| #include "hcf.h" // HCF and MSF common include file |
| #include "hcfdef.h" // HCF specific include file |
| #include "mmd.h" // MoreModularDriver common include file |
| |
| #if ! defined offsetof |
| #define offsetof(s,m) ((unsigned int)&(((s *)0)->m)) |
| #endif // offsetof |
| |
| |
| /***********************************************************************************************************/ |
| /*************************************** PROTOTYPES ******************************************************/ |
| /***********************************************************************************************************/ |
| HCF_STATIC int cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 ); |
| HCF_STATIC int init( IFBP ifbp ); |
| HCF_STATIC int put_info( IFBP ifbp, LTVP ltvp ); |
| #if (HCF_EXT) & HCF_EXT_MB |
| HCF_STATIC int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp ); |
| #endif // HCF_EXT_MB |
| #if (HCF_TYPE) & HCF_TYPE_WPA |
| HCF_STATIC void calc_mic( hcf_32* p, hcf_32 M ); |
| void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len ); |
| void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len ); |
| HCF_STATIC int check_mic( IFBP ifbp ); |
| #endif // HCF_TYPE_WPA |
| |
| HCF_STATIC void calibrate( IFBP ifbp ); |
| HCF_STATIC int cmd_cmpl( IFBP ifbp ); |
| HCF_STATIC hcf_16 get_fid( IFBP ifbp ); |
| HCF_STATIC void isr_info( IFBP ifbp ); |
| #if HCF_DMA |
| HCF_STATIC DESC_STRCT* get_frame_lst(IFBP ifbp, int tx_rx_flag); |
| #endif // HCF_DMA |
| HCF_STATIC void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ); //char*, byte count (usually even) |
| #if HCF_DMA |
| HCF_STATIC void put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag ); |
| #endif // HCF_DMA |
| HCF_STATIC void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ); |
| HCF_STATIC void put_frag_finalize( IFBP ifbp ); |
| HCF_STATIC int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type ); |
| #if (HCF_ASSERT) & HCF_ASSERT_PRINTF |
| static int fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp); |
| #endif // HCF_ASSERT_PRINTF |
| |
| HCF_STATIC int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp ); |
| #if (HCF_ENCAP) & HCF_ENC |
| HCF_STATIC hcf_8 hcf_encap( wci_bufp type ); |
| #endif // HCF_ENCAP |
| HCF_STATIC hcf_8 null_addr[4] = { 0, 0, 0, 0 }; |
| #if ! defined IN_PORT_WORD //replace I/O Macros with logging facility |
| extern FILE *log_file; |
| |
| #define IN_PORT_WORD(port) in_port_word( (hcf_io)(port) ) |
| |
| static hcf_16 in_port_word( hcf_io port ) { |
| hcf_16 i = (hcf_16)_inpw( port ); |
| if ( log_file ) { |
| fprintf( log_file, "\nR %2.2x %4.4x", (port)&0xFF, i); |
| } |
| return i; |
| } // in_port_word |
| |
| #define OUT_PORT_WORD(port, value) out_port_word( (hcf_io)(port), (hcf_16)(value) ) |
| |
| static void out_port_word( hcf_io port, hcf_16 value ) { |
| _outpw( port, value ); |
| if ( log_file ) { |
| fprintf( log_file, "\nW %2.02x %4.04x", (port)&0xFF, value ); |
| } |
| } |
| |
| void IN_PORT_STRING_32( hcf_io prt, hcf_32 FAR * dst, int n) { |
| int i = 0; |
| hcf_16 FAR * p; |
| if ( log_file ) { |
| fprintf( log_file, "\nread string_32 length %04x (%04d) at port %02.2x to addr %lp", |
| (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst); |
| } |
| while ( n-- ) { |
| p = (hcf_16 FAR *)dst; |
| *p++ = (hcf_16)_inpw( prt ); |
| *p = (hcf_16)_inpw( prt ); |
| if ( log_file ) { |
| fprintf( log_file, "%s%08lx ", i++ % 0x08 ? " " : "\n", *dst); |
| } |
| dst++; |
| } |
| } // IN_PORT_STRING_32 |
| |
| void IN_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * dst, int n) { //also handles byte alignment problems |
| hcf_16 FAR * p = (hcf_16 FAR *)dst; //this needs more elaborate code in non-x86 platforms |
| int i = 0; |
| if ( log_file ) { |
| fprintf( log_file, "\nread string_16 length %04x (%04d) at port %02.2x to addr %lp", |
| (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst ); |
| } |
| while ( n-- ) { |
| *p =(hcf_16)_inpw( prt); |
| if ( log_file ) { |
| if ( i++ % 0x10 ) { |
| fprintf( log_file, "%04x ", *p); |
| } else { |
| fprintf( log_file, "\n%04x ", *p); |
| } |
| } |
| p++; |
| } |
| } // IN_PORT_STRING_8_16 |
| |
| void OUT_PORT_STRING_32( hcf_io prt, hcf_32 FAR * src, int n) { |
| int i = 0; |
| hcf_16 FAR * p; |
| if ( log_file ) { |
| fprintf( log_file, "\nwrite string_32 length %04x (%04d) at port %02.2x", |
| (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF); |
| } |
| while ( n-- ) { |
| p = (hcf_16 FAR *)src; |
| _outpw( prt, *p++ ); |
| _outpw( prt, *p ); |
| if ( log_file ) { |
| fprintf( log_file, "%s%08lx ", i++ % 0x08 ? " " : "\n", *src); |
| } |
| src++; |
| } |
| } // OUT_PORT_STRING_32 |
| |
| void OUT_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * src, int n) { //also handles byte alignment problems |
| hcf_16 FAR * p = (hcf_16 FAR *)src; //this needs more elaborate code in non-x86 platforms |
| int i = 0; |
| if ( log_file ) { |
| fprintf( log_file, "\nwrite string_16 length %04x (%04d) at port %04x", n, n, (hcf_16)prt); |
| } |
| while ( n-- ) { |
| (void)_outpw( prt, *p); |
| if ( log_file ) { |
| if ( i++ % 0x10 ) { |
| fprintf( log_file, "%04x ", *p); |
| } else { |
| fprintf( log_file, "\n%04x ", *p); |
| } |
| } |
| p++; |
| } |
| } // OUT_PORT_STRING_8_16 |
| |
| #endif // IN_PORT_WORD |
| |
| /************************************************************************************************************ |
| ******************************* D A T A D E F I N I T I O N S ******************************************** |
| ************************************************************************************************************/ |
| |
| #if HCF_ASSERT |
| IFBP BASED assert_ifbp = NULL; //to make asserts easily work under MMD and DHF |
| #endif // HCF_ASSERT |
| |
| #if HCF_ENCAP |
| /* SNAP header to be inserted in Ethernet-II frames */ |
| HCF_STATIC hcf_8 BASED snap_header[] = { 0xAA, 0xAA, 0x03, 0x00, 0x00, //5 bytes signature + |
| 0 }; //1 byte protocol identifier |
| #endif // HCF_ENCAP |
| |
| #if (HCF_TYPE) & HCF_TYPE_WPA |
| HCF_STATIC hcf_8 BASED mic_pad[8] = { 0x5A, 0, 0, 0, 0, 0, 0, 0 }; //MIC padding of message |
| #endif // HCF_TYPE_WPA |
| |
| #if defined MSF_COMPONENT_ID |
| CFG_IDENTITY_STRCT BASED cfg_drv_identity = { |
| sizeof(cfg_drv_identity)/sizeof(hcf_16) - 1, //length of RID |
| CFG_DRV_IDENTITY, // (0x0826) |
| MSF_COMPONENT_ID, |
| MSF_COMPONENT_VAR, |
| MSF_COMPONENT_MAJOR_VER, |
| MSF_COMPONENT_MINOR_VER |
| } ; |
| |
| CFG_RANGES_STRCT BASED cfg_drv_sup_range = { |
| sizeof(cfg_drv_sup_range)/sizeof(hcf_16) - 1, //length of RID |
| CFG_DRV_SUP_RANGE, // (0x0827) |
| |
| COMP_ROLE_SUPL, |
| COMP_ID_DUI, |
| {{ DUI_COMPAT_VAR, |
| DUI_COMPAT_BOT, |
| DUI_COMPAT_TOP |
| }} |
| } ; |
| |
| struct CFG_RANGE3_STRCT BASED cfg_drv_act_ranges_pri = { |
| sizeof(cfg_drv_act_ranges_pri)/sizeof(hcf_16) - 1, //length of RID |
| CFG_DRV_ACT_RANGES_PRI, // (0x0828) |
| |
| COMP_ROLE_ACT, |
| COMP_ID_PRI, |
| { |
| { 0, 0, 0 }, // HCF_PRI_VAR_1 not supported by HCF 7 |
| { 0, 0, 0 }, // HCF_PRI_VAR_2 not supported by HCF 7 |
| { 3, //var_rec[2] - Variant number |
| CFG_DRV_ACT_RANGES_PRI_3_BOTTOM, // - Bottom Compatibility |
| CFG_DRV_ACT_RANGES_PRI_3_TOP // - Top Compatibility |
| } |
| } |
| } ; |
| |
| |
| struct CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_sta = { |
| sizeof(cfg_drv_act_ranges_sta)/sizeof(hcf_16) - 1, //length of RID |
| CFG_DRV_ACT_RANGES_STA, // (0x0829) |
| |
| COMP_ROLE_ACT, |
| COMP_ID_STA, |
| { |
| #if defined HCF_STA_VAR_1 |
| { 1, //var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_STA_1_BOTTOM, // - Bottom Compatibility |
| CFG_DRV_ACT_RANGES_STA_1_TOP // - Top Compatibility |
| }, |
| #else |
| { 0, 0, 0 }, |
| #endif // HCF_STA_VAR_1 |
| #if defined HCF_STA_VAR_2 |
| { 2, //var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_STA_2_BOTTOM, // - Bottom Compatibility |
| CFG_DRV_ACT_RANGES_STA_2_TOP // - Top Compatibility |
| }, |
| #else |
| { 0, 0, 0 }, |
| #endif // HCF_STA_VAR_2 |
| // For Native_USB (Not used!) |
| #if defined HCF_STA_VAR_3 |
| { 3, //var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_STA_3_BOTTOM, // - Bottom Compatibility |
| CFG_DRV_ACT_RANGES_STA_3_TOP // - Top Compatibility |
| }, |
| #else |
| { 0, 0, 0 }, |
| #endif // HCF_STA_VAR_3 |
| // Warp |
| #if defined HCF_STA_VAR_4 |
| { 4, //var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_STA_4_BOTTOM, // - Bottom Compatibility |
| CFG_DRV_ACT_RANGES_STA_4_TOP // - Top Compatibility |
| } |
| #else |
| { 0, 0, 0 } |
| #endif // HCF_STA_VAR_4 |
| } |
| } ; |
| |
| |
| struct CFG_RANGE6_STRCT BASED cfg_drv_act_ranges_hsi = { |
| sizeof(cfg_drv_act_ranges_hsi)/sizeof(hcf_16) - 1, //length of RID |
| CFG_DRV_ACT_RANGES_HSI, // (0x082A) |
| COMP_ROLE_ACT, |
| COMP_ID_HSI, |
| { |
| #if defined HCF_HSI_VAR_0 // Controlled deployment |
| { 0, // var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_HSI_0_BOTTOM, // - Bottom Compatibility |
| CFG_DRV_ACT_RANGES_HSI_0_TOP // - Top Compatibility |
| }, |
| #else |
| { 0, 0, 0 }, |
| #endif // HCF_HSI_VAR_0 |
| { 0, 0, 0 }, // HCF_HSI_VAR_1 not supported by HCF 7 |
| { 0, 0, 0 }, // HCF_HSI_VAR_2 not supported by HCF 7 |
| { 0, 0, 0 }, // HCF_HSI_VAR_3 not supported by HCF 7 |
| #if defined HCF_HSI_VAR_4 // Hermes-II all types |
| { 4, // var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_HSI_4_BOTTOM, // - Bottom Compatibility |
| CFG_DRV_ACT_RANGES_HSI_4_TOP // - Top Compatibility |
| }, |
| #else |
| { 0, 0, 0 }, |
| #endif // HCF_HSI_VAR_4 |
| #if defined HCF_HSI_VAR_5 // WARP Hermes-2.5 |
| { 5, // var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_HSI_5_BOTTOM, // - Bottom Compatibility |
| CFG_DRV_ACT_RANGES_HSI_5_TOP // - Top Compatibility |
| } |
| #else |
| { 0, 0, 0 } |
| #endif // HCF_HSI_VAR_5 |
| } |
| } ; |
| |
| |
| CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_apf = { |
| sizeof(cfg_drv_act_ranges_apf)/sizeof(hcf_16) - 1, //length of RID |
| CFG_DRV_ACT_RANGES_APF, // (0x082B) |
| |
| COMP_ROLE_ACT, |
| COMP_ID_APF, |
| { |
| #if defined HCF_APF_VAR_1 //(Fake) Hermes-I |
| { 1, //var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_APF_1_BOTTOM, // - Bottom Compatibility |
| CFG_DRV_ACT_RANGES_APF_1_TOP // - Top Compatibility |
| }, |
| #else |
| { 0, 0, 0 }, |
| #endif // HCF_APF_VAR_1 |
| #if defined HCF_APF_VAR_2 //Hermes-II |
| { 2, // var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_APF_2_BOTTOM, // - Bottom Compatibility |
| CFG_DRV_ACT_RANGES_APF_2_TOP // - Top Compatibility |
| }, |
| #else |
| { 0, 0, 0 }, |
| #endif // HCF_APF_VAR_2 |
| #if defined HCF_APF_VAR_3 // Native_USB |
| { 3, // var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_APF_3_BOTTOM, // - Bottom Compatibility !!!!!see note below!!!!!!! |
| CFG_DRV_ACT_RANGES_APF_3_TOP // - Top Compatibility |
| }, |
| #else |
| { 0, 0, 0 }, |
| #endif // HCF_APF_VAR_3 |
| #if defined HCF_APF_VAR_4 // WARP Hermes 2.5 |
| { 4, // var_rec[1] - Variant number |
| CFG_DRV_ACT_RANGES_APF_4_BOTTOM, // - Bottom Compatibility !!!!!see note below!!!!!!! |
| CFG_DRV_ACT_RANGES_APF_4_TOP // - Top Compatibility |
| } |
| #else |
| { 0, 0, 0 } |
| #endif // HCF_APF_VAR_4 |
| } |
| } ; |
| #define HCF_VERSION TEXT( "HCF$Revision: 1.10 $" ) |
| |
| static struct /*CFG_HCF_OPT_STRCT*/ { |
| hcf_16 len; //length of cfg_hcf_opt struct |
| hcf_16 typ; //type 0x082C |
| hcf_16 v0; //offset HCF_VERSION |
| hcf_16 v1; // MSF_COMPONENT_ID |
| hcf_16 v2; // HCF_ALIGN |
| hcf_16 v3; // HCF_ASSERT |
| hcf_16 v4; // HCF_BIG_ENDIAN |
| hcf_16 v5; // /* HCF_DLV | HCF_DLNV */ |
| hcf_16 v6; // HCF_DMA |
| hcf_16 v7; // HCF_ENCAP |
| hcf_16 v8; // HCF_EXT |
| hcf_16 v9; // HCF_INT_ON |
| hcf_16 v10; // HCF_IO |
| hcf_16 v11; // HCF_LEGACY |
| hcf_16 v12; // HCF_MAX_LTV |
| hcf_16 v13; // HCF_PROT_TIME |
| hcf_16 v14; // HCF_SLEEP |
| hcf_16 v15; // HCF_TALLIES |
| hcf_16 v16; // HCF_TYPE |
| hcf_16 v17; // HCF_NIC_TAL_CNT |
| hcf_16 v18; // HCF_HCF_TAL_CNT |
| hcf_16 v19; // offset tallies |
| TCHAR val[sizeof(HCF_VERSION)]; |
| } BASED cfg_hcf_opt = { |
| sizeof(cfg_hcf_opt)/sizeof(hcf_16) -1, |
| CFG_HCF_OPT, // (0x082C) |
| ( sizeof(cfg_hcf_opt) - sizeof(HCF_VERSION) - 4 )/sizeof(hcf_16), |
| #if defined MSF_COMPONENT_ID |
| MSF_COMPONENT_ID, |
| #else |
| 0, |
| #endif // MSF_COMPONENT_ID |
| HCF_ALIGN, |
| HCF_ASSERT, |
| HCF_BIG_ENDIAN, |
| 0, // /* HCF_DLV | HCF_DLNV*/, |
| HCF_DMA, |
| HCF_ENCAP, |
| HCF_EXT, |
| HCF_INT_ON, |
| HCF_IO, |
| HCF_LEGACY, |
| HCF_MAX_LTV, |
| HCF_PROT_TIME, |
| HCF_SLEEP, |
| HCF_TALLIES, |
| HCF_TYPE, |
| #if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF ) |
| HCF_NIC_TAL_CNT, |
| HCF_HCF_TAL_CNT, |
| offsetof(IFB_STRCT, IFB_TallyLen ), |
| #else |
| 0, 0, 0, |
| #endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF |
| HCF_VERSION |
| }; // cfg_hcf_opt |
| #endif // MSF_COMPONENT_ID |
| |
| #if defined HCF_TALLIES_EXTRA |
| replaced by HCF_EXT_TALLIES_FW ; |
| #endif // HCF_TALLIES_EXTRA |
| |
| #if defined MSF_COMPONENT_ID || (HCF_EXT) & HCF_EXT_MB |
| #if (HCF_EXT) & HCF_EXT_MB |
| HCF_STATIC LTV_STRCT BASED cfg_null = { 1, CFG_NULL, {0} }; |
| #endif // HCF_EXT_MB |
| HCF_STATIC hcf_16* BASED xxxx[ ] = { |
| #if (HCF_EXT) & HCF_EXT_MB |
| &cfg_null.len, //CFG_NULL 0x0820 |
| #endif // HCF_EXT_MB |
| #if defined MSF_COMPONENT_ID |
| &cfg_drv_identity.len, //CFG_DRV_IDENTITY 0x0826 |
| &cfg_drv_sup_range.len, //CFG_DRV_SUP_RANGE 0x0827 |
| &cfg_drv_act_ranges_pri.len, //CFG_DRV_ACT_RANGES_PRI 0x0828 |
| &cfg_drv_act_ranges_sta.len, //CFG_DRV_ACT_RANGES_STA 0x0829 |
| &cfg_drv_act_ranges_hsi.len, //CFG_DRV_ACT_RANGES_HSI 0x082A |
| &cfg_drv_act_ranges_apf.len, //CFG_DRV_ACT_RANGES_APF 0x082B |
| &cfg_hcf_opt.len, //CFG_HCF_OPT 0x082C |
| NULL, //IFB_PRIIdentity placeholder 0xFD02 |
| NULL, //IFB_PRISup placeholder 0xFD03 |
| #endif // MSF_COMPONENT_ID |
| NULL //endsentinel |
| }; |
| #define xxxx_PRI_IDENTITY_OFFSET (sizeof(xxxx)/sizeof(xxxx[0]) - 3) |
| |
| #endif // MSF_COMPONENT_ID / HCF_EXT_MB |
| |
| |
| /************************************************************************************************************ |
| ************************** T O P L E V E L H C F R O U T I N E S ************************************** |
| ************************************************************************************************************/ |
| |
| #if (HCF_DL_ONLY) == 0 |
| /************************************************************************************************************ |
| * |
| *.MODULE int hcf_action( IFBP ifbp, hcf_16 action ) |
| *.PURPOSE Changes the run-time Card behavior. |
| * Performs Miscellanuous actions. |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * action number identifying the type of change |
| * - HCF_ACT_CCX_OFF disable CKIP |
| * - HCF_ACT_CCX_ON enable CKIP |
| * - HCF_ACT_INT_FORCE_ON enable interrupt generation by WaveLAN NIC |
| * - HCF_ACT_INT_OFF disable interrupt generation by WaveLAN NIC |
| * - HCF_ACT_INT_ON compensate 1 HCF_ACT_INT_OFF, enable interrupt generation if balance reached |
| * - HCF_ACT_PRS_SCAN Hermes Probe Respons Scan (F102) command |
| * - HCF_ACT_RX_ACK acknowledge non-DMA receiver to Hermes |
| * - HCF_ACT_SCAN Hermes Inquire Scan (F101) command (non-WARP only) |
| * - HCF_ACT_SLEEP DDS Sleep request |
| * - HCF_ACT_TALLIES Hermes Inquire Tallies (F100) command |
| * |
| *.RETURNS |
| * HCF_SUCCESS all (including invalid) |
| * HCF_INT_PENDING HCF_ACT_INT_OFF, interrupt pending |
| * HCF_ERR_NO_NIC HCF_ACT_INT_OFF, NIC presence check fails |
| * |
| *.CONDITIONS |
| * Except for hcf_action with HCF_ACT_INT_FORCE_ON or HCF_ACT_INT_OFF as parameter or hcf_connect with an I/O |
| * address (i.e. not HCF_DISCONNECT), all hcf-function calls MUST be preceeded by a call of hcf_action with |
| * HCF_ACT_INT_OFF as parameter. |
| * Note that hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF ) |
| * was called. |
| * |
| *.DESCRIPTION |
| * hcf_action supports the following mode changing action-code pairs that are antonyms |
| * - HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON |
| * - HCF_ACT_INT_[FORCE_]ON / HCF_ACT_INT_OFF |
| * |
| * Additionally hcf_action can start the following actions in the NIC: |
| * - HCF_ACT_PRS_SCAN |
| * - HCF_ACT_RX_ACK |
| * - HCF_ACT_SCAN |
| * - HCF_ACT_SLEEP |
| * - HCF_ACT_TALLIES |
| * |
| * o HCF_ACT_INT_OFF: Sets NIC Interrupts mode Disabled. |
| * This command, and the associated [Force] Enable NIC interrupts command, are only available if the HCF_INT_ON |
| * compile time option is not set at 0x0000. |
| * |
| * o HCF_ACT_INT_ON: Sets NIC Interrupts mode Enabled. |
| * Enable NIC Interrupts, depending on the number of preceding Disable NIC Interrupt calls. |
| * |
| * o HCF_ACT_INT_FORCE_ON: Force NIC Interrupts mode Enabled. |
| * Sets NIC Interrupts mode Enabled, regardless off the number of preceding Disable NIC Interrupt calls. |
| * |
| * The disabling and enabling of interrupts are antonyms. |
| * These actions must be balanced. |
| * For each "disable interrupts" there must be a matching "enable interrupts". |
| * The disable interrupts may be executed multiple times in a row without intervening enable interrupts, in |
| * other words, the disable interrupts may be nested. |
| * The interrupt generation mechanism is disabled at the first call with HCF_ACT_INT_OFF. |
| * The interrupt generation mechanism is re-enabled when the number of calls with HCF_ACT_INT_ON matches the |
| * number of calls with INT_OFF. |
| * |
| * It is not allowed to have more Enable NIC Interrupts calls than Disable NIC Interrupts calls. |
| * The interrupt generation mechanism is initially (i.e. after hcf_connect) disabled. |
| * An MSF based on a interrupt strategy must call hcf_action with INT_ON in its initialization logic. |
| * |
| *! The INT_OFF/INT_ON housekeeping is initialized at 0x0000 by hcf_connect, causing the interrupt generation |
| * mechanism to be disabled at first. This suits MSF implementation based on a polling strategy. |
| * |
| * o HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON |
| *!! This can use some more explanation;? |
| * Disables and Enables support in the HCF runtime code for the CCX feature. Each time one of these action |
| * codes is used, the effects of the preceding use cease. |
| * |
| * o HCF_ACT_SLEEP: Initiates the Disconnected DeepSleep process |
| * This command is only available if the HCF_DDS compile time option is set. It triggers the F/W to start the |
| * sleep handshaking. Regardless whether the Host initiates a Disconnected DeepSleep (DDS) or the F/W initiates |
| * a Connected DeepSleep (CDS), the Host-F/W sleep handshaking is completed when the NIC Interrupts mode is |
| * enabled (by means of the balancing HCF_ACT_INT_ON), i.e. at that moment the F/W really goes into sleep mode. |
