blob: 78935865df19d060daeb0e805253d9a1e547bb99 [file] [log] [blame]
/*
* phy_302_calibration.c
*
* Copyright (C) 2002, 2005 Winbond Electronics Corp.
*
* modification history
* ---------------------------------------------------------------------------
* 0.01.001, 2003-04-16, Kevin created
*
*/
/****************** INCLUDE FILES SECTION ***********************************/
#include "sysdef.h"
#include "phy_calibration.h"
#include "wbhal_f.h"
/****************** DEBUG CONSTANT AND MACRO SECTION ************************/
/****************** LOCAL CONSTANT AND MACRO SECTION ************************/
#define LOOP_TIMES 20
#define US 1000//MICROSECOND
#define AG_CONST 0.6072529350
#define FIXED(X) ((s32)((X) * 32768.0))
#define DEG2RAD(X) 0.017453 * (X)
static const s32 Angles[] =
{
FIXED(DEG2RAD(45.0)), FIXED(DEG2RAD(26.565)), FIXED(DEG2RAD(14.0362)),
FIXED(DEG2RAD(7.12502)), FIXED(DEG2RAD(3.57633)), FIXED(DEG2RAD(1.78991)),
FIXED(DEG2RAD(0.895174)),FIXED(DEG2RAD(0.447614)),FIXED(DEG2RAD(0.223811)),
FIXED(DEG2RAD(0.111906)),FIXED(DEG2RAD(0.055953)),FIXED(DEG2RAD(0.027977))
};
/****************** LOCAL FUNCTION DECLARATION SECTION **********************/
//void _phy_rf_write_delay(struct hw_data *phw_data);
//void phy_init_rf(struct hw_data *phw_data);
/****************** FUNCTION DEFINITION SECTION *****************************/
s32 _s13_to_s32(u32 data)
{
u32 val;
val = (data & 0x0FFF);
if ((data & BIT(12)) != 0)
{
val |= 0xFFFFF000;
}
return ((s32) val);
}
u32 _s32_to_s13(s32 data)
{
u32 val;
if (data > 4095)
{
data = 4095;
}
else if (data < -4096)
{
data = -4096;
}
val = data & 0x1FFF;
return val;
}
/****************************************************************************/
s32 _s4_to_s32(u32 data)
{
s32 val;
val = (data & 0x0007);
if ((data & BIT(3)) != 0)
{
val |= 0xFFFFFFF8;
}
return val;
}
u32 _s32_to_s4(s32 data)
{
u32 val;
if (data > 7)
{
data = 7;
}
else if (data < -8)
{
data = -8;
}
val = data & 0x000F;
return val;
}
/****************************************************************************/
s32 _s5_to_s32(u32 data)
{
s32 val;
val = (data & 0x000F);
if ((data & BIT(4)) != 0)
{
val |= 0xFFFFFFF0;
}
return val;
}
u32 _s32_to_s5(s32 data)
{
u32 val;
if (data > 15)
{
data = 15;
}
else if (data < -16)
{
data = -16;
}
val = data & 0x001F;
return val;
}
/****************************************************************************/
s32 _s6_to_s32(u32 data)
{
s32 val;
val = (data & 0x001F);
if ((data & BIT(5)) != 0)
{
val |= 0xFFFFFFE0;
}
return val;
}
u32 _s32_to_s6(s32 data)
{
u32 val;
if (data > 31)
{
data = 31;
}
else if (data < -32)
{
data = -32;
}
val = data & 0x003F;
return val;
}
/****************************************************************************/
s32 _s9_to_s32(u32 data)
{
s32 val;
val = data & 0x00FF;
if ((data & BIT(8)) != 0)
{
val |= 0xFFFFFF00;
}
return val;
}
u32 _s32_to_s9(s32 data)
{
u32 val;
if (data > 255)
{
data = 255;
}
else if (data < -256)
{
data = -256;
}
val = data & 0x01FF;
return val;
}
/****************************************************************************/
s32 _floor(s32 n)
{
if (n > 0)
{
n += 5;
}
else
{
n -= 5;
}
return (n/10);
}
/****************************************************************************/
// The following code is sqare-root function.