| * The F/W is wokenup by the HCF when the NIC Interrupts mode are disabled, i.e. at the first HCF_ACT_INT_OFF |
| * after going into sleep. |
| * |
| * The following Miscellanuous actions are defined: |
| * |
| * o HCF_ACT_RX_ACK: Receiver Acknowledgement (non-DMA, non-USB mode only) |
| * Acking the receiver, frees the NIC memory used to hold the Rx frame and allows the F/W to |
| * report the existence of the next Rx frame. |
| * If the MSF does not need access (any longer) to the current frame, e.g. because it is rejected based on the |
| * look ahead or copied to another buffer, the receiver may be acked. Acking earlier is assumed to have the |
| * potential of improving the performance. |
| * If the MSF does not explitly ack te receiver, the acking is done implicitly if: |
| * - the received frame fits in the look ahead buffer, by the hcf_service_nic call that reported the Rx frame |
| * - if not in the above step, by hcf_rcv_msg (assuming hcf_rcv_msg is called) |
| * - if neither of the above implicit acks nor an explicit ack by the MSF, by the first hcf_service_nic after |
| * the hcf_service_nic that reported the Rx frame. |
| * Note: If an Rx frame is already acked, an explicit ACK by the MSF acts as a NoOperation. |
| * |
| * o HCF_ACT_TALLIES: Inquire Tallies command |
| * This command is only operational if the F/W is enabled. |
| * The Inquire Tallies command requests the F/W to provide its current set of tallies. |
| * See also hcf_get_info with CFG_TALLIES as parameter. |
| * |
| * o HCF_ACT_PRS_SCAN: Inquire Probe Respons Scan command |
| * This command is only operational if the F/W is enabled. |
| * The Probe Respons Scan command starts a scan sequence. |
| * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT). |
| * |
| * o HCF_ACT_SCAN: Inquire Scan command |
| * This command is only supported for HII F/W (i.e. pre-WARP) and it is operational if the F/W is enabled. |
| * The Inquire Scan command starts a scan sequence. |
| * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT). |
| * |
| * Assert fails if |
| * - ifbp has a recognizable out-of-range value. |
| * - NIC interrupts are not disabled while required by parameter action. |
| * - an invalid code is specified in parameter action. |
| * - HCF_ACT_INT_ON commands outnumber the HCF_ACT_INT_OFF commands. |
| * - reentrancy, may be caused by calling hcf_functions without adequate protection against NIC interrupts or |
| * multi-threading |
| * |
| * - Since the HCF does not maintain status information relative to the F/W enabled state, it is not asserted |
| * whether HCF_ACT_SCAN, HCF_ACT_PRS_SCAN or HCF_ACT_TALLIES are only used while F/W is enabled. |
| * |
| *.DIAGRAM |
| * 0: The assert embedded in HCFLOGENTRY checks against re-entrancy. Re-entrancy could be caused by a MSF logic |
| * at task-level calling hcf_functions without shielding with HCF_ACT_ON/_OFF. However the HCF_ACT_INT_OFF |
| * action itself can per definition not be protected this way. Based on code inspection, it can be concluded, |
| * that there is no re-entrancy PROBLEM in this particular flow. It does not seem worth the trouble to |
| * explicitly check for this condition (although there was a report of an MSF which ran into this assert. |
| * 2:IFB_IntOffCnt is used to balance the INT_OFF and INT_ON calls. Disabling of the interrupts is achieved by |
| * writing a zero to the Hermes IntEn register. In a shared interrupt environment (e.g. the mini-PCI NDIS |
| * driver) it is considered more correct to return the status HCF_INT_PENDING if and only if, the current |
| * invocation of hcf_service_nic is (apparently) called in the ISR when the ISR was activated as result of a |
| * change in HREG_EV_STAT matching a bit in HREG_INT_EN, i.e. not if invoked as result of another device |
| * generating an interrupt on the shared interrupt line. |
| * Note 1: it has been observed that under certain adverse conditions on certain platforms the writing of |
| * HREG_INT_EN can apparently fail, therefor it is paramount that HREG_INT_EN is written again with 0 for |
| * each and every call to HCF_ACT_INT_OFF. |
| * Note 2: it has been observed that under certain H/W & S/W architectures this logic is called when there is |
| * no NIC at all. To cater for this, the value of HREG_INT_EN is validated. If the unused bit 0x0100 is set, |
| * it is assumed there is no NIC. |
| * Note 3: During the download process, some versions of the F/W reset HREG_SW_0, hence checking this |
| * register for HCF_MAGIC (the classical NIC presence test) when HCF_ACT_INT_OFF is called due to another |
| * card interrupting via a shared IRQ during a download, fails. |
| *4: The construction "if ( ifbp->IFB_IntOffCnt-- == 0 )" is optimal (in the sense of shortest/quickest |
| * path in error free flows) but NOT fail safe in case of too many INT_ON invocations compared to INT_OFF). |
| * Enabling of the interrupts is achieved by writing the Hermes IntEn register. |
| * - If the HCF is in Defunct mode, the interrupts stay disabled. |
| * - Under "normal" conditions, the HCF is only interested in Info Events, Rx Events and Notify Events. |
| * - When the HCF is out of Tx/Notify resources, the HCF is also interested in Alloc Events. |
| * - via HCF_EXT, the MSF programmer can also request HREG_EV_TICK and/or HREG_EV_TX_EXC interrupts. |
| * For DMA operation, the DMA hardware handles the alloc events. The DMA engine will generate a 'TxDmaDone' |
| * event as soon as it has pumped a frame from host ram into NIC-RAM (note that the frame does not have to be |
| * transmitted then), and a 'RxDmaDone' event as soon as a received frame has been pumped from NIC-RAM into |
| * host ram. Note that the 'alloc' event has been removed from the event-mask, because the DMA engine will |
| * react to and acknowledge this event. |
| *6: ack the "old" Rx-event. See "Rx Buffer free strategy" in hcf_service_nic above for more explanation. |
| * IFB_RxFID and IFB_RxLen must be cleared to bring both the internal HCF house keeping and the information |
| * supplied to the MSF in the state "no frame received". |
| *8: The HCF_ACT_SCAN, HCF_ACT_PRS_SCAN and HCF_ACT_TALLIES activity are merged by "clever" algebraic |
| * manipulations of the RID-values and action codes, so foregoing robustness against migration problems for |
| * ease of implementation. The assumptions about numerical relationships between CFG_TALLIES etc and |
| * HCF_ACT_TALLIES etc are checked by the "#if" statements just prior to the body of this routine, resulting |
| * in: err "maintenance" during compilation if the assumptions are no longer met. The writing of HREG_PARAM_1 |
| * with 0x3FFF in case of an PRS scan, is a kludge to get around lack of specification, hence different |
| * implementation in F/W and Host. |
| * When there is no NIC RAM available, some versions of the Hermes F/W do report 0x7F00 as error in the |
| * Result field of the Status register and some F/W versions don't. To mask this difference to the MSF all |
| * return codes of the Hermes are ignored ("best" and "most simple" solution to these types of analomies with |
| * an acceptable loss due to ignoring all error situations as well). |
| * The "No inquire space" is reported via the Hermes tallies. |
| *30: do not HCFASSERT( rc, rc ) since rc == HCF_INT_PENDING is no error |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0 |
| #if CFG_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_SCAN |
| err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros |
| #endif |
| #endif // HCF_TYPE_HII5 |
| #if CFG_PRS_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_PRS_SCAN |
| err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros |
| #endif |
| int |
| hcf_action( IFBP ifbp, hcf_16 action ) |
| { |
| int rc = HCF_SUCCESS; |
| |
| HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ) |
| #if HCF_INT_ON |
| HCFLOGENTRY( action == HCF_ACT_INT_FORCE_ON ? HCF_TRACE_ACTION_KLUDGE : HCF_TRACE_ACTION, action ) /* 0 */ |
| #if (HCF_SLEEP) |
| HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE || action == HCF_ACT_INT_OFF, |
| MERGE_2( action, ifbp->IFB_IntOffCnt ) ) |
| #else |
| HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, action ) |
| #endif // HCF_SLEEP |
| HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFF || |
| action == HCF_ACT_INT_OFF || action == HCF_ACT_INT_FORCE_ON, action ) |
| HCFASSERT( ifbp->IFB_IntOffCnt <= 16 || ifbp->IFB_IntOffCnt >= 0xFFFE, |
| MERGE_2( action, ifbp->IFB_IntOffCnt ) ) //nesting more than 16 deep seems unreasonable |
| #endif // HCF_INT_ON |
| |
| switch (action) { |
| #if HCF_INT_ON |
| hcf_16 i; |
| case HCF_ACT_INT_OFF: // Disable Interrupt generation |
| #if HCF_SLEEP |
| if ( ifbp->IFB_IntOffCnt == 0xFFFE ) { // WakeUp test ;?tie this to the "new" super-LinkStat |
| ifbp->IFB_IntOffCnt++; // restore conventional I/F |
| OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC ); // set wakeup bit |
| OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC ); // set wakeup bit to counteract the clearing by F/W |
| // 800 us latency before FW switches to high power |
| MSF_WAIT(800); // MSF-defined function to wait n microseconds. |
| //OOR if ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_DS_OOR ) { // OutOfRange |
| // printk( "<5>ACT_INT_OFF: Deepsleep phase terminated, enable and go to AwaitConnection\n" ); //;?remove me 1 day |
| // hcf_cntl( ifbp, HCF_CNTL_ENABLE ); |
| // } |
| // ifbp->IFB_DSLinkStat &= ~( CFG_LINK_STAT_DS_IR | CFG_LINK_STAT_DS_OOR); //clear IR/OOR state |
| } |
| #endif // HCF_SLEEP |
| /*2*/ ifbp->IFB_IntOffCnt++; |
| //! rc = 0; |
| i = IPW( HREG_INT_EN ); |
| OPW( HREG_INT_EN, 0 ); |
| if ( i & 0x1000 ) { |
| rc = HCF_ERR_NO_NIC; |
| } else { |
| if ( i & IPW( HREG_EV_STAT ) ) { |
| rc = HCF_INT_PENDING; |
| } |
| } |
| break; |
| |
| case HCF_ACT_INT_FORCE_ON: // Enforce Enable Interrupt generation |
| ifbp->IFB_IntOffCnt = 0; |
| //Fall through in HCF_ACT_INT_ON |
| |
| case HCF_ACT_INT_ON: // Enable Interrupt generation |
| /*4*/ if ( ifbp->IFB_IntOffCnt-- == 0 && ifbp->IFB_CardStat == 0 ) { |
| //determine Interrupt Event mask |
| #if HCF_DMA |
| if ( ifbp->IFB_CntlOpt & USE_DMA ) { |
| i = HREG_EV_INFO | HREG_EV_RDMAD | HREG_EV_TDMAD | HREG_EV_TX_EXT; //mask when DMA active |
| } else |
| #endif // HCF_DMA |
| { |
| i = HREG_EV_INFO | HREG_EV_RX | HREG_EV_TX_EXT; //mask when DMA not active |
| if ( ifbp->IFB_RscInd == 0 ) { |
| i |= HREG_EV_ALLOC; //mask when no TxFID available |
| } |
| } |
| #if HCF_SLEEP |
| if ( ( IPW(HREG_EV_STAT) & ( i | HREG_EV_SLEEP_REQ ) ) == HREG_EV_SLEEP_REQ ) { |
| // firmware indicates it would like to go into sleep modus |
| // only acknowledge this request if no other events that can cause an interrupt are pending |
| ifbp->IFB_IntOffCnt--; //becomes 0xFFFE |
| OPW( HREG_INT_EN, i | HREG_EV_TICK ); |
| OPW( HREG_EV_ACK, HREG_EV_SLEEP_REQ | HREG_EV_TICK | HREG_EV_ACK_REG_READY ); |
| } else |
| #endif // HCF_SLEEP |
| { |
| OPW( HREG_INT_EN, i | HREG_EV_SLEEP_REQ ); |
| } |
| } |
| break; |
| #endif // HCF_INT_ON |
| |
| #if (HCF_SLEEP) & HCF_DDS |
| case HCF_ACT_SLEEP: // DDS Sleep request |
| hcf_cntl( ifbp, HCF_CNTL_DISABLE ); |
| cmd_exe( ifbp, HCMD_SLEEP, 0 ); |
| break; |
| // case HCF_ACT_WAKEUP: // DDS Wakeup request |
| // HCFASSERT( ifbp->IFB_IntOffCnt == 0xFFFE, ifbp->IFB_IntOffCnt ) |
| // ifbp->IFB_IntOffCnt++; // restore conventional I/F |
| // OPW( HREG_IO, HREG_IO_WAKEUP_ASYNC ); |
| // MSF_WAIT(800); // MSF-defined function to wait n microseconds. |
| // rc = hcf_action( ifbp, HCF_ACT_INT_OFF ); /*bogus, IFB_IntOffCnt == 0xFFFF, so if you carefully look |
| // *at the #if HCF_DDS statements, HCF_ACT_INT_OFF is empty |
| // *for DDS. "Much" better would be to merge the flows for |
| // *DDS and DEEP_SLEEP |
| // */ |
| // break; |
| #endif // HCF_DDS |
| |
| #if (HCF_TYPE) & HCF_TYPE_CCX |
| case HCF_ACT_CCX_ON: // enable CKIP |
| case HCF_ACT_CCX_OFF: // disable CKIP |
| ifbp->IFB_CKIPStat = action; |
| break; |
| #endif // HCF_TYPE_CCX |
| |
| case HCF_ACT_RX_ACK: //Receiver ACK |
| /*6*/ if ( ifbp->IFB_RxFID ) { |
| DAWA_ACK( HREG_EV_RX ); |
| } |
| ifbp->IFB_RxFID = ifbp->IFB_RxLen = 0; |
| break; |
| |
| /*8*/ case HCF_ACT_PRS_SCAN: // Hermes PRS Scan (F102) |
| OPW( HREG_PARAM_1, 0x3FFF ); |
| //Fall through in HCF_ACT_TALLIES |
| case HCF_ACT_TALLIES: // Hermes Inquire Tallies (F100) |
| #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0 |
| case HCF_ACT_SCAN: // Hermes Inquire Scan (F101) |
| #endif // HCF_TYPE_HII5 |
| /*!! the assumptions about numerical relationships between CFG_TALLIES etc and HCF_ACT_TALLIES etc |
| * are checked by #if statements just prior to this routine resulting in: err "maintenance" */ |
| cmd_exe( ifbp, HCMD_INQUIRE, action - HCF_ACT_TALLIES + CFG_TALLIES ); |
| break; |
| |
| default: |
| HCFASSERT( DO_ASSERT, action ) |
| break; |
| } |
| //! do not HCFASSERT( rc == HCF_SUCCESS, rc ) /* 30*/ |
| HCFLOGEXIT( HCF_TRACE_ACTION ) |
| return rc; |
| } // hcf_action |
| #endif // HCF_DL_ONLY |
| |
| |
| /************************************************************************************************************ |
| * |
| *.MODULE int hcf_cntl( IFBP ifbp, hcf_16 cmd ) |
| *.PURPOSE Connect or disconnect a specific port to a specific network. |
| *!! ;???????????????? continue needs more explanation |
| * recovers by means of "continue" when the connect proces in CCX mode fails |
| * Enables or disables data transmission and reception for the NIC. |
| * Activates static NIC configuration for a specific port at connect. |
| * Activates static configuration for all ports at enable. |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * cmd 0x001F: Hermes command (disable, enable, connect, disconnect, continue) |
| * HCF_CNTL_ENABLE Enable |
| * HCF_CNTL_DISABLE Disable |
| * HCF_CNTL_CONTINUE Continue |
| * HCF_CNTL_CONNECT Connect |
| * HCF_CNTL_DISCONNECT Disconnect |
| * 0x0100: command qualifier (continue) |
| * HCMD_RETRY retry flag |
| * 0x0700: port number (connect/disconnect) |
| * HCF_PORT_0 MAC Port 0 |
| * HCF_PORT_1 MAC Port 1 |
| * HCF_PORT_2 MAC Port 2 |
| * HCF_PORT_3 MAC Port 3 |
| * HCF_PORT_4 MAC Port 4 |
| * HCF_PORT_5 MAC Port 5 |
| * HCF_PORT_6 MAC Port 6 |
| * |
| *.RETURNS |
| * HCF_SUCCESS |
| *!! via cmd_exe |
| * HCF_ERR_NO_NIC |
| * HCF_ERR_DEFUNCT_... |
| * HCF_ERR_TIME_OUT |
| * |
| *.DESCRIPTION |
| * The parameter cmd contains a number of subfields. |
| * The actual value for cmd is created by logical or-ing the appropriate mnemonics for the subfields. |
| * The field 0x001F contains the command code |
| * - HCF_CNTL_ENABLE |
| * - HCF_CNTL_DISABLE |
| * - HCF_CNTL_CONNECT |
| * - HCF_CNTL_DISCONNECT |
| * - HCF_CNTL_CONTINUE |
| * |
| * For HCF_CNTL_CONTINUE, the field 0x0100 contains the retry flag HCMD_RETRY. |
| * For HCF_CNTL_CONNECT and HCF_CNTL_DISCONNECT, the field 0x0700 contains the port number as HCF_PORT_#. |
| * For Station as well as AccessPoint F/W, MAC Port 0 is the "normal" communication channel. |
| * For AccessPoint F/W, MAC Port 1 through 6 control the WDS links. |
| * |
| * Note that despite the names HCF_CNTL_DISABLE and HCF_CNTL_ENABLE, hcf_cntl does not influence the NIC |
| * Interrupts mode. |
| * |
| * The Connect is used by the MSF to bring a particular port in an inactive state as far as data transmission |
| * and reception are concerned. |
| * When a particular port is disconnected: |
| * - the F/W disables the receiver for that port. |
| * - the F/W ignores send commands for that port. |
| * - all frames (Receive as well as pending Transmit) for that port on the NIC are discarded. |
| * |
| * When the NIC is disabled, above list applies to all ports, i.e. the result is like all ports are |
| * disconnected. |
| * |
| * When a particular port is connected: |
| * - the F/W effectuates the static configuration for that port. |
| * - enables the receiver for that port. |
| * - accepts send commands for that port. |
| * |
| * Enabling has the following effects: |
| * - the F/W effectuates the static configuration for all ports. |
| * The F/W only updates its static configuration at a transition from disabled to enabled or from |
| * disconnected to connected. |
| * In order to enforce the static configuration, the MSF must assure that such a transition takes place. |
| * Due to such a disable/enable or disconnect/connect sequence, Rx/Tx frames may be lost, in other words, |
| * configuration may impact communication. |
| * - The DMA Engine (if applicable) is enabled. |
| * Note that the Enable Function by itself only enables data transmission and reception, it |
| * does not enable the Interrupt Generation mechanism. This is done by hcf_action. |
| * |
| * Disabling has the following effects: |
| *!! ;?????is the following statement really true |
| * - it acts as a disconnect on all ports. |
| * - The DMA Engine (if applicable) is disabled. |
| * |
| * For impact of the disable command on the behavior of hcf_dma_tx/rx_get see the appropriate sections. |
| * |
| * Although the Enable/Disable and Connect/Disconnect are antonyms, there is no restriction on their sequencing, |
| * in other words, they may be called multiple times in arbitrary sequence without being paired or balanced. |
| * Each time one of these functions is called, the effects of the preceding calls cease. |
| * |
| * Assert fails if |
| * - ifbp has a recognizable out-of-range value. |
| * - NIC interrupts are not disabled. |
| * - A command other than Continue, Enable, Disable, Connect or Disconnect is given. |
| * - An invalid combination of the subfields is given or a bit outside the subfields is given. |
| * - any return code besides HCF_SUCCESS. |
| * - reentrancy, may be caused by calling a hcf_function without adequate protection against NIC interrupts or |
| * multi-threading |
| * |
| *.DIAGRAM |
| * hcf_cntl takes successively the following actions: |
| *2: If the HCF is in Defunct mode or incompatible with the Primary or Station Supplier in the Hermes, |
| * hcf_cntl() returns immediately with HCF_ERR_NO_NIC;? as status. |
| *8: when the port is disabled, the DMA engine needs to be de-activated, so the host can safely reclaim tx |
| * packets from the tx descriptor chain. |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| int |
| hcf_cntl( IFBP ifbp, hcf_16 cmd ) |
| { |
| int rc = HCF_ERR_INCOMP_FW; |
| #if HCF_ASSERT |
| { int x = cmd & HCMD_CMD_CODE; |
| if ( x == HCF_CNTL_CONTINUE ) x &= ~HCMD_RETRY; |
| else if ( (x == HCMD_DISABLE || x == HCMD_ENABLE) && ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ) { |
| x &= ~HFS_TX_CNTL_PORT; |
| } |
| HCFASSERT( x==HCF_CNTL_ENABLE || x==HCF_CNTL_DISABLE || HCF_CNTL_CONTINUE || |
| x==HCF_CNTL_CONNECT || x==HCF_CNTL_DISCONNECT, cmd ) |