// sqsum is the input and the output is sq_rt;
// The maximum of sqsum = 2^27 -1;
u32 _sqrt(u32 sqsum)
{
u32 sq_rt;
int g0, g1, g2, g3, g4;
int seed;
int next;
int step;
g4 = sqsum / 100000000;
g3 = (sqsum - g4*100000000) /1000000;
g2 = (sqsum - g4*100000000 - g3*1000000) /10000;
g1 = (sqsum - g4*100000000 - g3*1000000 - g2*10000) /100;
g0 = (sqsum - g4*100000000 - g3*1000000 - g2*10000 - g1*100);
next = g4;
step = 0;
seed = 0;
while (((seed+1)*(step+1)) <= next)
{
step++;
seed++;
}
sq_rt = seed * 10000;
next = (next-(seed*step))*100 + g3;
step = 0;
seed = 2 * seed * 10;
while (((seed+1)*(step+1)) <= next)
{
step++;
seed++;
}
sq_rt = sq_rt + step * 1000;
next = (next - seed * step) * 100 + g2;
seed = (seed + step) * 10;
step = 0;
while (((seed+1)*(step+1)) <= next)
{
step++;
seed++;
}
sq_rt = sq_rt + step * 100;
next = (next - seed * step) * 100 + g1;
seed = (seed + step) * 10;
step = 0;
while (((seed+1)*(step+1)) <= next)
{
step++;
seed++;
}
sq_rt = sq_rt + step * 10;
next = (next - seed* step) * 100 + g0;
seed = (seed + step) * 10;
step = 0;
while (((seed+1)*(step+1)) <= next)
{
step++;
seed++;
}
sq_rt = sq_rt + step;
return sq_rt;
}
/****************************************************************************/
void _sin_cos(s32 angle, s32 *sin, s32 *cos)
{
s32 X, Y, TargetAngle, CurrAngle;
unsigned Step;
X=FIXED(AG_CONST); // AG_CONST * cos(0)
Y=0; // AG_CONST * sin(0)
TargetAngle=abs(angle);
CurrAngle=0;
for (Step=0; Step < 12; Step++)
{
s32 NewX;
if(TargetAngle > CurrAngle)
{
NewX=X - (Y >> Step);
Y=(X >> Step) + Y;
X=NewX;
CurrAngle += Angles[Step];
}
else
{
NewX=X + (Y >> Step);
Y=-(X >> Step) + Y;
X=NewX;
CurrAngle -= Angles[Step];
}
}
if (angle > 0)
{
*cos = X;
*sin = Y;
}
else
{
*cos = X;
*sin = -Y;
}
}
static unsigned char hal_get_dxx_reg(struct hw_data *pHwData, u16 number, u32 * pValue)
{
if (number < 0x1000)
number += 0x1000;
return Wb35Reg_ReadSync(pHwData, number, pValue);
}
#define hw_get_dxx_reg( _A, _B, _C ) hal_get_dxx_reg( _A, _B, (u32 *)_C )
static unsigned char hal_set_dxx_reg(struct hw_data *pHwData, u16 number, u32 value)
{
unsigned char ret;
if (number < 0x1000)
number += 0x1000;
ret = Wb35Reg_WriteSync(pHwData, number, value);
return ret;
}
#define hw_set_dxx_reg( _A, _B, _C ) hal_set_dxx_reg( _A, _B, (u32)_C )
void _reset_rx_cal(struct hw_data *phw_data)
{
u32 val;
hw_get_dxx_reg(phw_data, 0x54, &val);
if (phw_data->revision == 0x2002) // 1st-cut
{
val &= 0xFFFF0000;
}
else // 2nd-cut
{
val &= 0x000003FF;
}
hw_set_dxx_reg(phw_data, 0x54, val);
}
// ************for winbond calibration*********
//
//
//
// *********************************************
void _rxadc_dc_offset_cancellation_winbond(struct hw_data *phw_data, u32 frequency)
{
u32 reg_agc_ctrl3;
u32 reg_a_acq_ctrl;
u32 reg_b_acq_ctrl;
u32 val;
PHY_DEBUG(("[CAL] -> [1]_rxadc_dc_offset_cancellation()\n"));
phy_init_rf(phw_data);
// set calibration channel
if( (RF_WB_242 == phw_data->phy_type) ||
(RF_WB_242_1 == phw_data->phy_type) ) // 20060619.5 Add
{
if ((frequency >= 2412) && (frequency <= 2484))
{
// w89rf242 change frequency to 2390Mhz
PHY_DEBUG(("[CAL] W89RF242/11G/Channel=2390Mhz\n"));
phy_set_rf_data(phw_data, 3, (3<<24)|0x025586);
}
}
else
{
}
// reset cancel_dc_i[9:5] and cancel_dc_q[4:0] in register DC_Cancel
hw_get_dxx_reg(phw_data, 0x5C, &val);
val &= ~(0x03FF);
hw_set_dxx_reg(phw_data, 0x5C, val);
// reset the TX and RX IQ calibration data
hw_set_dxx_reg(phw_data, 0x3C, 0);
hw_set_dxx_reg(phw_data, 0x54, 0);
hw_set_dxx_reg(phw_data, 0x58, 0x30303030); // IQ_Alpha Changed
// a. Disable AGC
hw_get_dxx_reg(phw_data, REG_AGC_CTRL3, &reg_agc_ctrl3);
reg_agc_ctrl3 &= ~BIT(2);
reg_agc_ctrl3 |= (MASK_LNA_FIX_GAIN|MASK_AGC_FIX);
hw_set_dxx_reg(phw_data, REG_AGC_CTRL3, reg_agc_ctrl3);
hw_get_dxx_reg(phw_data, REG_AGC_CTRL5, &val);
val |= MASK_AGC_FIX_GAIN;
hw_set_dxx_reg(phw_data, REG_AGC_CTRL5, val);
// b. Turn off BB RX
hw_get_dxx_reg(phw_data, REG_A_ACQ_CTRL, &reg_a_acq_ctrl);
reg_a_acq_ctrl |= MASK_AMER_OFF_REG;
hw_set_dxx_reg(phw_data, REG_A_ACQ_CTRL, reg_a_acq_ctrl);
hw_get_dxx_reg(phw_data, REG_B_ACQ_CTRL, &reg_b_acq_ctrl);
reg_b_acq_ctrl |= MASK_BMER_OFF_REG;
hw_set_dxx_reg(phw_data, REG_B_ACQ_CTRL, reg_b_acq_ctrl);
// c. Make sure MAC is in receiving mode
// d. Turn ON ADC calibration
// - ADC calibrator is triggered by this signal rising from 0 to 1
hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &val);
val &= ~MASK_ADC_DC_CAL_STR;
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, val);
val |= MASK_ADC_DC_CAL_STR;
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, val);
// e. The result are shown in "adc_dc_cal_i[8:0] and adc_dc_cal_q[8:0]"
#ifdef _DEBUG
hw_get_dxx_reg(phw_data, REG_OFFSET_READ, &val);
PHY_DEBUG(("[CAL] REG_OFFSET_READ = 0x%08X\n", val));
PHY_DEBUG(("[CAL] ** adc_dc_cal_i = %d (0x%04X)\n",
_s9_to_s32(val&0x000001FF), val&0x000001FF));
PHY_DEBUG(("[CAL] ** adc_dc_cal_q = %d (0x%04X)\n",
_s9_to_s32((val&0x0003FE00)>>9), (val&0x0003FE00)>>9));
#endif
hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &val);
val &= ~MASK_ADC_DC_CAL_STR;
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, val);
// f. Turn on BB RX
//hw_get_dxx_reg(phw_data, REG_A_ACQ_CTRL, &reg_a_acq_ctrl);
reg_a_acq_ctrl &= ~MASK_AMER_OFF_REG;
hw_set_dxx_reg(phw_data, REG_A_ACQ_CTRL, reg_a_acq_ctrl);
//hw_get_dxx_reg(phw_data, REG_B_ACQ_CTRL, &reg_b_acq_ctrl);
reg_b_acq_ctrl &= ~MASK_BMER_OFF_REG;
hw_set_dxx_reg(phw_data, REG_B_ACQ_CTRL, reg_b_acq_ctrl);
// g. Enable AGC
//hw_get_dxx_reg(phw_data, REG_AGC_CTRL3, &val);
reg_agc_ctrl3 |= BIT(2);
reg_agc_ctrl3 &= ~(MASK_LNA_FIX_GAIN|MASK_AGC_FIX);