| } |
| #endif // HCF_ASSERT |
| // #if (HCF_SLEEP) & HCF_DDS |
| // HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, cmd ) |
| // #endif // HCF_DDS |
| HCFLOGENTRY( HCF_TRACE_CNTL, cmd ) |
| if ( ifbp->IFB_CardStat == 0 ) { /*2*/ |
| /*6*/ rc = cmd_exe( ifbp, cmd, 0 ); |
| #if (HCF_SLEEP) & HCF_DDS |
| ifbp->IFB_TickCnt = 0; //start 2 second period (with 1 tick uncertanty) |
| #endif // HCF_DDS |
| } |
| #if HCF_DMA |
| //!rlav : note that this piece of code is always executed, regardless of the DEFUNCT bit in IFB_CardStat. |
| // The reason behind this is that the MSF should be able to get all its DMA resources back from the HCF, |
| // even if the hardware is disfunctional. Practical example under Windows : surprise removal. |
| if ( ifbp->IFB_CntlOpt & USE_DMA ) { |
| hcf_io io_port = ifbp->IFB_IOBase; |
| DESC_STRCT *p; |
| if ( cmd == HCF_CNTL_DISABLE || cmd == HCF_CNTL_ENABLE ) { |
| OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_RESET); /*8*/ |
| ifbp->IFB_CntlOpt &= ~DMA_ENABLED; |
| } |
| if ( cmd == HCF_CNTL_ENABLE ) { |
| OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_GO); |
| /* ;? by rewriting hcf_dma_rx_put you can probably just call hcf_dma_rx_put( ifbp->IFB_FirstDesc[DMA_RX] ) |
| * as additional beneficiary side effect, the SOP and EOP bits will also be cleared |
| */ |
| ifbp->IFB_CntlOpt |= DMA_ENABLED; |
| HCFASSERT( NT_ASSERT, NEVER_TESTED ) |
| // make the entire rx descriptor chain DMA-owned, so the DMA engine can (re-)use it. |
| p = ifbp->IFB_FirstDesc[DMA_RX]; |
| if (p != NULL) { //;? Think this over again in the light of the new chaining strategy |
| if ( 1 ) { //begin alternative |
| HCFASSERT( NT_ASSERT, NEVER_TESTED ) |
| put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX], DMA_RX ); |
| if ( ifbp->IFB_FirstDesc[DMA_RX] ) { |
| put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX]->next_desc_addr, DMA_RX ); |
| } |
| } else { |
| while ( p ) { |
| //p->buf_cntl.cntl_stat |= DESC_DMA_OWNED; |
| p->BUF_CNT |= DESC_DMA_OWNED; |
| p = p->next_desc_addr; |
| } |
| // a rx chain is available so hand it over to the DMA engine |
| p = ifbp->IFB_FirstDesc[DMA_RX]; |
| OUT_PORT_DWORD( (io_port + HREG_RXDMA_PTR32), p->desc_phys_addr); |
| } //end alternative |
| } |
| } |
| } |
| #endif // HCF_DMA |
| HCFASSERT( rc == HCF_SUCCESS, rc ) |
| HCFLOGEXIT( HCF_TRACE_CNTL ) |
| return rc; |
| } // hcf_cntl |
| |
| |
| /************************************************************************************************************ |
| * |
| *.MODULE int hcf_connect( IFBP ifbp, hcf_io io_base ) |
| *.PURPOSE Grants access right for the HCF to the IFB. |
| * Initializes Card and HCF housekeeping. |
| * |
| *.ARGUMENTS |
| * ifbp (near) address of the Interface Block |
| * io_base non-USB: I/O Base address of the NIC (connect) |
| * non-USB: HCF_DISCONNECT |
| * USB: HCF_CONNECT, HCF_DISCONNECT |
| * |
| *.RETURNS |
| * HCF_SUCCESS |
| * HCF_ERR_INCOMP_PRI |
| * HCF_ERR_INCOMP_FW |
| * HCF_ERR_DEFUNCT_CMD_SEQ |
| *!! HCF_ERR_NO_NIC really returned ;? |
| * HCF_ERR_NO_NIC |
| * HCF_ERR_TIME_OUT |
| * |
| * MSF-accessible fields of Result Block: |
| * IFB_IOBase entry parameter io_base |
| * IFB_IORange HREG_IO_RANGE (0x40/0x80) |
| * IFB_Version version of the IFB layout |
| * IFB_FWIdentity CFG_FW_IDENTITY_STRCT, specifies the identity of the |
| * "running" F/W, i.e. tertiary F/W under normal conditions |
| * IFB_FWSup CFG_SUP_RANGE_STRCT, specifies the supplier range of |
| * the "running" F/W, i.e. tertiary F/W under normal conditions |
| * IFB_HSISup CFG_SUP_RANGE_STRCT, specifies the HW/SW I/F range of the NIC |
| * IFB_PRIIdentity CFG_PRI_IDENTITY_STRCT, specifies the Identity of the Primary F/W |
| * IFB_PRISup CFG_SUP_RANGE_STRCT, specifies the supplier range of the Primary F/W |
| * all other all MSF accessible fields, which are not specified above, are zero-filled |
| * |
| *.CONDITIONS |
| * It is the responsibility of the MSF to assure the correctness of the I/O Base address. |
| * |
| * Note: hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF ) |
| * was called. |
| * |
| *.DESCRIPTION |
| * hcf_connect passes the MSF-defined location of the IFB to the HCF and grants or revokes access right for the |
| * HCF to the IFB. Revoking is done by specifying HCF_DISCONNECT rather than an I/O address for the parameter |
| * io_base. Every call of hcf_connect in "connect" mode, must eventually be followed by a call of hcf_connect |
| * in "disconnect" mode. Clalling hcf_connect in "connect"/"disconnect" mode can not be nested. |
| * The IFB address must be used as a handle with all subsequent HCF-function calls and the HCF uses the IFB |
| * address as a handle when it performs a call(back) of an MSF-function (i.e. msf_assert). |
| * |
| * Note that not only the MSF accessible fields are cleared, but also all internal housekeeping |
| * information is re-initialized. |
| * This implies that all settings which are done via hcf_action and hcf_put_info (e.g. CFG_MB_ASSERT, CFG_REG_MB, |
| * CFG_REG_INFO_LOG) must be done again. The only field which is not cleared, is IFB_MSFSup. |
| * |
| * If HCF_INT_ON is selected as compile option, NIC interrupts are disabled. |
| * |
| * Assert fails if |
| * - ifbp is not properly aligned ( ref chapter HCF_ALIGN in 4.1.1) |
| * - I/O Base Address is not a multiple of 0x40 (note: 0x0000 is explicitly allowed). |
| * |
| *.DIAGRAM |
| * |
| *0: Throughout hcf_connect you need to distinguish the connect from the disconnect case, which requires |
| * some attention about what to use as "I/O" address when for which purpose. |
| *2: |
| *2a: Reset H-II by toggling reset bit in IO-register on and off. |
| * The HCF_TYPE_PRELOADED caters for the DOS environment where H-II is loaded by a separate program to |
| * overcome the 64k size limit posed on DOS drivers. |
| * The macro OPW is not yet useable because the IFB_IOBase field is not set. |
| * Note 1: hopefully the clearing and initializing of the IFB (see below) acts as a delay which meets the |
| * specification for S/W reset |
| * Note 2: it turns out that on some H/W constellations, the clock to access the EEProm is not lowered |
| * to an appropriate frequency by HREG_IO_SRESET. By giving an HCMD_INI first, this problem is worked around. |
| *2b: Experimentally it is determined over a wide range of F/W versions that waiting for the for Cmd bit in |
| * Ev register gives a workable strategy. The available documentation does not give much clues. |
| *4: clear and initialize the IFB |
| * The HCF house keeping info is designed such that zero is the appropriate initial value for as much as |
| * feasible IFB-items. |
| * The readable fields mentioned in the description section and some HCF specific fields are given their |
| * actual value. |
| * IFB_TickIni is initialized at best guess before calibration |
| * Hcf_connect defaults to "no interrupt generation" (implicitly achieved by the zero-filling). |
| *6: Register compile-time linked MSF Routine and set default filter level |
| * cast needed to get around the "near" problem in DOS COM model |
| * er C2446: no conversion from void (__near __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int) |
| * to void (__far __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int) |
| *8: If a command is apparently still active (as indicated by the Busy bit in Cmd register) this may indicate a |
| * blocked cmd pipe line. To unblock the following actions are done: |
| * - Ack everything |
| * - Wait for Busy bit drop in Cmd register |
| * - Wait for Cmd bit raise in Ev register |
| * The two waits are combined in a single HCF_WAIT_WHILE to optimize memory size. If either of these waits |
| * fail (prot_cnt becomes 0), then something is serious wrong. Rather than PANICK, the assumption is that the |
| * next cmd_exe will fail, causing the HCF to go into DEFUNCT mode |
| *10: Ack everything to unblock a (possibly blocked) cmd pipe line |
| * Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is |
| * pending on non-initial calls |
| * Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an |
| * Hermes Initialize |
| *12: Only H-II NEEDS the Hermes Initialize command. Due to the different semantics for H-I and H-II |
| * Initialize command, init() does not (and can not, since it is called e.g. after a download) execute the |
| * Hermes Initialize command. Executing the Hermes Initialize command for H-I would not harm but not do |
| * anything useful either, so it is skipped. |
| * The return status of cmd_exe is ignored. It is assumed that if cmd_exe fails, init fails too |
| *14: use io_base as a flag to merge hcf_connect and hcf_disconnect into 1 routine |
| * the call to init and its subsequent call of cmd_exe will return HCF_ERR_NO_NIC if appropriate. This status |
| * is (badly) needed by some legacy combination of NT4 and card services which do not yield an I/O address in |
| * time. |
| * |
| *.NOTICE |
| * On platforms where the NULL-pointer is not a bit-pattern of all zeros, the zero-filling of the IFB results |
| * in an incorrect initialization of pointers. |
| * The implementation of the MailBox manipulation in put_mb_info protects against the absence of a MailBox |
| * based on IFB_MBSize, IFB_MBWp and ifbp->IFB_MBRp. This has ramifications on the initialization of the |
| * MailBox via hcf_put_info with the CFG_REG_MB type, but it prevents dependency on the "NULL-"ness of |
| * IFB_MBp. |
| * |
| *.NOTICE |
| * There are a number of problems when asserting and logging hcf_connect, e.g. |
| * - Asserting on re-entrancy of hcf_connect by means of |
| * "HCFASSERT( (ifbp->IFB_AssertTrace & HCF_ASSERT_CONNECT) == 0, 0 )" is not useful because IFB contents |
| * are undefined |
| * - Asserting before the IFB is cleared will cause mdd_assert() to interpret the garbage in IFB_AssertRtn |
| * as a routine address |
| * Therefore HCFTRACE nor HCFLOGENTRY is called by hcf_connect. |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| int |
| hcf_connect( IFBP ifbp, hcf_io io_base ) |
| { |
| int rc = HCF_SUCCESS; |
| hcf_io io_addr; |
| hcf_32 prot_cnt; |
| hcf_8 *q; |
| LTV_STRCT x; |
| #if HCF_ASSERT |
| hcf_16 xa = ifbp->IFB_FWIdentity.typ; |
| /* is assumed to cause an assert later on if hcf_connect is called without intervening hcf_disconnect. |
| * xa == CFG_FW_IDENTITY in subsequent calls without preceding hcf_disconnect, |
| * xa == 0 in subsequent calls with preceding hcf_disconnect, |
| * xa == "garbage" (any value except CFG_FW_IDENTITY is acceptable) in the initial call |
| */ |
| #endif // HCF_ASSERT |
| |
| if ( io_base == HCF_DISCONNECT ) { //disconnect |
| io_addr = ifbp->IFB_IOBase; |
| OPW( HREG_INT_EN, 0 ); //;?workaround against dying F/W on subsequent hcf_connect calls |
| } else { //connect /* 0 */ |
| io_addr = io_base; |
| } |
| |
| #if 0 //;? if a subsequent hcf_connect is preceeded by an hcf_disconnect the wakeup is not needed !! |
| #if HCF_SLEEP |
| OUT_PORT_WORD( .....+HREG_IO, HREG_IO_WAKEUP_ASYNC ); //OPW not yet useable |
| MSF_WAIT(800); // MSF-defined function to wait n microseconds. |
| note that MSF_WAIT uses not yet defined!!!! IFB_IOBase and IFB_TickIni (via PROT_CNT_INI) |
| so be carefull if this code is restored |
| #endif // HCF_SLEEP |
| #endif // 0 |
| |
| #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 //switch clock back for SEEPROM access !!! |
| OUT_PORT_WORD( io_addr + HREG_CMD, HCMD_INI ); //OPW not yet useable |
| prot_cnt = INI_TICK_INI; |
| HCF_WAIT_WHILE( (IN_PORT_WORD( io_addr + HREG_EV_STAT) & HREG_EV_CMD) == 0 ); |
| OUT_PORT_WORD( (io_addr + HREG_IO), HREG_IO_SRESET ); //OPW not yet useable /* 2a*/ |
| #endif // HCF_TYPE_PRELOADED |
| for ( q = (hcf_8*)(&ifbp->IFB_Magic); q > (hcf_8*)ifbp; *--q = 0 ) /*NOP*/; /* 4 */ |
| ifbp->IFB_Magic = HCF_MAGIC; |
| ifbp->IFB_Version = IFB_VERSION; |
| #if defined MSF_COMPONENT_ID //a new IFB demonstrates how dirty the solution is |
| xxxx[xxxx_PRI_IDENTITY_OFFSET] = NULL; //IFB_PRIIdentity placeholder 0xFD02 |
| xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = NULL; //IFB_PRISup placeholder 0xFD03 |
| #endif // MSF_COMPONENT_ID |
| #if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF ) |
| ifbp->IFB_TallyLen = 1 + 2 * (HCF_NIC_TAL_CNT + HCF_HCF_TAL_CNT); //convert # of Tallies to L value for LTV |
| ifbp->IFB_TallyTyp = CFG_TALLIES; //IFB_TallyTyp: set T value |
| #endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF |
| ifbp->IFB_IOBase = io_addr; //set IO_Base asap, so asserts via HREG_SW_2 don't harm |
| ifbp->IFB_IORange = HREG_IO_RANGE; |
| ifbp->IFB_CntlOpt = USE_16BIT; |
| #if HCF_ASSERT |
| assert_ifbp = ifbp; |
| ifbp->IFB_AssertLvl = 1; |
| #if (HCF_ASSERT) & HCF_ASSERT_LNK_MSF_RTN |
| if ( io_base != HCF_DISCONNECT ) { |
| ifbp->IFB_AssertRtn = (MSF_ASSERT_RTNP)msf_assert; /* 6 */ |
| } |
| #endif // HCF_ASSERT_LNK_MSF_RTN |
| #if (HCF_ASSERT) & HCF_ASSERT_MB //build the structure to pass the assert info to hcf_put_info |
| ifbp->IFB_AssertStrct.len = sizeof(ifbp->IFB_AssertStrct)/sizeof(hcf_16) - 1; |
| ifbp->IFB_AssertStrct.typ = CFG_MB_INFO; |
| ifbp->IFB_AssertStrct.base_typ = CFG_MB_ASSERT; |
| ifbp->IFB_AssertStrct.frag_cnt = 1; |
| ifbp->IFB_AssertStrct.frag_buf[0].frag_len = |
| ( offsetof(IFB_STRCT, IFB_AssertLvl) - offsetof(IFB_STRCT, IFB_AssertLine) ) / sizeof(hcf_16); |
| ifbp->IFB_AssertStrct.frag_buf[0].frag_addr = &ifbp->IFB_AssertLine; |
| #endif // HCF_ASSERT_MB |
| #endif // HCF_ASSERT |
| IF_PROT_TIME( prot_cnt = ifbp->IFB_TickIni = INI_TICK_INI; ) |
| #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 |
| //!! No asserts before Reset-bit in HREG_IO is cleared |
| OPW( HREG_IO, 0x0000 ); //OPW useable /* 2b*/ |
| HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 ); |
| IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) ) |
| IF_PROT_TIME( if ( prot_cnt ) prot_cnt = ifbp->IFB_TickIni; ) |
| #endif // HCF_TYPE_PRELOADED |
| //!! No asserts before Reset-bit in HREG_IO is cleared |
| HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF0 ) ) //just to proof that the complete assert machinery is working |
| HCFASSERT( xa != CFG_FW_IDENTITY, 0 ) // assert if hcf_connect is called without intervening hcf_disconnect. |
| HCFASSERT( ((hcf_32)(void*)ifbp & (HCF_ALIGN-1) ) == 0, (hcf_32)(void*)ifbp ) |
| HCFASSERT( (io_addr & 0x003F) == 0, io_addr ) |
| //if Busy bit in Cmd register |
| if (IPW( HREG_CMD ) & HCMD_BUSY ) { /* 8 */ |
| //. Ack all to unblock a (possibly) blocked cmd pipe line |
| OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ ); |
| //. Wait for Busy bit drop in Cmd register |
| //. Wait for Cmd bit raise in Ev register |
| HCF_WAIT_WHILE( ( IPW( HREG_CMD ) & HCMD_BUSY ) && (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 ); |
| IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) ) /* if prot_cnt == 0, cmd_exe will fail, causing DEFUNCT */ |
| } |
| OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ ); |
| #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 /*12*/ |
| (void)cmd_exe( ifbp, HCMD_INI, 0 ); |
| #endif // HCF_TYPE_PRELOADED |
| if ( io_base != HCF_DISCONNECT ) { |
| rc = init( ifbp ); /*14*/ |
| if ( rc == HCF_SUCCESS ) { |
| x.len = 2; |
| x.typ = CFG_NIC_BUS_TYPE; |
| (void)hcf_get_info( ifbp, &x ); |
| ifbp->IFB_BusType = x.val[0]; |
| //CFG_NIC_BUS_TYPE not supported -> default 32 bits/DMA, MSF has to overrule via CFG_CNTL_OPT |
| if ( x.len == 0 || x.val[0] == 0x0002 || x.val[0] == 0x0003 ) { |
| #if (HCF_IO) & HCF_IO_32BITS |
| ifbp->IFB_CntlOpt &= ~USE_16BIT; //reset USE_16BIT |
| #endif // HCF_IO_32BITS |
| #if HCF_DMA |
| ifbp->IFB_CntlOpt |= USE_DMA; //SET DMA |
| #else |
| ifbp->IFB_IORange = 0x40 /*i.s.o. HREG_IO_RANGE*/; |
| #endif // HCF_DMA |
| } |
| } |
| } else HCFASSERT( ( ifbp->IFB_Magic ^= HCF_MAGIC ) == 0, ifbp->IFB_Magic ) /*NOP*/; |
| /* of above HCFASSERT only the side effect is needed, NOP in case HCFASSERT is dummy */ |
| ifbp->IFB_IOBase = io_base; /* 0*/ |
| return rc; |
| } // hcf_connect |
| |
| #if HCF_DMA |
| /************************************************************************************************************ |
| * Function get_frame_lst |
| * - resolve the "last host-owned descriptor" problems when a descriptor list is reclaimed by the MSF. |
| * |
| * The FrameList to be reclaimed as well as the DescriptorList always start in IFB_FirstDesc[tx_rx_flag] |
| * and this is always the "current" DELWA Descriptor. |
| * |
| * If a FrameList is available, the last descriptor of the FrameList to turned into a new DELWA Descriptor: |
| * - a copy is made from the information in the last descriptor of the FrameList into the current |
| * DELWA Descriptor |
| * - the remainder of the DescriptorList is detached from the copy by setting the next_desc_addr at NULL |
| * - the DMA control bits of the copy are cleared to do not confuse the MSF |
| * - the copy of the last descriptor (i.e. the "old" DELWA Descriptor) is chained to the prev Descriptor |
| * of the FrameList, thus replacing the original last Descriptor of the FrameList. |
| * - IFB_FirstDesc is changed to the address of that replaced (original) last descriptor of the FrameList, |
| * i.e. the "new" DELWA Descriptor. |
| * |
| * This function makes a copy of that last host-owned descriptor, so the MSF will get a copy of the descriptor. |
| * On top of that, it adjusts DMA related fields in the IFB structure. |
| // perform a copying-scheme to circumvent the 'last host owned descriptor cannot be reclaimed' limitation imposed by H2.5's DMA hardware design |
| // a 'reclaim descriptor' should be available in the HCF: |
| * |
| * Returns: address of the first descriptor of the FrameList |
| * |
| 8: Be careful once you start re-ordering the steps in the copy process, that it still works for cases |
| * of FrameLists of 1, 2 and more than 2 descriptors |
| * |
| * Input parameters: |
| * tx_rx_flag : specifies 'transmit' or 'receive' descriptor. |
| * |
| ************************************************************************************************************/ |
| HCF_STATIC DESC_STRCT* |
| get_frame_lst( IFBP ifbp, int tx_rx_flag ) |
| { |
| |
| DESC_STRCT *head = ifbp->IFB_FirstDesc[tx_rx_flag]; |
| DESC_STRCT *copy, *p, *prev; |
| |
| HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag ) |
| //if FrameList |
| if ( head ) { |
| //. search for last descriptor of first FrameList |
| p = prev = head; |
| while ( ( p->BUF_SIZE & DESC_EOP ) == 0 && p->next_desc_addr ) { |
| if ( ( ifbp->IFB_CntlOpt & DMA_ENABLED ) == 0 ) { //clear control bits when disabled |
| p->BUF_CNT &= DESC_CNT_MASK; |
| } |
| prev = p; |
| p = p->next_desc_addr; |
| } |
| //. if DMA enabled |
| if ( ifbp->IFB_CntlOpt & DMA_ENABLED ) { |
| //. . if last descriptor of FrameList is DMA owned |
| //. . or if FrameList is single (DELWA) Descriptor |
| if ( p->BUF_CNT & DESC_DMA_OWNED || head->next_desc_addr == NULL ) { |
| //. . . refuse to return FrameList to caller |
| head = NULL; |
| } |
| } |
| } |
| //if returnable FrameList found |
| if ( head ) { |
| //. if FrameList is single (DELWA) Descriptor (implies DMA disabled) |
| if ( head->next_desc_addr == NULL ) { |
| //. . clear DescriptorList |
| /*;?ifbp->IFB_LastDesc[tx_rx_flag] =*/ ifbp->IFB_FirstDesc[tx_rx_flag] = NULL; |
| //. else |
| } else { |
| //. . strip hardware-related bits from last descriptor |
| //. . remove DELWA Descriptor from head of DescriptorList |
| copy = head; |
| head = head->next_desc_addr; |
| //. . exchange first (Confined) and last (possibly imprisoned) Descriptor |
| copy->buf_phys_addr = p->buf_phys_addr; |
| copy->buf_addr = p->buf_addr; |
| copy->BUF_SIZE = p->BUF_SIZE &= DESC_CNT_MASK; //get rid of DESC_EOP and possibly DESC_SOP |
| copy->BUF_CNT = p->BUF_CNT &= DESC_CNT_MASK; //get rid of DESC_DMA_OWNED |
| #if (HCF_EXT) & HCF_DESC_STRCT_EXT |
| copy->DESC_MSFSup = p->DESC_MSFSup; |
| #endif // HCF_DESC_STRCT_EXT |
| //. . turn into a DELWA Descriptor |
| p->buf_addr = NULL; |
| //. . chain copy to prev /* 8*/ |
| prev->next_desc_addr = copy; |
| //. . detach remainder of the DescriptorList from FrameList |
| copy->next_desc_addr = NULL; |
| copy->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed |
| //. . save the new start (i.e. DELWA Descriptor) in IFB_FirstDesc |
| ifbp->IFB_FirstDesc[tx_rx_flag] = p; |
| } |
| //. strip DESC_SOP from first descriptor |
| head->BUF_SIZE &= DESC_CNT_MASK; |
| //head->BUF_CNT &= DESC_CNT_MASK; get rid of DESC_DMA_OWNED |
| head->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed |
| } |
| //return the just detached FrameList (if any) |
| return head; |
| } // get_frame_lst |
| |
| |
| /************************************************************************************************************ |
| * Function put_frame_lst |
| * |
| * This function |
| * |
| * Returns: address of the first descriptor of the FrameList |
| * |
| * Input parameters: |
| * tx_rx_flag : specifies 'transmit' or 'receive' descriptor. |
| * |
| * The following list should be kept in sync with hcf_dma_tx/rx_put, in order to get them in the WCI-spec !!!! |
| * Assert fails if |
| * - DMA is not enabled |
| * - descriptor list is NULL |
| * - a descriptor in the descriptor list is not double word aligned |
| * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble. |
| * - the DELWA descriptor is not a "singleton" DescriptorList. |
| * - the DELWA descriptor is not the first Descriptor supplied |
| * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied |
| * - Possibly more checks could be added !!!!!!!!!!!!! |
| |
| *.NOTICE |
| * The asserts marked with *sc* are really sanity checks for the HCF, they can (supposedly) not be influenced |
| * by incorrect MSF behavior |
| |
| // The MSF is required to supply the HCF with a single descriptor for MSF tx reclaim purposes. |
| // This 'reclaim descriptor' can be recognized by the fact that its buf_addr field is zero. |
| ********************************************************************************************* |
| * Although not required from a hardware perspective: |
| * - make each descriptor in this rx-chain DMA-owned. |
| * - Also set the count to zero. EOP and SOP bits are also cleared. |
| *********************************************************************************************/ |
| HCF_STATIC void |
| put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag ) |
| { |
| DESC_STRCT *p = descp; |
| hcf_16 port; |
| |
| HCFASSERT( ifbp->IFB_CntlOpt & USE_DMA, ifbp->IFB_CntlOpt) //only hcf_dma_tx_put must also be DMA_ENABLED |
| HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag ) |
| HCFASSERT( p , 0 ) |
| |
| while ( p ) { |
| HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p ) |
| HCFASSERT( (p->BUF_CNT & ~DESC_CNT_MASK) == 0, p->BUF_CNT ) |
| HCFASSERT( (p->BUF_SIZE & ~DESC_CNT_MASK) == 0, p->BUF_SIZE ) |
| p->BUF_SIZE &= DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF |
| p->BUF_CNT &= tx_rx_flag == DMA_RX ? 0 : DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF |
| p->BUF_CNT |= DESC_DMA_OWNED; |
| if ( p->next_desc_addr ) { |
| // HCFASSERT( p->buf_addr && p->buf_phys_addr && p->BUF_SIZE && +/- p->BUF_SIZE, ... ) |
| HCFASSERT( p->next_desc_addr->desc_phys_addr, (hcf_32)p->next_desc_addr ) |
| p->next_desc_phys_addr = p->next_desc_addr->desc_phys_addr; |
| } else { // |
| p->next_desc_phys_addr = 0; |
| if ( p->buf_addr == NULL ) { // DELWA Descriptor |
| HCFASSERT( descp == p, (hcf_32)descp ) //singleton DescriptorList |
| HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_FirstDesc[tx_rx_flag]) |
| HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]) |
| descp->BUF_CNT = 0; //&= ~DESC_DMA_OWNED; |
| ifbp->IFB_FirstDesc[tx_rx_flag] = descp; |
| // part of alternative ifbp->IFB_LastDesc[tx_rx_flag] = ifbp->IFB_FirstDesc[tx_rx_flag] = descp; |
| // if "recycling" a FrameList |
| // (e.g. called from hcf_cntl( HCF_CNTL_ENABLE ) |
| // . prepare for activation DMA controller |
| // part of alternative descp = descp->next_desc_addr; |
| } else { //a "real" FrameList, hand it over to the DMA engine |
| HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag], (hcf_32)descp ) |
| HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag], (hcf_32)descp ) |
| HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr == NULL, |
| (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr) |
| // p->buf_cntl.cntl_stat |= DESC_DMA_OWNED; |
| ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr = descp; |
| ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_phys_addr = descp->desc_phys_addr; |
| port = HREG_RXDMA_PTR32; |
| if ( tx_rx_flag ) { |
| p->BUF_SIZE |= DESC_EOP; // p points at the last descriptor in the caller-supplied descriptor chain |
| descp->BUF_SIZE |= DESC_SOP; |
| port = HREG_TXDMA_PTR32; |
| } |
| OUT_PORT_DWORD( (ifbp->IFB_IOBase + port), descp->desc_phys_addr ); |
| } |
| ifbp->IFB_LastDesc[tx_rx_flag] = p; |
| } |
| p = p->next_desc_addr; |
| } |
| } // put_frame_lst |
| |
| |
| /************************************************************************************************************ |
| * |
| *.MODULE DESC_STRCT* hcf_dma_rx_get( IFBP ifbp ) |
| *.PURPOSE decapsulate a message and provides that message to the MSF. |
| * reclaim all descriptors in the rx descriptor chain. |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * |
| *.RETURNS |
| * pointer to a FrameList |
| * |
| *.DESCRIPTION |
| * hcf_dma_rx_get is intended to return a received frame when such a frame is deposited in Host memory by the |
| * DMA engine. In addition hcf_dma_rx_get can be used to reclaim all descriptors in the rx descriptor chain |
| * when the DMA Engine is disabled, e.g. as part of a driver unloading strategy. |
| * hcf_dma_rx_get must be called repeatedly by the MSF when hcf_service_nic signals availability of a rx frame |
| * through the HREG_EV_RDMAD flag of IFB_DmaPackets. The calling must stop when a NULL pointer is returned, at |
| * which time the HREG_EV_RDMAD flag is also cleared by the HCF to arm the mechanism for the next frame |
| * reception. |
| * Regardless whether the DMA Engine is currently enabled (as controlled via hcf_cntl), if the DMA controller |
| * deposited an Rx-frame in the Rx-DescriptorList, this frame is detached from the Rx-DescriptorList, |
| * transformed into a FrameList (i.e. updating the housekeeping fields in the descriptors) and returned to the |
| * caller. |
| * If no such Rx-frame is available in the Rx-DescriptorList, the behavior of hcf_dma_rx_get depends on the |
| * status of the DMA Engine. |
| * If the DMA Engine is enabled, a NULL pointer is returned. |
| * If the DMA Engine is disabled, the following strategy is used: |
| * - the complete Rx-DescriptorList is returned. The DELWA Descriptor is not part of the Rx-DescriptorList. |
| * - If there is no Rx-DescriptorList, the DELWA Descriptor is returned. |
| * - If there is no DELWA Descriptor, a NULL pointer is returned. |
| * |
| * If the MSF performs an disable/enable sequence without exhausting the Rx-DescriptorList as described above, |
| * the enable command will reset all house keeping information, i.e. already received but not yet by the MSF |
| * retrieved frames are lost and the next frame will be received starting with the oldest descriptor. |
| * |
| * The HCF can be used in 2 fashions: with and without decapsulation for data transfer. |
| * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant. |
| * If appropriate, decapsulation is done by moving some data inside the buffers and updating the descriptors |
| * accordingly. |
| *!! ;?????where did I describe why a simple manipulation with the count values does not suffice? |
| * |
| *.DIAGRAM |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| |
| DESC_STRCT* |
| hcf_dma_rx_get (IFBP ifbp) |
| { |
| DESC_STRCT *descp; // pointer to start of FrameList |
| |
| descp = get_frame_lst( ifbp, DMA_RX ); |
| if ( descp && descp->buf_addr ) //!be aware of the missing curly bracket |
| |
| //skip decapsulation at confined descriptor |
| #if (HCF_ENCAP) == HCF_ENC |
| #if (HCF_TYPE) & HCF_TYPE_CCX |
| if ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) |
| #endif // HCF_TYPE_CCX |
| { |
| int i; |
| DESC_STRCT *p = descp->next_desc_addr; //pointer to 2nd descriptor of frame |
| HCFASSERT(p, 0) |
| // The 2nd descriptor contains (maybe) a SNAP header plus part or whole of the payload. |
| //determine decapsulation sub-flag in RxFS |
| i = *(wci_recordp)&descp->buf_addr[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR ); |
| if ( i == HFS_STAT_TUNNEL || |
| ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&p->buf_addr[HCF_DASA_SIZE] ) != ENC_TUNNEL )) { |
| // The 2nd descriptor contains a SNAP header plus part or whole of the payload. |
| HCFASSERT( p->BUF_CNT == (p->buf_addr[5] + (p->buf_addr[4]<<8) + 2*6 + 2 - 8), p->BUF_CNT ) |
| // perform decapsulation |
| HCFASSERT(p->BUF_SIZE >=8, p->BUF_SIZE) |
| // move SA[2:5] in the second buffer to replace part of the SNAP header |
| for ( i=3; i >= 0; i--) p->buf_addr[i+8] = p->buf_addr[i]; |
| // copy DA[0:5], SA[0:1] from first buffer to second buffer |
| for ( i=0; i<8; i++) p->buf_addr[i] = descp->buf_addr[HFS_ADDR_DEST + i]; |
| // make first buffer shorter in count |
| descp->BUF_CNT = HFS_ADDR_DEST; |
| } |
| } |
| #endif // HCF_ENC |
| if ( descp == NULL ) ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_RDMAD; //;?could be integrated into get_frame_lst |
| HCFLOGEXIT( HCF_TRACE_DMA_RX_GET ) |
| return descp; |
| } // hcf_dma_rx_get |
| |
| |
| /************************************************************************************************************ |
| * |
| *.MODULE void hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp ) |
| *.PURPOSE supply buffers for receive purposes. |
| * supply the Rx-DELWA descriptor. |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * descp address of a DescriptorList |
| * |
| *.RETURNS N.A. |
| * |
| *.DESCRIPTION |
| * This function is called by the MSF to supply the HCF with new/more buffers for receive purposes. |
| * The HCF can be used in 2 fashions: with and without encapsulation for data transfer. |
| * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant. |
| * As a consequence, some additional constaints apply to the number of descriptor and the buffers associated |
| * with the first 2 descriptors. Independent of the encapsulation feature, the COUNT fields are ignored. |
| * A special case is the supplying of the DELWA descriptor, which must be supplied as the first descriptor. |
| * |
| * Assert fails if |
| * - ifbp has a recognizable out-of-range value. |
| * - NIC interrupts are not disabled while required by parameter action. |
| * - in case decapsulation by the HCF is selected: |
| * - The first databuffer does not have the exact size corresponding with the RxFS up to the 802.3 DestAddr |
| * field (== 29 words). |
| * - The FrameList does not consists of at least 2 Descriptors. |
| * - The second databuffer does not have the minimum size of 8 bytes. |
| *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get |
| *!! them in the WCI-spec !!!! |
| * - DMA is not enabled |
| * - descriptor list is NULL |
| * - a descriptor in the descriptor list is not double word aligned |
| * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble. |
| * - the DELWA descriptor is not a "singleton" DescriptorList. |
| * - the DELWA descriptor is not the first Descriptor supplied |
| * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied |
| *!! - Possibly more checks could be added !!!!!!!!!!!!! |
| * |
| *.DIAGRAM |
| * |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| void |
| hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp ) |
| { |
| |
| HCFLOGENTRY( HCF_TRACE_DMA_RX_PUT, 0xDA01 ) |
| HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ) |
| HCFASSERT_INT |
| |
| put_frame_lst( ifbp, descp, DMA_RX ); |
| #if HCF_ASSERT && (HCF_ENCAP) == HCF_ENC |
| if ( descp->buf_addr ) { |
| HCFASSERT( descp->BUF_SIZE == HCF_DMA_RX_BUF1_SIZE, descp->BUF_SIZE ) |
| HCFASSERT( descp->next_desc_addr, 0 ) // first descriptor should be followed by another descriptor |
| // The second DB is for SNAP and payload purposes. It should be a minimum of 12 bytes in size. |
| HCFASSERT( descp->next_desc_addr->BUF_SIZE >= 12, descp->next_desc_addr->BUF_SIZE ) |
| } |
| #endif // HCFASSERT / HCF_ENC |
| HCFLOGEXIT( HCF_TRACE_DMA_RX_PUT ) |
| } // hcf_dma_rx_put |
| |
| |
| /************************************************************************************************************ |
| * |
| *.MODULE DESC_STRCT* hcf_dma_tx_get( IFBP ifbp ) |
| *.PURPOSE DMA mode: reclaims and decapsulates packets in the tx descriptor chain if: |
| * - A Tx packet has been copied from host-RAM into NIC-RAM by the DMA engine |
| * - The Hermes/DMAengine have been disabled |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * |
| *.RETURNS |
| * pointer to a reclaimed Tx packet. |
| * |
| *.DESCRIPTION |
| * impact of the disable command: |
| * When a non-empty pool of Tx descriptors exists (created by means of hcf_dma_put_tx), the MSF |
| * is supposed to empty that pool by means of hcf_dma_tx_get calls after the disable in an |
| * disable/enable sequence. |
| * |
| *.DIAGRAM |
| * |
| *.NOTICE |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| DESC_STRCT* |
| hcf_dma_tx_get( IFBP ifbp ) |
| { |
| DESC_STRCT *descp; // pointer to start of FrameList |
| |
| descp = get_frame_lst( ifbp, DMA_TX ); |
| if ( descp && descp->buf_addr ) //!be aware of the missing curly bracket |
| //skip decapsulation at confined descriptor |
| #if (HCF_ENCAP) == HCF_ENC |
| if ( ( descp->BUF_CNT == HFS_TYPE ) |
| #if (HCF_TYPE) & HCF_TYPE_CCX |
| || ( descp->BUF_CNT == HFS_DAT ) |
| #endif // HCF_TYPE_CCX |
| ) { // perform decapsulation if needed |
| descp->next_desc_addr->buf_phys_addr -= HCF_DASA_SIZE; |
| descp->next_desc_addr->BUF_CNT += HCF_DASA_SIZE; |
| } |
| #endif // HCF_ENC |
| if ( descp == NULL ) { //;?could be integrated into get_frame_lst |
| ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_TDMAD; |
| } |
| HCFLOGEXIT( HCF_TRACE_DMA_TX_GET ) |
| return descp; |
| } // hcf_dma_tx_get |
| |
| |
| /************************************************************************************************************ |
| * |
| *.MODULE void hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl ) |
| *.PURPOSE puts a packet in the Tx DMA queue in host ram and kicks off the TxDma engine. |
| * supply the Tx-DELWA descriptor. |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * descp address of Tx Descriptor Chain (i.e. a single Tx frame) |
| * tx_cntl indicates MAC-port and (Hermes) options |
| * |
| *.RETURNS N.A. |
| * |
| *.DESCRIPTION |
| * The HCF can be used in 2 fashions: with and without encapsulation for data transfer. |
| * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant. |
| * |
| * Regardless of the HCF_ENCAP system constant, the descriptor list created to describe the frame to be |
| * transmitted, must supply space to contain the 802.11 header, preceding the actual frame to be transmitted. |
| * Basically, this only supplies working storage to the HCF which passes this on to the DMA engine. |
| * As a consequence the contents of this space do not matter. |
| * Nevertheless BUF_CNT must take in account this storage. |
| * This working space to contain the 802.11 header may not be fragmented, the first buffer must be |
| * sufficiently large to contain at least the 802.11 header, i.e. HFS_ADDR_DEST (29 words or 0x3A bytes). |
| * This way, the HCF can simply, regardless whether or not the HCF encapsulates the frame, write the parameter |
| * tx_cntl at offset 0x36 (HFS_TX_CNTL) in the first buffer. |
| * Note that it is allowed to have part or all of the actual frame represented by the first descriptor as long |
| * as the requirement for storage for the 802.11 header is met, i.e. the 802.3 frame starts at offset |
| * HFS_ADDR_DEST. |
| * Except for the Assert on the 1st buffer in case of Encapsualtion, the SIZE fields are ignored. |
| * |
| * In case the encapsulation feature is compiled in, there are the following additional requirements. |
| * o The BUF_CNT of the first buffer changes from a minimum of 0x3A bytes to exactly 0x3A, i.e. the workspace |
| * to store the 802.11 header |
| * o The BUF_SIZE of the first buffer is at least the space needed to store the |
| * - 802.11 header (29 words) |
| * - 802.3 header, i.e. 12 bytes addressing information and 2 bytes length field |
| * - 6 bytes SNAP-header |
| * This results in 39 words or 0x4E bytes or HFS_TYPE. |
| * Note that if the BUF_SIZE is larger than 0x4E, this surplus is not used. |
| * o The actual frame begins in the 2nd descriptor (which is already implied by the BUF_CNT == 0x3A requirement) and the associated buffer contains at least the 802.3 header, i.e. the 14 bytes representing addressing information and length/type field |
| * |
| * When the HCF does not encapsulates (i.e. length/type field <= 1500), no changes are made to descriptors |
| * or buffers. |
| * |
| * When the HCF actually encapsulates (i.e. length/type field > 1500), it successively writes, starting at |
| * offset HFS_ADDR_DEST (0x3A) in the first buffer: |
| * - the 802.3 addressing information, copied from the begin of the second buffer |
| * - the frame length, derived from the total length of the individual fragments, corrected for the SNAP |
| * header length and Type field and ignoring the Destination Address, Source Address and Length field |