hw_set_dxx_reg(phw_data, REG_AGC_CTRL3, reg_agc_ctrl3);
}
////////////////////////////////////////////////////////
void _txidac_dc_offset_cancellation_winbond(struct hw_data *phw_data)
{
u32 reg_agc_ctrl3;
u32 reg_mode_ctrl;
u32 reg_dc_cancel;
s32 iqcal_image_i;
s32 iqcal_image_q;
u32 sqsum;
s32 mag_0;
s32 mag_1;
s32 fix_cancel_dc_i = 0;
u32 val;
int loop;
PHY_DEBUG(("[CAL] -> [2]_txidac_dc_offset_cancellation()\n"));
// a. Set to "TX calibration mode"
//0x01 0xEE3FC2 ; 3B8FF ; Calibration (6a). enable TX IQ calibration loop circuits
phy_set_rf_data(phw_data, 1, (1<<24)|0xEE3FC2);
//0x0B 0x1905D6 ; 06417 ; Calibration (6b). enable TX I/Q cal loop squaring circuit
phy_set_rf_data(phw_data, 11, (11<<24)|0x1901D6);
//0x05 0x24C60A ; 09318 ; Calibration (6c). setting TX-VGA gain: TXGCH=2 & GPK=110 --> to be optimized
phy_set_rf_data(phw_data, 5, (5<<24)|0x24C48A);
//0x06 0x06880C ; 01A20 ; Calibration (6d). RXGCH=00; RXGCL=100 000 (RXVGA=32) --> to be optimized
phy_set_rf_data(phw_data, 6, (6<<24)|0x06890C);
//0x00 0xFDF1C0 ; 3F7C7 ; Calibration (6e). turn on IQ imbalance/Test mode
phy_set_rf_data(phw_data, 0, (0<<24)|0xFDF1C0);
hw_set_dxx_reg(phw_data, 0x58, 0x30303030); // IQ_Alpha Changed
// a. Disable AGC
hw_get_dxx_reg(phw_data, REG_AGC_CTRL3, &reg_agc_ctrl3);
reg_agc_ctrl3 &= ~BIT(2);
reg_agc_ctrl3 |= (MASK_LNA_FIX_GAIN|MASK_AGC_FIX);
hw_set_dxx_reg(phw_data, REG_AGC_CTRL3, reg_agc_ctrl3);
hw_get_dxx_reg(phw_data, REG_AGC_CTRL5, &val);
val |= MASK_AGC_FIX_GAIN;
hw_set_dxx_reg(phw_data, REG_AGC_CTRL5, val);
// b. set iqcal_mode[1:0] to 0x2 and set iqcal_tone[3:2] to 0
hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (read) = 0x%08X\n", reg_mode_ctrl));
reg_mode_ctrl &= ~(MASK_IQCAL_TONE_SEL|MASK_IQCAL_MODE);
// mode=2, tone=0
//reg_mode_ctrl |= (MASK_CALIB_START|2);
// mode=2, tone=1
//reg_mode_ctrl |= (MASK_CALIB_START|2|(1<<2));
// mode=2, tone=2
reg_mode_ctrl |= (MASK_CALIB_START|2|(2<<2));
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
hw_get_dxx_reg(phw_data, 0x5C, &reg_dc_cancel);
PHY_DEBUG(("[CAL] DC_CANCEL (read) = 0x%08X\n", reg_dc_cancel));
for (loop = 0; loop < LOOP_TIMES; loop++)
{
PHY_DEBUG(("[CAL] [%d.] ==================================\n", loop));
// c.
// reset cancel_dc_i[9:5] and cancel_dc_q[4:0] in register DC_Cancel
reg_dc_cancel &= ~(0x03FF);
PHY_DEBUG(("[CAL] DC_CANCEL (write) = 0x%08X\n", reg_dc_cancel));
hw_set_dxx_reg(phw_data, 0x5C, reg_dc_cancel);
hw_get_dxx_reg(phw_data, REG_CALIB_READ2, &val);
PHY_DEBUG(("[CAL] CALIB_READ2 = 0x%08X\n", val));
iqcal_image_i = _s13_to_s32(val & 0x00001FFF);
iqcal_image_q = _s13_to_s32((val & 0x03FFE000) >> 13);
sqsum = iqcal_image_i*iqcal_image_i + iqcal_image_q*iqcal_image_q;
mag_0 = (s32) _sqrt(sqsum);
PHY_DEBUG(("[CAL] mag_0=%d (iqcal_image_i=%d, iqcal_image_q=%d)\n",
mag_0, iqcal_image_i, iqcal_image_q));
// d.