| * - the appropriate snap header (Tunnel or 1042, depending on the value of the type field). |
| * |
| * The information in the first two descriptors is adjusted accordingly: |
| * - the first descriptor count is changed from 0x3A to 0x4E (HFS_TYPE), which matches 0x3A + 12 + 2 + 6 |
| * - the second descriptor count is decreased by 12, being the moved addressing information |
| * - the second descriptor (physical) buffer address is increased by 12. |
| * |
| * When the descriptors are returned by hcf_dma_tx_get, the transformation of the first two descriptors is |
| * undone. |
| * |
| * Under any of the above scenarios, the assert BUF_CNT <= BUF_SIZE must be true for all descriptors |
| * In case of encapsulation, BUF_SIZE of the 1st descriptor is asserted to be at least HFS_TYPE (0x4E), so it is NOT tested. |
| * |
| * Assert fails if |
| * - ifbp has a recognizable out-of-range value. |
| * - tx_cntl has a recognizable out-of-range value. |
| * - NIC interrupts are not disabled while required by parameter action. |
| * - in case encapsulation by the HCF is selected: |
| * - The FrameList does not consists of at least 2 Descriptors. |
| * - The first databuffer does not contain exactly the (space for) the 802.11 header (== 28 words) |
| * - The first databuffer does not have a size to additionally accomodate the 802.3 header and the |
| * SNAP header of the frame after encapsulation (== 39 words). |
| * - The second databuffer does not contain at least DA, SA and 'type/length' (==14 bytes or 7 words) |
| *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get |
| *!! them in the WCI-spec !!!! |
| * - DMA is not enabled |
| * - descriptor list is NULL |
| * - a descriptor in the descriptor list is not double word aligned |
| * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble. |
| * - the DELWA descriptor is not a "singleton" DescriptorList. |
| * - the DELWA descriptor is not the first Descriptor supplied |
| * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied |
| *!! - Possibly more checks could be added !!!!!!!!!!!!! |
| *.DIAGRAM |
| * |
| *.NOTICE |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| * |
| *1: Write tx_cntl parameter to HFS_TX_CNTL field into the Hermes-specific header in buffer 1 |
| *4: determine whether encapsulation is needed and write the type (tunnel or 1042) already at the appropriate |
| * offset in the 1st buffer |
| *6: Build the encapsualtion enveloppe in the free space at the end of the 1st buffer |
| * - Copy DA/SA fields from the 2nd buffer |
| * - Calculate total length of the message (snap-header + type-field + the length of all buffer fragments |
| * associated with the 802.3 frame (i.e all descriptors except the first), but not the DestinationAddress, |
| * SourceAddress and lenght-field) |
| * Assert the message length |
| * Write length. Note that the message is in BE format, hence on LE platforms the length must be converted |
| * ;? THIS IS NOT WHAT CURRENTLY IS IMPLEMENTED |
| * - Write snap header. Note that the last byte of the snap header is NOT copied, that byte is already in |
| * place as result of the call to hcf_encap. |
| * Note that there are many ways to skin a cat. To express the offsets in the 1st buffer while writing |
| * the snap header, HFS_TYPE is choosen as a reference point to make it easier to grasp that the snap header |
| * and encapsualtion type are at least relative in the right. |
| *8: modify 1st descriptor to reflect moved part of the 802.3 header + Snap-header |
| * modify 2nd descriptor to skip the moved part of the 802.3 header (DA/SA |
| *10: set each descriptor to 'DMA owned', clear all other control bits. |
| * Set SOP bit on first descriptor. Set EOP bit on last descriptor. |
| *12: Either append the current frame to an existing descriptor list or |
| *14: create a list beginning with the current frame |
| *16: remember the new end of the list |
| *20: hand the frame over to the DMA engine |
| ************************************************************************************************************/ |
| void |
| hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl ) |
| { |
| DESC_STRCT *p = descp->next_desc_addr; |
| int i; |
| |
| #if HCF_ASSERT |
| int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl; |
| HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl ) |
| #endif // HCF_ASSERT |
| HCFLOGENTRY( HCF_TRACE_DMA_TX_PUT, 0xDA03 ) |
| HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ) |
| HCFASSERT_INT |
| HCFASSERT( ( ifbp->IFB_CntlOpt & (USE_DMA|DMA_ENABLED) ) == (USE_DMA|DMA_ENABLED), ifbp->IFB_CntlOpt) |
| |
| if ( descp->buf_addr ) { |
| *(hcf_16*)(descp->buf_addr + HFS_TX_CNTL) = tx_cntl; /*1*/ |
| #if (HCF_ENCAP) == HCF_ENC |
| HCFASSERT( descp->next_desc_addr, 0 ) //at least 2 descripors |
| HCFASSERT( descp->BUF_CNT == HFS_ADDR_DEST, descp->BUF_CNT ) //exact length required for 1st buffer |
| HCFASSERT( descp->BUF_SIZE >= HCF_DMA_TX_BUF1_SIZE, descp->BUF_SIZE ) //minimal storage for encapsulation |
| HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT ); //at least DA, SA and 'type' in 2nd buffer |
| |
| #if (HCF_TYPE) & HCF_TYPE_CCX |
| /* if we are doing PPK +/- CMIC, or we are sending a DDP frame */ |
| if ( ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) || |
| ( ( p->BUF_CNT >= 20 ) && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) && |
| ( p->buf_addr[12] == 0xAA ) && ( p->buf_addr[13] == 0xAA ) && |
| ( p->buf_addr[14] == 0x03 ) && ( p->buf_addr[15] == 0x00 ) && |
| ( p->buf_addr[16] == 0x40 ) && ( p->buf_addr[17] == 0x96 ) && |
| ( p->buf_addr[18] == 0x00 ) && ( p->buf_addr[19] == 0x00 ))) |
| { |
| /* copy the DA/SA to the first buffer */ |
| for ( i = 0; i < HCF_DASA_SIZE; i++ ) { |
| descp->buf_addr[i + HFS_ADDR_DEST] = p->buf_addr[i]; |
| } |
| /* calculate the length of the second fragment only */ |
| i = 0; |
| do { i += p->BUF_CNT; } while( p = p->next_desc_addr ); |
| i -= HCF_DASA_SIZE ; |
| /* convert the length field to big endian, using the endian friendly macros */ |
| i = CNV_SHORT_TO_BIG(i); //!! this converts ONLY on LE platforms, how does that relate to the non-CCX code |
| *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = (hcf_16)i; |
| descp->BUF_CNT = HFS_DAT; |
| // modify 2nd descriptor to skip the 'Da/Sa' fields |
| descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE; |
| descp->next_desc_addr->BUF_CNT -= HCF_DASA_SIZE; |
| } |
| else |
| #endif // HCF_TYPE_CCX |
| { |
| descp->buf_addr[HFS_TYPE-1] = hcf_encap(&descp->next_desc_addr->buf_addr[HCF_DASA_SIZE]); /*4*/ |
| if ( descp->buf_addr[HFS_TYPE-1] != ENC_NONE ) { |
| for ( i=0; i < HCF_DASA_SIZE; i++ ) { /*6*/ |
| descp->buf_addr[i + HFS_ADDR_DEST] = descp->next_desc_addr->buf_addr[i]; |
| } |
| i = sizeof(snap_header) + 2 - ( 2*6 + 2 ); |
| do { i += p->BUF_CNT; } while ( ( p = p->next_desc_addr ) != NULL ); |
| *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = CNV_END_SHORT(i); //!! this converts on ALL platforms, how does that relate to the CCX code |
| for ( i=0; i < sizeof(snap_header) - 1; i++) { |
| descp->buf_addr[HFS_TYPE - sizeof(snap_header) + i] = snap_header[i]; |
| } |
| descp->BUF_CNT = HFS_TYPE; /*8*/ |
| descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE; |
| descp->next_desc_addr->BUF_CNT -= HCF_DASA_SIZE; |
| } |
| } |
| #endif // HCF_ENC |
| } |
| put_frame_lst( ifbp, descp, DMA_TX ); |
| HCFLOGEXIT( HCF_TRACE_DMA_TX_PUT ) |
| } // hcf_dma_tx_put |
| |
| #endif // HCF_DMA |
| |
| #if (HCF_DL_ONLY) == 0 |
| /************************************************************************************************************ |
| * |
| *.MODULE hcf_8 hcf_encap( wci_bufp type ) |
| *.PURPOSE test whether RFC1042 or Bridge-Tunnel encapsulation is needed. |
| * |
| *.ARGUMENTS |
| * type (Far) pointer to the (Big Endian) Type/Length field in the message |
| * |
| *.RETURNS |
| * ENC_NONE len/type is "len" ( (BIG_ENDIAN)type <= 1500 ) |
| * ENC_TUNNEL len/type is "type" and 0x80F3 or 0x8137 |
| * ENC_1042 len/type is "type" but not 0x80F3 or 0x8137 |
| * |
| *.CONDITIONS |
| * NIC Interrupts d.c |
| * |
| *.DESCRIPTION |
| * Type must point to the Len/Type field of the message, this is the 2-byte field immediately after the 6 byte |
| * Destination Address and 6 byte Source Address. The 2 successive bytes addressed by type are interpreted as |
| * a Big Endian value. If that value is less than or equal to 1500, the message is assumed to be in 802.3 |
| * format. Otherwise the message is assumed to be in Ethernet-II format. Depending on the value of Len/Typ, |
| * Bridge Tunnel or RFC1042 encapsulation is needed. |
| * |
| *.DIAGRAM |
| * |
| * 1: presume 802.3, hence preset return value at ENC_NONE |
| * 2: convert type from "network" Endian format to native Endian |
| * 4: the litmus test to distinguish type and len. |
| * The hard code "magic" value of 1500 is intentional and should NOT be replaced by a mnemonic because it is |
| * not related at all to the maximum frame size supported by the Hermes. |
| * 6: check type against: |
| * 0x80F3 //AppleTalk Address Resolution Protocol (AARP) |
| * 0x8137 //IPX |
| * to determine the type of encapsulation |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| #if HCF_ENCAP //i.e HCF_ENC or HCF_ENC_SUP |
| #if ! ( (HCF_ENCAP) & HCF_ENC_SUP ) |
| HCF_STATIC |
| #endif // HCF_ENCAP |
| hcf_8 |
| hcf_encap( wci_bufp type ) |
| { |
| |
| hcf_8 rc = ENC_NONE; /* 1 */ |
| hcf_16 t = (hcf_16)(*type<<8) + *(type+1); /* 2 */ |
| |
| if ( t > 1500 ) { /* 4 */ |
| if ( t == 0x8137 || t == 0x80F3 ) { |
| rc = ENC_TUNNEL; /* 6 */ |
| } else { |
| rc = ENC_1042; |
| } |
| } |
| return rc; |
| } // hcf_encap |
| #endif // HCF_ENCAP |
| #endif // HCF_DL_ONLY |
| |
| |
| /************************************************************************************************************ |
| * |
| *.MODULE int hcf_get_info( IFBP ifbp, LTVP ltvp ) |
| *.PURPOSE Obtains transient and persistent configuration information from the Card and from the HCF. |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * ltvp address of LengthTypeValue structure specifying the "what" and the "how much" of the |
| * information to be collected from the HCF or from the Hermes |
| * |
| *.RETURNS |
| * HCF_ERR_LEN The provided buffer was too small |
| * HCF_SUCCESS Success |
| *!! via cmd_exe ( type >= CFG_RID_FW_MIN ) |
| * HCF_ERR_NO_NIC NIC removed during retrieval |
| * HCF_ERR_TIME_OUT Expected Hermes event did not occure in expected time |
| *!! via cmd_exe and setup_bap (type >= CFG_RID_FW_MIN ) |
| * HCF_ERR_DEFUNCT_... HCF is in defunct mode (bits 0x7F reflect cause) |
| * |
| *.DESCRIPTION |
| * The T-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the RID wanted. The RID |
| * information identified by the T-field is copied into the V-field. |
| * On entry, the L-field specifies the size of the buffer, also called the "Initial DataLength". The L-value |
| * includes the size of the T-field, but not the size of the L-field itself. |
| * On return, the L-field indicates the number of words actually contained by the Type and Value fields. |
| * As the size of the Type field in the LTV-record is included in the "Initial DataLength" of the record, the |
| * V-field can contain at most "Initial DataLength" - 1 words of data. |
| * Copying stops if either the complete Information is copied or if the number of words indicated by the |
| * "Initial DataLength" were copied. The "Initial DataLength" acts as a safe guard against Configuration |
| * Information blocks that have different sizes for different F/W versions, e.g. when later versions support |
| * more tallies than earlier versions. |
| * If the size of Value field of the RID exceeds the size of the "Initial DataLength" -1, as much data |
| * as fits is copied, and an error status of HCF_ERR_LEN is returned. |
| * |
| * It is the responsibility of the MSF to detect card removal and re-insertion and not call the HCF when the |
| * NIC is absent. The MSF cannot, however, timely detect a Card removal if the Card is removed while |
| * hcf_get_info is in progress. Therefore, the HCF performs its own check on Card presence after the read |
| * operation of the NIC data. If the Card is not present or removed during the execution of hcf_get_info, |
| * HCF_ERR_NO_NIC is returned and the content of the Data Buffer is unpredictable. This check is not performed |
| * in case of the "HCF embedded" pseudo RIDs like CFG_TALLIES. |
| * |
| * Assert fails if |
| * - ifbp has a recognizable out-of-range value. |
| * - reentrancy, may be caused by calling hcf_functions without adequate protection |
| * against NIC interrupts or multi-threading. |
| * - ltvp is a NULL pointer. |
| * - length field of the LTV-record at entry is 0 or 1 or has an excessive value (i.e. exceeds HCF_MAX_LTV). |
| * - type field of the LTV-record is invalid. |
| * |
| *.DIAGRAM |
| * Hcf_get_mb_info copies the contents of the oldest MailBox Info block in the MailBox to PC RAM. If len is |
| * less than the size of the MailBox Info block, only as much as fits in the PC RAM buffer is copied. After |
| * the copying the MailBox Read pointer is updated to point to the next MailBox Info block, hence the |
| * remainder of an "oversized" MailBox Info block is lost. The truncation of the MailBox Info block is NOT |
| * reflected in the return status. Note that hcf_get_info guarantees the length of the PC RAM buffer meets |
| * the minimum requirements of at least 2, so no PC RAM buffer overrun. |
| * |
| * Calling hcf_get_mb_info when their is no MailBox Info block available or when there is no MailBox at all, |
| * results in a "NULL" MailBox Info block. |
| * |
| *12: see NOTICE |
| *17: The return status of cmd_wait and the first hcfio_in_string can be ignored, because when one fails, the |
| * other fails via the IFB_DefunctStat mechanism |
| *20: "HCFASSERT( rc == HCF_SUCCESS, rc )" is not suitable because this will always trigger as side effect of |
| * the HCFASSERT in hcf_put_info which calls hcf_get_info to figure out whether the RID exists at all. |
| |
| *.NOTICE |
| * |
| * "HCF embedded" pseudo RIDs: |
| * CFG_MB_INFO, CFG_TALLIES, CFG_DRV_IDENTITY, CFG_DRV_SUP_RANGE, CFG_DRV_ACT_RANGES_PRI, |
| * CFG_DRV_ACT_RANGES_STA, CFG_DRV_ACT_RANGES_HSI |
| * Note the HCF_ERR_LEN is NOT adequately set, when L >= 2 but less than needed |
| * |
| * Remarks: Transfers operation information and transient and persistent configuration information from the |
| * Card and from the HCF to the MSF. |
| * The exact layout of the provided data structure depends on the action code. Copying stops if either the |
| * complete Configuration Information is copied or if the number of bytes indicated by len is copied. Len |
| * acts as a safe guard against Configuration Information blocks which have different sizes for different |
| * Hermes versions, e.g. when later versions support more tallies than earlier versions. It is a conscious |
| * decision that unused parts of the PC RAM buffer are not cleared. |
| * |
| * Remarks: The only error against which is protected is the "Read error" as result of Card removal. Only the |
| * last hcf_io_string need to be protected because if the first fails the second will fail as well. Checking |
| * for cmd_exe errors is supposed superfluous because problems in cmd_exe are already caught or will be |
| * caught by hcf_enable. |
| * |
| * CFG_MB_INFO: copy the oldest MailBox Info Block or the "null" block if none available. |
| * |
| * The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy: |
| * - during the pseudo-asynchronous Hermes commands (diagnose, download) only CFG_MB_INFO is acceptable |
| * - some codes (e.g. CFG_TALLIES) are explicitly handled by the HCF which implies that these codes |
| * are valid |
| * - all other codes in the range 0xFC00 through 0xFFFF are passed to the Hermes. The Hermes returns an |
| * LTV record with a zero value in the L-field for all Typ-codes it does not recognize. This is |
| * defined and intended behavior, so HCF_ASSERT does not catch on this phenomena. |
| * - all remaining codes are invalid and cause an ASSERT. |
| * |
| *.CONDITIONS |
| * In case of USB, HCF_MAX_MSG ;?USED;? to limit the amount of data that can be retrieved via hcf_get_info. |
| * |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| int |
| hcf_get_info( IFBP ifbp, LTVP ltvp ) |
| { |
| |
| int rc = HCF_SUCCESS; |
| hcf_16 len = ltvp->len; |
| hcf_16 type = ltvp->typ; |
| wci_recordp p = <vp->len; //destination word pointer (in LTV record) |
| hcf_16 *q = NULL; /* source word pointer Note!! DOS COM can't cope with FAR |
| * as a consequence MailBox must be near which is usually true anyway |
| */ |
| int i; |
| |
| HCFLOGENTRY( HCF_TRACE_GET_INFO, ltvp->typ ) |
| HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ) |
| HCFASSERT_INT |
| HCFASSERT( ltvp, 0 ) |
| HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, MERGE_2( ltvp->typ, ltvp->len ) ) |
| |
| ltvp->len = 0; //default to: No Info Available |
| #if defined MSF_COMPONENT_ID || (HCF_EXT) & HCF_EXT_MB //filter out all specials |
| for ( i = 0; ( q = xxxx[i] ) != NULL && q[1] != type; i++ ) /*NOP*/; |
| #endif // MSF_COMPONENT_ID / HCF_EXT_MB |
| #if HCF_TALLIES |
| if ( type == CFG_TALLIES ) { /*3*/ |
| (void)hcf_action( ifbp, HCF_ACT_TALLIES ); |
| q = (hcf_16*)&ifbp->IFB_TallyLen; |
| } |
| #endif // HCF_TALLIES |
| #if (HCF_EXT) & HCF_EXT_MB |
| if ( type == CFG_MB_INFO ) { |
| if ( ifbp->IFB_MBInfoLen ) { |
| if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) { |
| ifbp->IFB_MBRp = 0; //;?Probably superfluous |
| } |
| q = &ifbp->IFB_MBp[ifbp->IFB_MBRp]; |
| ifbp->IFB_MBRp += *q + 1; //update read pointer |
| if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) { |
| ifbp->IFB_MBRp = 0; |
| } |
| ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp]; |
| } |
| } |
| #endif // HCF_EXT_MB |
| if ( q != NULL ) { //a special or CFG_TALLIES or CFG_MB_INFO |
| i = min( len, *q ) + 1; //total size of destination (including T-field) |
| while ( i-- ) { |
| *p++ = *q; |
| #if (HCF_TALLIES) & HCF_TALLIES_RESET |
| if ( q > &ifbp->IFB_TallyTyp && type == CFG_TALLIES ) { |
| *q = 0; |
| } |
| #endif // HCF_TALLIES_RESET |
| q++; |
| } |
| } else { // not a special nor CFG_TALLIES nor CFG_MB_INFO |
| if ( type == CFG_CNTL_OPT ) { //read back effective options |
| ltvp->len = 2; |
| ltvp->val[0] = ifbp->IFB_CntlOpt; |
| #if (HCF_EXT) & HCF_EXT_NIC_ACCESS |
| } else if ( type == CFG_PROD_DATA ) { //only needed for some test tool on top of H-II NDIS driver |
| hcf_io io_port; |
| wci_bufp pt; //pointer with the "right" type, just to help ease writing macros with embedded assembly |
| OPW( HREG_AUX_PAGE, (hcf_16)(PLUG_DATA_OFFSET >> 7) ); |
| OPW( HREG_AUX_OFFSET, (hcf_16)(PLUG_DATA_OFFSET & 0x7E) ); |