reg_dc_cancel |= (1 << CANCEL_DC_I_SHIFT);
PHY_DEBUG(("[CAL] DC_CANCEL (write) = 0x%08X\n", reg_dc_cancel));
hw_set_dxx_reg(phw_data, 0x5C, reg_dc_cancel);
hw_get_dxx_reg(phw_data, REG_CALIB_READ2, &val);
PHY_DEBUG(("[CAL] CALIB_READ2 = 0x%08X\n", val));
iqcal_image_i = _s13_to_s32(val & 0x00001FFF);
iqcal_image_q = _s13_to_s32((val & 0x03FFE000) >> 13);
sqsum = iqcal_image_i*iqcal_image_i + iqcal_image_q*iqcal_image_q;
mag_1 = (s32) _sqrt(sqsum);
PHY_DEBUG(("[CAL] mag_1=%d (iqcal_image_i=%d, iqcal_image_q=%d)\n",
mag_1, iqcal_image_i, iqcal_image_q));
// e. Calculate the correct DC offset cancellation value for I
if (mag_0 != mag_1)
{
fix_cancel_dc_i = (mag_0*10000) / (mag_0*10000 - mag_1*10000);
}
else
{
if (mag_0 == mag_1)
{
PHY_DEBUG(("[CAL] ***** mag_0 = mag_1 !!\n"));
}
fix_cancel_dc_i = 0;
}
PHY_DEBUG(("[CAL] ** fix_cancel_dc_i = %d (0x%04X)\n",
fix_cancel_dc_i, _s32_to_s5(fix_cancel_dc_i)));
if ((abs(mag_1-mag_0)*6) > mag_0)
{
break;
}
}
if ( loop >= 19 )
fix_cancel_dc_i = 0;
reg_dc_cancel &= ~(0x03FF);
reg_dc_cancel |= (_s32_to_s5(fix_cancel_dc_i) << CANCEL_DC_I_SHIFT);
hw_set_dxx_reg(phw_data, 0x5C, reg_dc_cancel);
PHY_DEBUG(("[CAL] DC_CANCEL (write) = 0x%08X\n", reg_dc_cancel));
// g.
reg_mode_ctrl &= ~MASK_CALIB_START;
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
}
///////////////////////////////////////////////////////
void _txqdac_dc_offset_cacellation_winbond(struct hw_data *phw_data)
{
u32 reg_agc_ctrl3;
u32 reg_mode_ctrl;
u32 reg_dc_cancel;
s32 iqcal_image_i;
s32 iqcal_image_q;
u32 sqsum;
s32 mag_0;
s32 mag_1;
s32 fix_cancel_dc_q = 0;
u32 val;
int loop;
PHY_DEBUG(("[CAL] -> [3]_txqdac_dc_offset_cacellation()\n"));
//0x01 0xEE3FC2 ; 3B8FF ; Calibration (6a). enable TX IQ calibration loop circuits
phy_set_rf_data(phw_data, 1, (1<<24)|0xEE3FC2);
//0x0B 0x1905D6 ; 06417 ; Calibration (6b). enable TX I/Q cal loop squaring circuit
phy_set_rf_data(phw_data, 11, (11<<24)|0x1901D6);
//0x05 0x24C60A ; 09318 ; Calibration (6c). setting TX-VGA gain: TXGCH=2 & GPK=110 --> to be optimized
phy_set_rf_data(phw_data, 5, (5<<24)|0x24C48A);
//0x06 0x06880C ; 01A20 ; Calibration (6d). RXGCH=00; RXGCL=100 000 (RXVGA=32) --> to be optimized
phy_set_rf_data(phw_data, 6, (6<<24)|0x06890C);
//0x00 0xFDF1C0 ; 3F7C7 ; Calibration (6e). turn on IQ imbalance/Test mode
phy_set_rf_data(phw_data, 0, (0<<24)|0xFDF1C0);
hw_set_dxx_reg(phw_data, 0x58, 0x30303030); // IQ_Alpha Changed
// a. Disable AGC
hw_get_dxx_reg(phw_data, REG_AGC_CTRL3, &reg_agc_ctrl3);
reg_agc_ctrl3 &= ~BIT(2);
reg_agc_ctrl3 |= (MASK_LNA_FIX_GAIN|MASK_AGC_FIX);
hw_set_dxx_reg(phw_data, REG_AGC_CTRL3, reg_agc_ctrl3);
hw_get_dxx_reg(phw_data, REG_AGC_CTRL5, &val);
val |= MASK_AGC_FIX_GAIN;
hw_set_dxx_reg(phw_data, REG_AGC_CTRL5, val);
// a. set iqcal_mode[1:0] to 0x3 and set iqcal_tone[3:2] to 0
hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (read) = 0x%08X\n", reg_mode_ctrl));
//reg_mode_ctrl &= ~(MASK_IQCAL_TONE_SEL|MASK_IQCAL_MODE);
reg_mode_ctrl &= ~(MASK_IQCAL_MODE);
reg_mode_ctrl |= (MASK_CALIB_START|3);
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
hw_get_dxx_reg(phw_data, 0x5C, &reg_dc_cancel);
PHY_DEBUG(("[CAL] DC_CANCEL (read) = 0x%08X\n", reg_dc_cancel));
for (loop = 0; loop < LOOP_TIMES; loop++)
{
PHY_DEBUG(("[CAL] [%d.] ==================================\n", loop));
// b.