| io_port = ifbp->IFB_IOBase + HREG_AUX_DATA; //to prevent side effects of the MSF-defined macro |
| p = ltvp->val; //destination char pointer (in LTV record) |
| i = len - 1; |
| if (i > 0 ) { |
| pt = (wci_bufp)p; //just to help ease writing macros with embedded assembly |
| IN_PORT_STRING_8_16( io_port, pt, i ); //space used by T: -1 |
| } |
| } else if ( type == CFG_CMD_HCF ) { |
| #define P ((CFG_CMD_HCF_STRCT FAR *)ltvp) |
| HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd ) //only Hermes register access supported |
| if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) { |
| HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode ) //Check Register space |
| ltvp->len = min( len, 4 ); //RESTORE ltv length |
| P->add_info = IPW( P->mode ); |
| } |
| #undef P |
| #endif // HCF_EXT_NIC_ACCESS |
| #if (HCF_ASSERT) & HCF_ASSERT_PRINTF |
| } else if (type == CFG_FW_PRINTF) { |
| rc = fw_printf(ifbp, (CFG_FW_PRINTF_STRCT*)ltvp); |
| #endif // HCF_ASSERT_PRINTF |
| } else if ( type >= CFG_RID_FW_MIN ) { |
| //;? by using HCMD_BUSY option when calling cmd_exe, using a get_frag with length 0 just to set up the |
| //;? BAP and calling cmd_cmpl, you could merge the 2 Busy waits. Whether this really helps (and what |
| //;? would be the optimal sequence in cmd_exe and get_frag) would have to be MEASURED |
| /*17*/ if ( ( rc = cmd_exe( ifbp, HCMD_ACCESS, type ) ) == HCF_SUCCESS && |
| ( rc = setup_bap( ifbp, type, 0, IO_IN ) ) == HCF_SUCCESS ) { |
| get_frag( ifbp, (wci_bufp)<vp->len, 2*len+2 BE_PAR(2) ); |
| if ( IPW( HREG_STAT ) == 0xFFFF ) { //NIC removal test |
| ltvp->len = 0; |
| HCFASSERT( DO_ASSERT, type ) |
| } |
| } |
| /*12*/ } else HCFASSERT( DO_ASSERT, type ) /*NOP*/; //NOP in case HCFASSERT is dummy |
| } |
| if ( len < ltvp->len ) { |
| ltvp->len = len; |
| if ( rc == HCF_SUCCESS ) { |
| rc = HCF_ERR_LEN; |
| } |
| } |
| HCFASSERT( rc == HCF_SUCCESS || ( rc == HCF_ERR_LEN && ifbp->IFB_AssertTrace & 1<<HCF_TRACE_PUT_INFO ), |
| MERGE_2( type, rc ) ) /*20*/ |
| HCFLOGEXIT( HCF_TRACE_GET_INFO ) |
| return rc; |
| } // hcf_get_info |
| |
| |
| /************************************************************************************************************ |
| * |
| *.MODULE int hcf_put_info( IFBP ifbp, LTVP ltvp ) |
| *.PURPOSE Transfers operation and configuration information to the Card and to the HCF. |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * ltvp specifies the RID (as defined by Hermes I/F) or pseudo-RID (as defined by WCI) |
| * |
| *.RETURNS |
| * HCF_SUCCESS |
| *!! via cmd_exe |
| * HCF_ERR_NO_NIC NIC removed during data retrieval |
| * HCF_ERR_TIME_OUT Expected F/W event did not occur in time |
| * HCF_ERR_DEFUNCT_... |
| *!! via download CFG_DLNV_START <= type <= CFG_DL_STOP |
| *!! via put_info CFG_RID_CFG_MIN <= type <= CFG_RID_CFG_MAX |
| *!! via put_frag |
| * |
| *.DESCRIPTION |
| * The L-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the size of the buffer. |
| * The L-value includes the size of the T-field, but not the size of the L-field. |
| * The T- field specifies the RID placed in the V-field by the MSF. |
| * |
| * Not all CFG-codes can be used for hcf_put_info. The following CFG-codes are valid for hcf_put_info: |
| * o One of the CFG-codes in the group "Network Parameters, Static Configuration Entities" |
| * Changes made by hcf_put_info to CFG_codes in this group will not affect the F/W |
| * and HCF behavior until hcf_cntl_port( HCF_PORT_ENABLE) is called. |
| * o One of the CFG-codes in the group "Network Parameters, Dynamic Configuration Entities" |
| * Changes made by hcf_put_info to CFG_codes will affect the F/W and HCF behavior immediately. |
| * o CFG_PROG. |
| * This code is used to initiate and terminate the process to download data either to |
| * volatile or to non-volatile RAM on the NIC as well as for the actual download. |
| * o CFG-codes related to the HCF behavior. |
| * The related CFG-codes are: |
| * - CFG_REG_MB |
| * - CFG_REG_ASSERT_RTNP |
| * - CFG_REG_INFO_LOG |
| * - CFG_CMD_NIC |
| * - CFG_CMD_DONGLE |
| * - CFG_CMD_HCF |
| * - CFG_NOTIFY |
| * |
| * All LTV-records "unknown" to the HCF are forwarded to the F/W. |
| * |
| * Assert fails if |
| * - ifbp has a recognizable out-of-range value. |
| * - ltvp is a NULL pointer. |
| * - hcf_put_info was called without prior call to hcf_connect |
| * - type field of the LTV-record is invalid, i.e. neither HCF nor F/W can handle the value. |
| * - length field of the LTV-record at entry is less than 1 or exceeds MAX_LTV_SIZE. |
| * - registering a MailBox with size less than 60 or a non-aligned buffer address is used. |
| * - reentrancy, may be caused by calling hcf_functions without adequate protection against |
| * NIC interrupts or multi-threading. |
| * |
| *.DIAGRAM |
| * |
| *.NOTICE |
| * Remarks: In case of Hermes Configuration LTVs, the codes for the type are "cleverly" chosen to be |
| * identical to the RID. Hermes Configuration information is copied from the provided data structure into the |
| * Card. |
| * In case of HCF Configuration LTVs, the type values are chosen in a range which does not overlap the |
| * RID-range. |
| * |
| *20: |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| |
| int |
| hcf_put_info( IFBP ifbp, LTVP ltvp ) |
| { |
| int rc = HCF_SUCCESS; |
| |
| HCFLOGENTRY( HCF_TRACE_PUT_INFO, ltvp->typ ) |
| HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ) |
| HCFASSERT_INT |
| HCFASSERT( ltvp, 0 ) |
| HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, ltvp->len ) |
| |
| //all codes between 0xFA00 and 0xFCFF are passed to Hermes |
| #if (HCF_TYPE) & HCF_TYPE_WPA |
| { hcf_16 i; |
| hcf_32 FAR * key_p; |
| |
| if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY || ltvp->typ == CFG_ADD_TKIP_MAPPED_KEY ) { |
| key_p = (hcf_32*)((CFG_ADD_TKIP_MAPPED_KEY_STRCT FAR *)ltvp)->tx_mic_key; |
| i = TX_KEY; //i.e. TxKeyIndicator == 1, KeyID == 0 |
| if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY ) { |
| key_p = (hcf_32*)((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tx_mic_key; |
| i = CNV_LITTLE_TO_SHORT(((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tkip_key_id_info); |
| } |
| if ( i & TX_KEY ) { /* TxKeyIndicator == 1 |
| (either really set by MSF in case of DEFAULT or faked by HCF in case of MAPPED ) */ |
| ifbp->IFB_MICTxCntl = (hcf_16)( HFS_TX_CNTL_MIC | (i & KEY_ID )<<8 ); |
| ifbp->IFB_MICTxKey[0] = CNV_LONGP_TO_LITTLE( key_p ); |
| ifbp->IFB_MICTxKey[1] = CNV_LONGP_TO_LITTLE( (key_p+1) ); |
| } |
| i = ( i & KEY_ID ) * 2; |
| ifbp->IFB_MICRxKey[i] = CNV_LONGP_TO_LITTLE( (key_p+2) ); |
| ifbp->IFB_MICRxKey[i+1] = CNV_LONGP_TO_LITTLE( (key_p+3) ); |
| } |
| #define P ((CFG_REMOVE_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp) |
| if ( ( ltvp->typ == CFG_REMOVE_TKIP_MAPPED_KEY ) || |
| ( ltvp->typ == CFG_REMOVE_TKIP_DEFAULT_KEY && |
| ( (ifbp->IFB_MICTxCntl >> 8) & KEY_ID ) == CNV_SHORT_TO_LITTLE(P->tkip_key_id ) |
| ) |
| ) { ifbp->IFB_MICTxCntl = 0; } //disable MIC-engine |
| #undef P |
| } |
| #endif // HCF_TYPE_WPA |
| |
| if ( ltvp->typ == CFG_PROG ) { |
| rc = download( ifbp, (CFG_PROG_STRCT FAR *)ltvp ); |
| } else switch (ltvp->typ) { |
| #if (HCF_ASSERT) & HCF_ASSERT_RT_MSF_RTN |
| case CFG_REG_ASSERT_RTNP: //Register MSF Routines |
| #define P ((CFG_REG_ASSERT_RTNP_STRCT FAR *)ltvp) |
| ifbp->IFB_AssertRtn = P->rtnp; |
| // ifbp->IFB_AssertLvl = P->lvl; //TODO not yet supported so default is set in hcf_connect |
| HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF1 ) ) //just to proof that the complete assert machinery is working |
| #undef P |
| break; |
| #endif // HCF_ASSERT_RT_MSF_RTN |
| #if (HCF_EXT) & HCF_EXT_INFO_LOG |
| case CFG_REG_INFO_LOG: //Register Log filter |
| ifbp->IFB_RIDLogp = ((CFG_RID_LOG_STRCT FAR*)ltvp)->recordp; |
| break; |
| #endif // HCF_EXT_INFO_LOG |
| case CFG_CNTL_OPT: //overrule option |
| HCFASSERT( ( ltvp->val[0] & ~(USE_DMA | USE_16BIT) ) == 0, ltvp->val[0] ) |
| if ( ( ltvp->val[0] & USE_DMA ) == 0 ) ifbp->IFB_CntlOpt &= ~USE_DMA; |
| ifbp->IFB_CntlOpt |= ltvp->val[0] & USE_16BIT; |
| break; |
| #if (HCF_EXT) & HCF_EXT_MB |
| case CFG_REG_MB: //Register MailBox |
| #define P ((CFG_REG_MB_STRCT FAR *)ltvp) |
| HCFASSERT( ( (hcf_32)P->mb_addr & 0x0001 ) == 0, (hcf_32)P->mb_addr ) |
| HCFASSERT( (P)->mb_size >= 60, (P)->mb_size ) |
| ifbp->IFB_MBp = P->mb_addr; |
| /* if no MB present, size must be 0 for ;?the old;? put_info_mb to work correctly */ |
| ifbp->IFB_MBSize = ifbp->IFB_MBp == NULL ? 0 : P->mb_size; |
| ifbp->IFB_MBWp = ifbp->IFB_MBRp = 0; |
| ifbp->IFB_MBp[0] = 0; //flag the MailBox as empty |
| ifbp->IFB_MBInfoLen = 0; |
| HCFASSERT( ifbp->IFB_MBSize >= 60 || ifbp->IFB_MBp == NULL, ifbp->IFB_MBSize ) |
| #undef P |
| break; |
| case CFG_MB_INFO: //store MailBoxInfoBlock |
| rc = put_info_mb( ifbp, (CFG_MB_INFO_STRCT FAR *)ltvp ); |
| break; |
| #endif // HCF_EXT_MB |
| |
| #if (HCF_EXT) & HCF_EXT_NIC_ACCESS |
| case CFG_CMD_NIC: |
| #define P ((CFG_CMD_NIC_STRCT FAR *)ltvp) |
| OPW( HREG_PARAM_2, P->parm2 ); |
| OPW( HREG_PARAM_1, P->parm1 ); |
| rc = cmd_exe( ifbp, P->cmd, P->parm0 ); |
| P->hcf_stat = (hcf_16)rc; |
| P->stat = IPW( HREG_STAT ); |
| P->resp0 = IPW( HREG_RESP_0 ); |
| P->resp1 = IPW( HREG_RESP_1 ); |
| P->resp2 = IPW( HREG_RESP_2 ); |
| P->ifb_err_cmd = ifbp->IFB_ErrCmd; |
| P->ifb_err_qualifier = ifbp->IFB_ErrQualifier; |
| #undef P |
| break; |
| case CFG_CMD_HCF: |
| #define P ((CFG_CMD_HCF_STRCT FAR *)ltvp) |
| HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd ) //only Hermes register access supported |
| if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) { |
| HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode ) //Check Register space |
| OPW( P->mode, P->add_info); |
| } |
| #undef P |
| break; |
| #endif // HCF_EXT_NIC_ACCESS |
| |
| #if (HCF_ASSERT) & HCF_ASSERT_PRINTF |
| case CFG_FW_PRINTF_BUFFER_LOCATION: |
| ifbp->IFB_FwPfBuff = *(CFG_FW_PRINTF_BUFFER_LOCATION_STRCT*)ltvp; |
| break; |
| #endif // HCF_ASSERT_PRINTF |
| |
| default: //pass everything unknown above the "FID" range to the Hermes or Dongle |
| rc = put_info( ifbp, ltvp ); |
| } |
| //DO NOT !!! HCFASSERT( rc == HCF_SUCCESS, rc ) /* 20 */ |
| HCFLOGEXIT( HCF_TRACE_PUT_INFO ) |
| return rc; |
| } // hcf_put_info |
| |
| |
| #if (HCF_DL_ONLY) == 0 |
| /************************************************************************************************************ |
| * |
| *.MODULE int hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset ) |
| *.PURPOSE All: decapsulate a message. |
| * pre-HermesII.5: verify MIC. |
| * non-USB, non-DMA mode: Transfer a message from the NIC to the Host and acknowledge reception. |
| * USB: Transform a message from proprietary USB format to 802.3 format |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * descp Pointer to the Descriptor List location. |
| * offset USB: not used |
| * non-USB: specifies the beginning of the data to be obtained (0 corresponds with DestAddr field |
| * of frame). |
| * |
| *.RETURNS |
| * HCF_SUCCESS No SSN error ( or HCF_ERR_MIC already reported by hcf_service_nic) |
| * HCF_ERR_MIC message contains an erroneous MIC ( HCF_SUCCESS is reported if HCF_ERR_MIC is already |
| * reported by hcf_service_nic) |
| * HCF_ERR_NO_NIC NIC removed during data retrieval |
| * HCF_ERR_DEFUNCT... |
| * |
| *.DESCRIPTION |
| * The Receive Message Function can be executed by the MSF to obtain the Data Info fields of the message that |
| * is reported to be available by the Service NIC Function. |
| * |
| * The Receive Message Function copies the message data available in the Card memory into a buffer structure |
| * provided by the MSF. |
| * Only data of the message indicated by the Service NIC Function can be obtained. |
| * Execution of the Service NIC function may result in the availability of a new message, but it definitely |
| * makes the message reported by the preceding Service NIC function, unavailable. |
| * |
| * in non-USB/non-DMA mode, hcf_rcv_msg starts the copy process at the (non-negative) offset requested by the |
| * parameter offset, relative to HFS_ADDR_DEST, e.g offset 0 starts copying from the Destination Address, the |
| * very begin of the 802.3 frame message. Offset must either lay within the part of the 802.3 frame as stored |
| * by hcf_service_nic in the lookahead buffer or be just behind it, i.e. the first byte not yet read. |
| * When offset is within lookahead, data is copied from lookahead. |
| * When offset is beyond lookahead, data is read directly from RxFS in NIC with disregard of the actual value |
| * of offset |
| * |
| *.NOTICE: |
| * o at entry: look ahead buffer as passed with hcf_service_nic is still accessible and unchanged |
| * o at exit: Receive Frame in NIC memory is released |
| * |
| * Description: |
| * Starting at the byte indicated by the Offset value, the bytes are copied from the Data Info |
| * Part of the current Receive Frame Structure to the Host memory data buffer structure |
| * identified by descp. |
| * The maximum value for Offset is the number of characters of the 802.3 frame read into the |
| * look ahead buffer by hcf_service_nic (i.e. the look ahead buffer size minus |
| * Control and 802.11 fields) |
| * If Offset is less than the maximum value, copying starts from the look ahead buffer till the |
| * end of that buffer is reached |
| * Then (or if the maximum value is specified for Offset), the |
| * message is directly copied from NIC memory to Host memory. |
| * If an invalid (i.e. too large) offset is specified, an assert catches but the buffer contents are |
| * undefined. |
| * Copying stops if either: |
| * o the end of the 802.3 frame is reached |
| * o the Descriptor with a NULL pointer in the next_desc_addr field is reached |
| * |
| * When the copying stops, the receiver is ack'ed, thus freeing the NIC memory where the frame is stored |
| * As a consequence, hcf_rcv_msg can only be called once for any particular Rx frame. |
| * |
| * For the time being (PCI Bus mastering not yet supported), only the following fields of each |
| * of the descriptors in the descriptor list must be set by the MSF: |
| * o buf_cntl.buf_dim[1] |
| * o *next_desc_addr |
| * o *buf_addr |
| * At return from hcf_rcv_msg, the field buf_cntl.buf_dim[0] of the used Descriptors reflects |
| * the number of bytes in the buffer corresponding with the Descriptor. |
| * On the last used Descriptor, buf_cntl.buf_dim[0] is less or equal to buf_cntl.buf_dim[1]. |
| * On all preceding Descriptors buf_cntl.buf_dim[0] is equal to buf_cntl.buf_dim[1]. |
| * On all succeeding (unused) Descriptors, buf_cntl.buf_dim[0] is zero. |
| * Note: this I/F is based on the assumptions how the I/F needed for PCI Bus mastering will |
| * be, so it may change. |
| * |
| * The most likely handling of HCF_ERR_NO_NIC by the MSF is to drop the already copied |
| * data as elegantly as possible under the constraints and requirements posed by the (N)OS. |
| * If no received Frame Structure is pending, "Success" rather than "Read error" is returned. |
| * This error constitutes a logic flaw in the MSF |
| * The HCF can only catch a minority of this |
| * type of errors |
| * Based on consistency ideas, the HCF catches none of these errors. |
| * |
| * Assert fails if |
| * - ifbp has a recognizable out-of-range value |
| * - there is no unacknowledged Rx-message available |
| * - offset is out of range (outside look ahead buffer) |
| * - descp is a NULL pointer |
| * - any of the descriptors is not double word aligned |
| * - reentrancy, may be caused by calling hcf_functions without adequate protection |
| * against NIC interrupts or multi-threading. |
| * - Interrupts are enabled. |
| * |
| *.DIAGRAM |
| * |
| *.NOTICE |
| * - by using unsigned int as type for offset, no need to worry about negative offsets |
| * - Asserting on being enabled/present is superfluous, since a non-zero IFB_lal implies that hcf_service_nic |
| * was called and detected a Rx-message. A zero IFB_lal will set the BUF_CNT field of at least the first |
| * descriptor to zero. |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| int |
| hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset ) |
| { |
| int rc = HCF_SUCCESS; |
| wci_bufp cp; //char oriented working pointer |
| hcf_16 i; |
| int tot_len = ifbp->IFB_RxLen - offset; //total length |
| wci_bufp lap = ifbp->IFB_lap + offset; //start address in LookAhead Buffer |
| hcf_16 lal = ifbp->IFB_lal - offset; //available data within LookAhead Buffer |
| hcf_16 j; |
| |
| HCFLOGENTRY( HCF_TRACE_RCV_MSG, offset ) |
| HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ) |
| HCFASSERT_INT |
| HCFASSERT( descp, HCF_TRACE_RCV_MSG ) |
| HCFASSERT( ifbp->IFB_RxLen, HCF_TRACE_RCV_MSG ) |
| HCFASSERT( ifbp->IFB_RxLen >= offset, MERGE_2( offset, ifbp->IFB_RxLen ) ) |
| HCFASSERT( ifbp->IFB_lal >= offset, offset ) |
| HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADA ) |
| |
| if ( tot_len < 0 ) { |
| lal = 0; tot_len = 0; //suppress all copying activity in the do--while loop |
| } |
| do { //loop over all available fragments |
| // obnoxious hcf.c(1480) : warning C4769: conversion of near pointer to long integer |
| HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp ) |
| cp = descp->buf_addr; |
| j = min( (hcf_16)tot_len, descp->BUF_SIZE ); //minimum of "what's` available" and fragment size |
| descp->BUF_CNT = j; |
| tot_len -= j; //adjust length still to go |
| if ( lal ) { //if lookahead Buffer not yet completely copied |
| i = min( lal, j ); //minimum of "what's available" in LookAhead and fragment size |
| lal -= i; //adjust length still available in LookAhead |
| j -= i; //adjust length still available in current fragment |
| /*;? while loop could be improved by moving words but that is complicated on platforms with |
| * alignment requirements*/ |
| while ( i-- ) *cp++ = *lap++; |
| } |
| if ( j ) { //if LookAhead Buffer exhausted but still space in fragment, copy directly from NIC RAM |
| get_frag( ifbp, cp, j BE_PAR(0) ); |
| CALC_RX_MIC( cp, j ); |
| } |
| } while ( ( descp = descp->next_desc_addr ) != NULL ); |
| #if (HCF_TYPE) & HCF_TYPE_WPA |
| if ( ifbp->IFB_RxFID ) { |
| rc = check_mic( ifbp ); //prevents MIC error report if hcf_service_nic already consumed all |
| } |
| #endif // HCF_TYPE_WPA |
| (void)hcf_action( ifbp, HCF_ACT_RX_ACK ); //only 1 shot to get the data, so free the resources in the NIC |
| HCFASSERT( rc == HCF_SUCCESS, rc ) |
| HCFLOGEXIT( HCF_TRACE_RCV_MSG ) |
| return rc; |
| } // hcf_rcv_msg |
| #endif // HCF_DL_ONLY |
| |
| |
| #if (HCF_DL_ONLY) == 0 |
| /************************************************************************************************************ |
| * |
| *.MODULE int hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl ) |
| *.PURPOSE Encapsulate a message and append padding and MIC. |
| * non-USB: Transfers the resulting message from Host to NIC and initiates transmission. |
| * USB: Transfer resulting message into a flat buffer. |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * descp pointer to the DescriptorList or NULL |
| * tx_cntl indicates MAC-port and (Hermes) options |
| * HFS_TX_CNTL_SPECTRALINK |
| * HFS_TX_CNTL_PRIO |
| * HFS_TX_CNTL_TX_OK |
| * HFS_TX_CNTL_TX_EX |
| * HFS_TX_CNTL_TX_DELAY |
| * HFS_TX_CNTL_TX_CONT |
| * HCF_PORT_0 MAC Port 0 (default) |
| * HCF_PORT_1 (AP only) MAC Port 1 |
| * HCF_PORT_2 (AP only) MAC Port 2 |
| * HCF_PORT_3 (AP only) MAC Port 3 |
| * HCF_PORT_4 (AP only) MAC Port 4 |
| * HCF_PORT_5 (AP only) MAC Port 5 |
| * HCF_PORT_6 (AP only) MAC Port 6 |
| * |
| *.RETURNS |
| * HCF_SUCCESS |
| * HCF_ERR_DEFUNCT_.. |
| * HCF_ERR_TIME_OUT |
| * |
| *.DESCRIPTION: |
| * The Send Message Function embodies 2 functions: |
| * o transfers a message (including MAC header) from the provided buffer structure in Host memory to the Transmit |
| * Frame Structure (TxFS) in NIC memory. |
| * o Issue a send command to the F/W to actually transmit the contents of the TxFS. |
| * |
| * Control is based on the Resource Indicator IFB_RscInd. |
| * The Resource Indicator is maintained by the HCF and should only be interpreted but not changed by the MSF. |
| * The MSF must check IFB_RscInd to be non-zero before executing the call to the Send Message Function. |
| * When no resources are available, the MSF must handle the queuing of the Transmit frame and check the |
| * Resource Indicator periodically after calling hcf_service_nic. |
| * |
| * The Send Message Functions transfers a message to NIC memory when it is called with a non-NULL descp. |
| * Before the Send Message Function is invoked this way, the Resource Indicator (IFB_RscInd) must be checked. |
| * If the Resource is not available, Send Message Function execution must be postponed until after processing of |
| * a next hcf_service_nic it appears that the Resource has become available. |
| * The message is copied from the buffer structure identified by descp to the NIC. |
| * Copying stops if a NULL pointer in the next_desc_addr field is reached. |
| * Hcf_send_msg does not check for transmit buffer overflow, because the F/W does this protection. |
| * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped. |
| * |
| * The Send Message Function activates the F/W to actually send the message to the medium when the |
| * HFS_TX_CNTL_TX_DELAY bit of the tx_cntl parameter is not set. |
| * If the descp parameter of the current call is non-NULL, the message as represented by descp is send. |
| * If the descp parameter of the current call is NULL, and if the preceding call of the Send Message Function had |
| * a non-NULL descp and the preceding call had the HFS_TX_CNTL_TX_DELAY bit of tx_cntl set, then the message as |
| * represented by the descp of the preceding call is send. |
| * |
| * Hcf_send_msg supports encapsulation (see HCF_ENCAP) of Ethernet-II frames. |
| * An Ethernet-II frame is transferred to the Transmit Frame structure as an 802.3 frame. |
| * Hcf_send_msg distinguishes between an 802.3 and an Ethernet-II frame by looking at the data length/type field |
| * of the frame. If this field contains a value larger than 1514, the frame is considered to be an Ethernet-II |
| * frame, otherwise it is treated as an 802.3 frame. |
| * To ease implementation of the HCF, this type/type field must be located in the first descriptor structure, |
| * i.e. the 1st fragment must have a size of at least 14 (to contain DestAddr, SrcAddr and Len/Type field). |
| * An Ethernet-II frame is encapsulated by inserting a SNAP header between the addressing information and the |
| * type field. This insertion is transparent for the MSF. |
| * The HCF contains a fixed table that stores a number of types. If the value specified by the type/type field |
| * occurs in this table, Bridge Tunnel Encapsulation is used, otherwise RFC1042 encapsulation is used. |
| * Bridge Tunnel uses AA AA 03 00 00 F8 as SNAP header, |
| * RFC1042 uses AA AA 03 00 00 00 as SNAP header. |
| * The table currently contains: |
| * 0 0x80F3 AppleTalk Address Resolution Protocol (AARP) |
| * 0 0x8137 IPX |
| * |
| * The algorithm to distinguish between 802.3 and Ethernet-II frames limits the maximum length for frames of |
| * 802.3 frames to 1514 bytes. |
| * Encapsulation can be suppressed by means of the system constant HCF_ENCAP, e.g. to support proprietary |
| * protocols with 802.3 like frames with a size larger than 1514 bytes. |
| * |
| * In case the HCF encapsulates the frame, the number of bytes that is actually transmitted is determined by the |
| * cumulative value of the buf_cntl.buf_dim[0] fields. |
| * In case the HCF does not encapsulate the frame, the number of bytes that is actually transmitted is not |
| * determined by the cumulative value of the buf_cntl.buf_dim[DESC_CNTL_CNT] fields of the desc_strct's but by |
| * the Length field of the 802.3 frame. |
| * If there is a conflict between the cumulative value of the buf_cntl.buf_dim[0] fields and the |
| * 802.3 Length field the 802.3 Length field determines the number of bytes actually transmitted by the NIC while |
| * the cumulative value of the buf_cntl.buf_dim[0] fields determines the position of the MIC, hence a mismatch |
| * will result in MIC errors on the Receiving side. |
| * Currently this problem is flagged on the Transmit side by an Assert. |
| * The following fields of each of the descriptors in the descriptor list must be set by the MSF: |
| * o buf_cntl.buf_dim[0] |
| * o *next_desc_addr |
| * o *buf_addr |
| * |
| * All bits of the tx_cntl parameter except HFS_TX_CNTL_TX_DELAY and the HCF_PORT# bits are passed to the F/W via |
| * the HFS_TX_CNTL field of the TxFS. |
| * |
| * Note that hcf_send_msg does not detect NIC absence. The MSF is supposed to have its own -platform dependent- |
| * way to recognize card removal/insertion. |
| * The total system must be robust against card removal and there is no principal difference between card removal |
| * just after hcf_send_msg returns but before the actual transmission took place or sometime earlier. |
| * |
| * Assert fails if |
| * - ifbp has a recognizable out-of-range value |
| * - descp is a NULL pointer |
| * - no resources for PIF available. |
| * - Interrupts are enabled. |
| * - reentrancy, may be caused by calling hcf_functions without adequate protection |
| * against NIC interrupts or multi-threading. |
| * |
| *.DIAGRAM |
| *4: for the normal case (i.e. no HFS_TX_CNTL_TX_DELAY option active), a fid is acquired via the |
| * routine get_fid. If no FID is acquired, the remainder is skipped without an error notification. After |
| * all, the MSF is not supposed to call hcf_send_msg when no Resource is available. |
| *7: The ControlField of the TxFS is written. Since put_frag can only return the fatal Defunct or "No NIC", the |
| * return status can be ignored because when it fails, cmd_wait will fail as well. (see also the note on the |
| * need for a return code below). |
| * Note that HFS_TX_CNTL has different values for H-I, H-I/SSN and H-II and HFS_ADDR_DEST has different |
| * values for H-I (regardless of SSN) and H-II. |
| * By writing 17, 1 or 2 ( implying 16, 0 or 1 garbage word after HFS_TX_CNTL) the BAP just gets to |
| * HFS_ADDR_DEST for H-I, H-I/SSN and H-II respectively. |
| *10: if neither encapsulation nor MIC calculation is needed, splitting the first fragment in two does not |
| * really help but it makes the flow easier to follow to do not optimize on this difference |
| * |
| * hcf_send_msg checks whether the frame is an Ethernet-II rather than an "official" 802.3 frame. |
| * The E-II check is based on the length/type field in the MAC header. If this field has a value larger than |
| * 1500, E-II is assumed. The implementation of this test fails if the length/type field is not in the first |
| * descriptor. If E-II is recognized, a SNAP header is inserted. This SNAP header represents either RFC1042 |
| * or Bridge-Tunnel encapsulation, depending on the return status of the support routine hcf_encap. |
| * |
| *.NOTICE |
| * hcf_send_msg leaves the responsibility to only send messages on enabled ports at the MSF level. |
| * This is considered the strategy which is sufficiently adequate for all "robust" MSFs, have the least |
| * processor utilization and being still acceptable robust at the WCI !!!!! |
| * |
| * hcf_send_msg does not NEED a return value to report NIC absence or removal during the execution of |
| * hcf_send_msg(), because the MSF and higher layers must be able to cope anyway with the NIC being removed |
| * after a successful completion of hcf_send_msg() but before the actual transmission took place. |
| * To accommodate user expectations the current implementation does report NIC absence. |
| * Defunct blocks all NIC access and will (also) be reported on a number of other calls. |
| * |
| * hcf_send_msg does not check for transmit buffer overflow because the Hermes does this protection. |
| * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped. |
| * Note that this possibly results in the transmission of incomplete frames. |
| * |
| * After some deliberation with F/W team, it is decided that - being in the twilight zone of not knowing |
| * whether the problem at hand is an MSF bug, HCF buf, F/W bug, H/W malfunction or even something else - there |
| * is no "best thing to do" in case of a failing send, hence the HCF considers the TxFID ownership to be taken |
| * over by the F/W and hopes for an Allocate event in due time |
| * |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| int |
| hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl ) |
| { |
| int rc = HCF_SUCCESS; |
| DESC_STRCT *p /* = descp*/; //working pointer |
| hcf_16 len; // total byte count |
| hcf_16 i; |
| |
| hcf_16 fid = 0; |
| |
| HCFASSERT( ifbp->IFB_RscInd || descp == NULL, ifbp->IFB_RscInd ) |
| HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADB ) |
| |
| HCFLOGENTRY( HCF_TRACE_SEND_MSG, tx_cntl ) |
| HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ) |
| HCFASSERT_INT |
| /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer, |
| * so skip */ |
| HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp ) |
| #if HCF_ASSERT |
| { int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl; |
| HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl ) |
| } |
| #endif // HCF_ASSERT |
| |
| if ( descp ) ifbp->IFB_TxFID = 0; //cancel a pre-put message |
| |
| #if (HCF_EXT) & HCF_EXT_TX_CONT // Continuous transmit test |
| if ( tx_cntl == HFS_TX_CNTL_TX_CONT ) { |
| fid = get_fid(ifbp); |
| if (fid != 0 ) { |
| //setup BAP to begin of TxFS |
| (void)setup_bap( ifbp, fid, 0, IO_OUT ); |
| //copy all the fragments in a transparent fashion |
| for ( p = descp; p; p = p->next_desc_addr ) { |
| /* obnoxious warning C4769: conversion of near pointer to long integer */ |
| HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p ) |
| put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) ); |
| } |
| rc = cmd_exe( ifbp, HCMD_THESEUS | HCMD_BUSY | HCMD_STARTPREAMBLE, fid ); |
| if ( ifbp->IFB_RscInd == 0 ) { |
| ifbp->IFB_RscInd = get_fid( ifbp ); |
| } |
| } |
| // een slecht voorbeeld doet goed volgen ;? |
| HCFLOGEXIT( HCF_TRACE_SEND_MSG ) |
| return rc; |
| } |
| #endif // HCF_EXT_TX_CONT |
| /* the following initialization code is redundant for a pre-put message |
| * but moving it inside the "if fid" logic makes the merging with the |
| * USB flow awkward |
| */ |
| #if (HCF_TYPE) & HCF_TYPE_WPA |
| tx_cntl |= ifbp->IFB_MICTxCntl; |
| #endif // HCF_TYPE_WPA |
| fid = ifbp->IFB_TxFID; |
| if (fid == 0 && ( fid = get_fid( ifbp ) ) != 0 ) /* 4 */ |
| /* skip the next compound statement if: |
| - pre-put message or |
| - no fid available (which should never occur if the MSF adheres to the WCI) |
| */ |
| { // to match the closing curly bracket of above "if" in case of HCF_TYPE_USB |
| //calculate total length ;? superfluous unless CCX or Encapsulation |
| len = 0; |
| p = descp; |
| do len += p->BUF_CNT; while ( ( p = p->next_desc_addr ) != NULL ); |
| p = descp; |
| //;? HCFASSERT( len <= HCF_MAX_MSG, len ) |
| /*7*/ (void)setup_bap( ifbp, fid, HFS_TX_CNTL, IO_OUT ); |
| #if (HCF_TYPE) & HCF_TYPE_TX_DELAY |
| HCFASSERT( ( descp != NULL ) ^ ( tx_cntl & HFS_TX_CNTL_TX_DELAY ), tx_cntl ) |
| if ( tx_cntl & HFS_TX_CNTL_TX_DELAY ) { |
| tx_cntl &= ~HFS_TX_CNTL_TX_DELAY; //!!HFS_TX_CNTL_TX_DELAY no longer available |
| ifbp->IFB_TxFID = fid; |
| fid = 0; //!!fid no longer available, be careful when modifying code |
| } |
| #endif // HCF_TYPE_TX_DELAY |
| OPW( HREG_DATA_1, tx_cntl ) ; |
| OPW( HREG_DATA_1, 0 ); |
| #if ! ( (HCF_TYPE) & HCF_TYPE_CCX ) |
| HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT ) |
| /* assume DestAddr/SrcAddr/Len/Type ALWAYS contained in 1st fragment |
| * otherwise life gets too cumbersome for MIC and Encapsulation !!!!!!!! |
| if ( p->BUF_CNT >= 14 ) { alternatively: add a safety escape !!!!!!!!!!!! } */ |
| #endif // HCF_TYPE_CCX |
| CALC_TX_MIC( NULL, -1 ); //initialize MIC |
| /*10*/ put_frag( ifbp, p->buf_addr, HCF_DASA_SIZE BE_PAR(0) ); //write DA, SA with MIC calculation |
| CALC_TX_MIC( p->buf_addr, HCF_DASA_SIZE ); //MIC over DA, SA |
| CALC_TX_MIC( null_addr, 4 ); //MIC over (virtual) priority field |
| #if (HCF_TYPE) & HCF_TYPE_CCX |
| //!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0 |
| if(( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) || |
| ((GET_BUF_CNT(p) >= 20 ) && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) && |
| (p->buf_addr[12] == 0xAA) && (p->buf_addr[13] == 0xAA) && |
| (p->buf_addr[14] == 0x03) && (p->buf_addr[15] == 0x00) && |
| (p->buf_addr[16] == 0x40) && (p->buf_addr[17] == 0x96) && |
| (p->buf_addr[18] == 0x00) && (p->buf_addr[19] == 0x00))) |
| { |
| i = HCF_DASA_SIZE; |
| |
| OPW( HREG_DATA_1, CNV_SHORT_TO_BIG( len - i )); |
| |
| /* need to send out the remainder of the fragment */ |
| put_frag( ifbp, &p->buf_addr[i], GET_BUF_CNT(p) - i BE_PAR(0) ); |
| } |
| else |
| #endif // HCF_TYPE_CCX |
| { |
| //if encapsulation needed |
| #if (HCF_ENCAP) == HCF_ENC |
| //write length (with SNAP-header,Type, without //DA,SA,Length ) no MIC calc. |
| if ( ( snap_header[sizeof(snap_header)-1] = hcf_encap( &p->buf_addr[HCF_DASA_SIZE] ) ) != ENC_NONE ) { |
| OPW( HREG_DATA_1, CNV_END_SHORT( len + (sizeof(snap_header) + 2) - ( 2*6 + 2 ) ) ); |
| //write splice with MIC calculation |
| put_frag( ifbp, snap_header, sizeof(snap_header) BE_PAR(0) ); |
| CALC_TX_MIC( snap_header, sizeof(snap_header) ); //MIC over 6 byte SNAP |
| i = HCF_DASA_SIZE; |
| } else |
| #endif // HCF_ENC |
| { |
| OPW( HREG_DATA_1, *(wci_recordp)&p->buf_addr[HCF_DASA_SIZE] ); |
| i = 14; |
| } |
| //complete 1st fragment starting with Type with MIC calculation |
| put_frag( ifbp, &p->buf_addr[i], p->BUF_CNT - i BE_PAR(0) ); |
| CALC_TX_MIC( &p->buf_addr[i], p->BUF_CNT - i ); |
| } |
| //do the remaining fragments with MIC calculation |
| while ( ( p = p->next_desc_addr ) != NULL ) { |
| /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer, |
| * so skip */ |
| HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p ) |
| put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) ); |
| CALC_TX_MIC( p->buf_addr, p->BUF_CNT ); |
| } |
| //pad message, finalize MIC calculation and write MIC to NIC |
| put_frag_finalize( ifbp ); |
| } |
| if ( fid ) { |
| /*16*/ rc = cmd_exe( ifbp, HCMD_BUSY | HCMD_TX | HCMD_RECL, fid ); |
| ifbp->IFB_TxFID = 0; |
| /* probably this (i.e. no RscInd AND "HREG_EV_ALLOC") at this point in time occurs so infrequent, |
| * that it might just as well be acceptable to skip this |
| * "optimization" code and handle that additional interrupt once in a while |
| */ |
| // 180 degree error in logic ;? #if ALLOC_15 |
| /*20*/ if ( ifbp->IFB_RscInd == 0 ) { |
| ifbp->IFB_RscInd = get_fid( ifbp ); |
| } |
| // #endif // ALLOC_15 |
| } |
| // HCFASSERT( level::ifbp->IFB_RscInd, ifbp->IFB_RscInd ) |
| HCFLOGEXIT( HCF_TRACE_SEND_MSG ) |
| return rc; |
| } // hcf_send_msg |
| #endif // HCF_DL_ONLY |
| |
| |
| #if (HCF_DL_ONLY) == 0 |
| /************************************************************************************************************ |
| * |
| *.MODULE int hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len ) |
| *.PURPOSE Services (most) NIC events. |
| * Provides received message |
| * Provides status information. |
| * |
| *.ARGUMENTS |
| * ifbp address of the Interface Block |
| * In non-DMA mode: |
| * bufp address of char buffer, sufficiently large to hold the first part of the RxFS up through HFS_TYPE |
| * len length in bytes of buffer specified by bufp |
| * value between HFS_TYPE + 2 and HFS_ADDR_DEST + HCF_MAX_MSG |
| * |
| *.RETURNS |
| * HCF_SUCCESS |
| * HCF_ERR_MIC message contains an erroneous MIC (only if frame fits completely in bufp) |
| * |
| *.DESCRIPTION |
| * |
| * MSF-accessible fields of Result Block |
| * - IFB_RxLen 0 or Frame size. |
| * - IFB_MBInfoLen 0 or the L-field of the oldest MBIB. |
| * - IFB_RscInd |
| * - IFB_HCF_Tallies updated if a corresponding event occurred. |
| * - IFB_NIC_Tallies updated if a Tally Info frame received from the NIC. |
| * - IFB_DmaPackets |
| * - IFB_TxFsStat |
| * - IFB_TxFsSwSup |
| * - IFB_LinkStat reflects new link status or 0x0000 if no change relative to previous hcf_service_nic call. |
| or |
| * - IFB_LinkStat link status, 0x8000 reflects change relative to previous hcf_service_nic call. |
| * |
| * When IFB_MBInfoLen is non-zero, at least one MBIB is available. |
| * |
| * IFB_RxLen reflects the number of received bytes in 802.3 view (Including DestAddr, SrcAddr and Length, |
| * excluding MIC-padding, MIC and sum check) of active Rx Frame Structure. If no Rx Data s available, IFB_RxLen |
| * equals 0x0000. |
| * Repeated execution causes the Service NIC Function to provide information about subsequently received |
| * messages, irrespective whether a hcf_rcv_msg or hcf_action(HCF_ACT_RX) is performed in between. |
| * |
| * When IFB_RxLen is non-zero, a Received Frame Structure is available to be routed to the protocol stack. |
| * When Monitor Mode is not active, this is guaranteed to be an error-free non-WMP frame. |
| * In case of Monitor Mode, it may also be a frame with an error or a WMP frame. |
| * Erroneous frames have a non-zero error-sub field in the HFS_STAT field in the look ahead buffer. |
| * |
| * If a Receive message is available in NIC RAM, the Receive Frame Structure is (partly) copied from the NIC to |
| * the buffer identified by bufp. |
| * Copying stops either after len bytes or when the complete 802.3 frame is copied. |
| * During the copying the message is decapsulated (if appropriate). |
| * If the frame is read completely by hcf_service_nic (i.e. the frame fits completely in the lookahead buffer), |
| * the frame is automatically ACK'ed to the F/W and still available via the look ahead buffer and hcf_rcv_msg. |
| * Only if the frame is read completely by hcf_service_nic, hcf_service_nic checks the MIC and sets the return |
| * status accordingly. In this case, hcf_rcv_msg does not check the MIC. |
| * |
| * The MIC calculation algorithm works more efficient if the length of the look ahead buffer is |
| * such that it fits exactly 4 n bytes of the 802.3 frame, i.e. len == HFS_ADDR_DEST + 4*n. |
| * |
| * The Service NIC Function supports the NIC event service handling process. |
| * It performs the appropriate actions to service the NIC, such that the event cause is eliminated and related |
| * information is saved. |
| * The Service NIC Function is executed by the MSF ISR or polling routine as first step to determine the event |
| * cause(s). It is the responsibility of the MSF to perform all not directly NIC related interrupt service |
| * actions, e.g. in a PC environment this includes servicing the PIC, and managing the Processor Interrupt |
| * Enabling/Disabling. |
| * In case of a polled based system, the Service NIC Function must be executed "frequently". |
| * The Service NIC Function may have side effects related to the Mailbox and Resource Indicator (IFB_RscInd). |
| * |
| * hcf_service_nic returns: |
| * - The length of the data in the available MBIB (IFB_MBInfoLen) |
| * - Changes in the link status (IFB_LinkStat) |
| * - The length of the data in the available Receive Frame Structure (IFB_RxLen) |
| * - updated IFB_RscInd |
| * - Updated Tallies |
| * |
| * hcf_service_nic is presumed to neither interrupt other HCF-tasks nor to be interrupted by other HCF-tasks. |
| * A way to achieve this is to precede hcf_service_nic as well as all other HCF-tasks with a call to |
| * hcf_action to disable the card interrupts and, after all work is completed, with a call to hcf_action to |
| * restore (which is not necessarily the same as enabling) the card interrupts. |
| * In case of a polled environment, it is assumed that the MSF programmer is sufficiently familiar with the |
| * specific requirements of that environment to translate the interrupt strategy to a polled strategy. |
| * |
| * hcf_service_nic services the following Hermes events: |
| * - HREG_EV_INFO Asynchronous Information Frame |
| * - HREG_EV_INFO_DROP WMAC did not have sufficient RAM to build Unsolicited Information Frame |
| * - HREG_EV_TX_EXC (if applicable, i.e. selected via HCF_EXT_INT_TX_EX bit of HCF_EXT) |
| * - HREG_EV_SLEEP_REQ (if applicable, i.e. selected via HCF_DDS/HCF_CDS bit of HCF_SLEEP) |
| * ** in non_DMA mode |
| * - HREG_EV_ALLOC Asynchronous part of Allocation/Reclaim completed while out of resources at |
| * completion of hcf_send_msg/notify |
| * - HREG_EV_RX the detection of the availability of received messages |
| * including WaveLAN Management Protocol (WMP) message processing |
| * ** in DMA mode |
| * - HREG_EV_RDMAD |
| * - HREG_EV_TDMAD |
| *!! hcf_service_nic does not service the following Hermes events: |
| *!! HREG_EV_TX (the "OK" Tx Event) is no longer supported by the WCI, if it occurs it is unclear |
| *!! what the cause is, so no meaningful strategy is available. Not acking the bit is |
| *!! probably the best help that can be given to the debugger. |
| *!! HREG_EV_CMD handled in cmd_wait. |
| *!! HREG_EV_FW_DMA (i.e. HREG_EV_RXDMA, HREG_EV_TXDMA and_EV_LPESC) are either not used or used |
| *!! between the F/W and the DMA engine. |
| *!! HREG_EV_ACK_REG_READY is only applicable for H-II (i.e. not HII.5 and up, see DAWA) |
| * |
| * If, in non-DMA mode, a Rx message is available, its length is reflected by the IFB_RxLen field of the IFB. |
| * This length reflects the data itself and the Destination Address, Source Address and DataLength/Type field |
| * but not the SNAP-header in case of decapsulation by the HCF. If no message is available, IFB_RxLen is |
| * zero. Former versions of the HCF handled WMP messages and supported a "monitor" mode in hcf_service_nic, |
| * which deposited certain or all Rx messages in the MailBox. The responsibility to handle these frames is |
| * moved to the MSF. The HCF offers as supports hcf_put_info with CFG_MB_INFO as parameter to emulate the old |
| * implementation under control of the MSF. |
| * |
| * **Rx Buffer free strategy |
| * When hcf_service_nic reports the availability of a non-DMA message, the MSF can access that message by |
| * means of hcf_rcv_msg. It must be prevented that the LAN Controller writes new data in the NIC buffer |
| * before the MSF is finished with the current message. The NIC buffer is returned to the LAN Controller |
| * when: |
| * - the complete frame fits in the lookahead buffer or |
| * - hcf_rcv_msg is called or |
| * - hcf_action with HCF_ACT_RX is called or |
| * - hcf_service_nic is called again |
| * It can be reasoned that hcf_action( INT_ON ) should not be given before the MSF has completely processed |
| * a reported Rx-frame. The reason is that the INT_ON action is guaranteed to cause a (Rx-)interrupt (the |
| * MSF is processing a Rx-frame, hence the Rx-event bit in the Hermes register must be active). This |
| * interrupt will cause hcf_service_nic to be called, which will cause the ack-ing of the "last" Rx-event |
| * to the Hermes, causing the Hermes to discard the associated NIC RAM buffer. |
| * Assert fails if |
| * - ifbp is zero or other recognizable out-of-range value. |
| * - hcf_service_nic is called without a prior call to hcf_connect. |
| * - interrupts are enabled. |
| * - reentrancy, may be caused by calling hcf_functions without adequate protection |
| * against NIC interrupts or multi-threading. |
| * |
| * |
| *.DIAGRAM |
| *1: IFB_LinkStat is cleared, if a LinkStatus frame is received, IFB_LinkStat will be updated accordingly |
| * by isr_info. |
| or |
| *1: IFB_LinkStat change indication is cleared. If a LinkStatus frame is received, IFB_LinkStat will be updated |
| * accordingly by isr_info. |
| *2: IFB_RxLen must be cleared before the NIC presence check otherwise: |
| * - this value may stay non-zero if the NIC is pulled out at an inconvenient moment. |
| * - the RxAck on a zero-FID needs a zero-value for IFB_RxLen to work |
| * Note that as side-effect of the hcf_action call, the remainder of Rx related info is re-initialized as |
| * well. |
| *4: In case of Defunct mode, the information supplied by Hermes is unreliable, so the body of |
| * hcf_service_nic is skipped. Since hcf_cntl turns into a NOP if Primary or Station F/W is incompatible, |
| * hcf_service_nic is also skipped in those cases. |
| * To prevent that hcf_service_nic reports bogus information to the MSF with all - possibly difficult to |
| * debug - undesirable side effects, it is paramount to check the NIC presence. In former days the presence |
| * test was based on the Hermes register HREG_SW_0. Since in HCF_ACT_INT_OFF is choosen for strategy based on |
| * HREG_EV_STAT, this is now also used in hcf_service_nic. The motivation to change strategy is partly |
| * due to inconsistent F/W implementations with respect to HREG_SW_0 manipulation around reset and download. |
| * Note that in polled environments Card Removal is not detected by INT_OFF which makes the check in |
| * hcf_service_nic even more important. |
| *8: The event status register of the Hermes is sampled |
| * The assert checks for unexpected events ;?????????????????????????????????????. |
| * - HREG_EV_INFO_DROP is explicitly excluded from the acceptable HREG_EV_STAT bits because it indicates |
| * a too heavily loaded system. |
| * - HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5) |
| * |
| * |
| * HREG_EV_TX_EXC is accepted (via HREG_EV_TX_EXT) if and only if HCF_EXT_INT_TX_EX set in the HCF_EXT |
| * definition at compile time. |
| * The following activities are handled: |
| * - Alloc events are handled by hcf_send_msg (and notify). Only if there is no "spare" resource, the |
| * alloc event is superficially serviced by hcf_service_nic to create a pseudo-resource with value |
| * 0x001. This value is recognized by get_fid (called by hcf_send_msg and notify) where the real |
| * TxFid is retrieved and the Hermes is acked and - hopefully - the "normal" case with a spare TxFid |
| * in IFB_RscInd is restored. |
| * - Info drop events are handled by incrementing a tally |
| * - LinkEvent (including solicited and unsolicited tallies) are handled by procedure isr_info. |
| * - TxEx (if selected at compile time) is handled by copying the significant part of the TxFS |
| * into the IFB for further processing by the MSF. |
| * Note the complication of the zero-FID protection sub-scheme in DAWA. |
| * Note, the Ack of all of above events is handled at the end of hcf_service_nic |
| *16: In case of non-DMA ( either not compiled in or due to a run-time choice): |
| * If an Rx-frame is available, first the FID of that frame is read, including the complication of the |
| * zero-FID protection sub-scheme in DAWA. Note that such a zero-FID is acknowledged at the end of |
| * hcf_service_nic and that this depends on the IFB_RxLen initialization in the begin of hcf_service_nic. |
| * The Assert validates the HCF assumption about Hermes implementation upon which the range of |
| * Pseudo-RIDs is based. |
| * Then the control fields up to the start of the 802.3 frame are read from the NIC into the lookahead buffer. |
| * The status field is converted to native Endianess. |
| * The length is, after implicit Endianess conversion if needed, and adjustment for the 14 bytes of the |
| * 802.3 MAC header, stored in IFB_RxLen. |
| * In MAC Monitor mode, 802.11 control frames with a TOTAL length of 14 are received, so without this |
| * length adjustment, IFB_RxLen could not be used to distinguish these frames from "no frame". |
| * No MIC calculation processes are associated with the reading of these Control fields. |
| *26: This length test feels like superfluous robustness against malformed frames, but it turned out to be |
| * needed in the real (hostile) world. |
| * The decapsulation check needs sufficient data to represent DA, SA, L, SNAP and Type which amounts to |
| * 22 bytes. In MAC Monitor mode, 802.11 control frames with a smaller length are received. To prevent |
| * that the implementation goes haywire, a check on the length is needed. |
| * The actual decapsulation takes place on the fly in the copying process by overwriting the SNAP header. |
| * Note that in case of decapsulation the SNAP header is not passed to the MSF, hence IFB_RxLen must be |
| * compensated for the SNAP header length. |
| * The 22 bytes needed for decapsulation are (more than) sufficient for the exceptional handling of the |
| * MIC algorithm of the L-field (replacing the 2 byte L-field with 4 0x00 bytes). |
| *30: The 12 in the no-SSN branch corresponds with the get_frag, the 2 with the IPW of the SSN branch |
| *32: If Hermes reported MIC-presence, than the MIC engine is initialized with the non-dummy MIC calculation |
| * routine address and appropriate key. |
| *34: The 8 bytes after the DA, SA, L are read and it is checked whether decapsulation is needed i.e.: |
| * - the Hermes reported Tunnel encapsulation or |
| * - the Hermes reported 1042 Encapsulation and hcf_encap reports that the HCF would not have used |
| * 1042 as the encapsulation mechanism |
| * Note that the first field of the RxFS in bufp has Native Endianess due to the conversion done by the |
| * BE_PAR in get_frag. |
| *36: The Type field is the only word kept (after moving) of the just read 8 bytes, it is moved to the |
| * L-field. The original L-field and 6 byte SNAP header are discarded, so IFB_RxLen and buf_addr must |
| * be adjusted by 8. |
| *40: Determine how much of the frame (starting with DA) fits in the Lookahead buffer, then read the not-yet |
| * read data into the lookahead buffer. |
| * If the lookahead buffer contains the complete message, check the MIC. The majority considered this |
| * I/F more appropriate then have the MSF call hcf_get_data only to check the MIC. |
| *44: Since the complete message is copied from NIC RAM to PC RAM, the Rx can be acknowledged to the Hermes |
| * to optimize the flow ( a better chance to get new Rx data in the next pass through hcf_service_nic ). |
| * This acknowledgement can not be done via hcf_action( HCF_ACT_RX_ACK ) because this also clears |
| * IFB_RxLEN thus corrupting the I/F to the MSF. |
| *;?: In case of DMA (compiled in and activated): |
| |
| |
| *54: Limiting the number of places where the F/W is acked (e.g. the merging of the Rx-ACK with the other |
| * ACKs), is supposed to diminish the potential of race conditions in the F/W. |
| * Note 1: The CMD event is acknowledged in cmd_cmpl |
| * Note 2: HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5) |
| * Note 3: The ALLOC event is acknowledged in get_fid (except for the initialization flow) |
| * |
| *.NOTICE |
| * The Non-DMA HREG_EV_RX is handled different compared with the other F/W events. |
| * The HREG_EV_RX event is acknowledged by the first hcf_service_nic call after the |
| * hcf_service_nic call that reported the occurrence of this event. |
| * This acknowledgment |
| * makes the next Receive Frame Structure (if any) available. |
| * An updated IFB_RxLen |
| * field reflects this availability. |
| * |
| *.NOTICE |
| * The minimum size for Len must supply space for: |
| * - an F/W dependent number of bytes of Control Info field including the 802.11 Header field |
| * - Destination Address |
| * - Source Address |
| * - Length field |
| * - [ SNAP Header] |
| * - [ Ethernet-II Type] |
| * This results in 68 for Hermes-I and 80 for Hermes-II |
| * This way the minimum amount of information is available needed by the HCF to determine whether the frame |
| * must be decapsulated. |
| *.ENDDOC END DOCUMENTATION |
| * |
| ************************************************************************************************************/ |
| int |
| hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len ) |
| { |
| |
| int rc = HCF_SUCCESS; |
| hcf_16 stat; |
| wci_bufp buf_addr; |
| hcf_16 i; |
| |
| HCFLOGENTRY( HCF_TRACE_SERVICE_NIC, ifbp->IFB_IntOffCnt ) |
| HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ) |
| HCFASSERT_INT |
| |
| ifbp->IFB_LinkStat = 0; // ;? to be obsoleted ASAP /* 1*/ |
| ifbp->IFB_DSLinkStat &= ~CFG_LINK_STAT_CHANGE; /* 1*/ |
| (void)hcf_action( ifbp, HCF_ACT_RX_ACK ); /* 2*/ |
| if ( ifbp->IFB_CardStat == 0 && ( stat = IPW( HREG_EV_STAT ) ) != 0xFFFF ) { /* 4*/ |
| /* IF_NOT_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) ) |
| * IF_NOT_USE_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) ) |
| * IF_USE_DMA( HCFASSERT( !( stat & ~( HREG_EV_BASIC_MASK ^ ( HREG_EV_...DMA.... ), stat ) ) |
| */ |
| /* 8*/ |
| if ( ifbp->IFB_RscInd == 0 && stat & HREG_EV_ALLOC ) { //Note: IFB_RscInd is ALWAYS 1 for DMA |
| ifbp->IFB_RscInd = 1; |
| } |
| IF_TALLY( if ( stat & HREG_EV_INFO_DROP ) ifbp->IFB_HCF_Tallies.NoBufInfo++; ) |
| #if (HCF_EXT) & HCF_EXT_INT_TICK |
| if ( stat & HREG_EV_TICK ) { |
| ifbp->IFB_TickCnt++; |
| } |
| #if 0 // (HCF_SLEEP) & HCF_DDS |
| if ( ifbp->IFB_TickCnt == 3 && ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) { |
| CFG_DDS_TICK_TIME_STRCT ltv; |
| // 2 second period (with 1 tick uncertanty) in not-connected mode -->go into DS_OOR |
| hcf_action( ifbp, HCF_ACT_SLEEP ); |
| ifbp->IFB_DSLinkStat |= CFG_LINK_STAT_DS_OOR; //set OutOfRange |
| ltv.len = 2; |
| ltv.typ = CFG_DDS_TICK_TIME; |
| ltv.tick_time = ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_TIMER ) + 0x10 ) *64; //78 is more right |
| hcf_put_info( ifbp, (LTVP)<v ); |
| printk( "<5>Preparing for sleep, link_status: %04X, timer : %d\n", |
| ifbp->IFB_DSLinkStat, ltv.tick_time );//;?remove me 1 day |
| ifbp->IFB_TickCnt++; //;?just to make sure we do not keep on printing above message |
| if ( ltv.tick_time < 300 * 125 ) ifbp->IFB_DSLinkStat += 0x0010; |
| |
| } |
| #endif // HCF_DDS |
| #endif // HCF_EXT_INT_TICK |
| if ( stat & HREG_EV_INFO ) { |
| isr_info( ifbp ); |
| } |
| #if (HCF_EXT) & HCF_EXT_INT_TX_EX |
| if ( stat & HREG_EV_TX_EXT && ( i = IPW( HREG_TX_COMPL_FID ) ) != 0 /*DAWA*/ ) { |
| DAWA_ZERO_FID( HREG_TX_COMPL_FID ) |
| (void)setup_bap( ifbp, i, 0, IO_IN ); |
| get_frag( ifbp, &ifbp->IFB_TxFsStat, HFS_SWSUP BE_PAR(1) ); |
| } |
| #endif // HCF_EXT_INT_TX_EX |
| //!rlav DMA engine will handle the rx event, not the driver |
| #if HCF_DMA |
| if ( !( ifbp->IFB_CntlOpt & USE_DMA ) ) //!! be aware of the logical indentations |
| #endif // HCF_DMA |
| /*16*/ if ( stat & HREG_EV_RX && ( ifbp->IFB_RxFID = IPW( HREG_RX_FID ) ) != 0 ) { //if 0 then DAWA_ACK |
| HCFASSERT( bufp, len ) |
| HCFASSERT( len >= HFS_DAT + 2, len ) |
| DAWA_ZERO_FID( HREG_RX_FID ) |
| HCFASSERT( ifbp->IFB_RxFID < CFG_PROD_DATA, ifbp->IFB_RxFID) |
| (void)setup_bap( ifbp, ifbp->IFB_RxFID, 0, IO_IN ); |
| get_frag( ifbp, bufp, HFS_ADDR_DEST BE_PAR(1) ); |
| ifbp->IFB_lap = buf_addr = bufp + HFS_ADDR_DEST; |
| ifbp->IFB_RxLen = (hcf_16)(bufp[HFS_DAT_LEN] + (bufp[HFS_DAT_LEN+1]<<8) + 2*6 + 2); |
| /*26*/ if ( ifbp->IFB_RxLen >= 22 ) { // convenient for MIC calculation (5 DWs + 1 "skipped" W) |
| //. get DA,SA,Len/Type and (SNAP,Type or 8 data bytes) |
| /*30*/ get_frag( ifbp, buf_addr, 22 BE_PAR(0) ); |
| /*32*/ CALC_RX_MIC( bufp, -1 ); //. initialize MIC |
| CALC_RX_MIC( buf_addr, HCF_DASA_SIZE ); //. MIC over DA, SA |
| CALC_RX_MIC( null_addr, 4 ); //. MIC over (virtual) priority field |
| CALC_RX_MIC( buf_addr+14, 8 ); //. skip Len, MIC over SNAP,Type or 8 data bytes) |
| buf_addr += 22; |
| #if (HCF_TYPE) & HCF_TYPE_CCX |
| //!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0 |
| if( ifbp->IFB_CKIPStat != HCF_ACT_CCX_ON ) |
| #endif // HCF_TYPE_CCX |
| { |
| #if (HCF_ENCAP) == HCF_ENC |
| HCFASSERT( len >= HFS_DAT + 2 + sizeof(snap_header), len ) |
| /*34*/ i = *(wci_recordp)&bufp[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR ); |
| if ( i == HFS_STAT_TUNNEL || |
| ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&bufp[HFS_TYPE] ) != ENC_TUNNEL ) ) { |
| //. copy E-II Type to 802.3 LEN field |
| /*36*/ bufp[HFS_LEN ] = bufp[HFS_TYPE ]; |
| bufp[HFS_LEN+1] = bufp[HFS_TYPE+1]; |
| //. discard Snap by overwriting with data |
| ifbp->IFB_RxLen -= (HFS_TYPE - HFS_LEN); |
| buf_addr -= ( HFS_TYPE - HFS_LEN ); // this happens to bring us at a DW boundary of 36 |
| } |
| #endif // HCF_ENC |
| } |
| } |
| /*40*/ ifbp->IFB_lal = min( (hcf_16)(len - HFS_ADDR_DEST), ifbp->IFB_RxLen ); |
| i =<
|