// reset cancel_dc_q[4:0] in register DC_Cancel
reg_dc_cancel &= ~(0x001F);
PHY_DEBUG(("[CAL] DC_CANCEL (write) = 0x%08X\n", reg_dc_cancel));
hw_set_dxx_reg(phw_data, 0x5C, reg_dc_cancel);
hw_get_dxx_reg(phw_data, REG_CALIB_READ2, &val);
PHY_DEBUG(("[CAL] CALIB_READ2 = 0x%08X\n", val));
iqcal_image_i = _s13_to_s32(val & 0x00001FFF);
iqcal_image_q = _s13_to_s32((val & 0x03FFE000) >> 13);
sqsum = iqcal_image_i*iqcal_image_i + iqcal_image_q*iqcal_image_q;
mag_0 = _sqrt(sqsum);
PHY_DEBUG(("[CAL] mag_0=%d (iqcal_image_i=%d, iqcal_image_q=%d)\n",
mag_0, iqcal_image_i, iqcal_image_q));
// c.
reg_dc_cancel |= (1 << CANCEL_DC_Q_SHIFT);
PHY_DEBUG(("[CAL] DC_CANCEL (write) = 0x%08X\n", reg_dc_cancel));
hw_set_dxx_reg(phw_data, 0x5C, reg_dc_cancel);
hw_get_dxx_reg(phw_data, REG_CALIB_READ2, &val);
PHY_DEBUG(("[CAL] CALIB_READ2 = 0x%08X\n", val));
iqcal_image_i = _s13_to_s32(val & 0x00001FFF);
iqcal_image_q = _s13_to_s32((val & 0x03FFE000) >> 13);
sqsum = iqcal_image_i*iqcal_image_i + iqcal_image_q*iqcal_image_q;
mag_1 = _sqrt(sqsum);
PHY_DEBUG(("[CAL] mag_1=%d (iqcal_image_i=%d, iqcal_image_q=%d)\n",
mag_1, iqcal_image_i, iqcal_image_q));
// d. Calculate the correct DC offset cancellation value for I
if (mag_0 != mag_1)
{
fix_cancel_dc_q = (mag_0*10000) / (mag_0*10000 - mag_1*10000);
}
else
{
if (mag_0 == mag_1)
{
PHY_DEBUG(("[CAL] ***** mag_0 = mag_1 !!\n"));
}
fix_cancel_dc_q = 0;
}
PHY_DEBUG(("[CAL] ** fix_cancel_dc_q = %d (0x%04X)\n",
fix_cancel_dc_q, _s32_to_s5(fix_cancel_dc_q)));
if ((abs(mag_1-mag_0)*6) > mag_0)
{
break;
}
}
if ( loop >= 19 )
fix_cancel_dc_q = 0;
reg_dc_cancel &= ~(0x001F);
reg_dc_cancel |= (_s32_to_s5(fix_cancel_dc_q) << CANCEL_DC_Q_SHIFT);
hw_set_dxx_reg(phw_data, 0x5C, reg_dc_cancel);
PHY_DEBUG(("[CAL] DC_CANCEL (write) = 0x%08X\n", reg_dc_cancel));
// f.
reg_mode_ctrl &= ~MASK_CALIB_START;
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
}
//20060612.1.a 20060718.1 Modify
u8 _tx_iq_calibration_loop_winbond(struct hw_data *phw_data,
s32 a_2_threshold,
s32 b_2_threshold)
{
u32 reg_mode_ctrl;
s32 iq_mag_0_tx;
s32 iqcal_tone_i0;
s32 iqcal_tone_q0;
s32 iqcal_tone_i;
s32 iqcal_tone_q;
u32 sqsum;
s32 rot_i_b;
s32 rot_q_b;
s32 tx_cal_flt_b[4];
s32 tx_cal[4];
s32 tx_cal_reg[4];
s32 a_2, b_2;
s32 sin_b, sin_2b;
s32 cos_b, cos_2b;
s32 divisor;
s32 temp1, temp2;
u32 val;
u16 loop;
s32 iqcal_tone_i_avg,iqcal_tone_q_avg;
u8 verify_count;
int capture_time;
PHY_DEBUG(("[CAL] -> _tx_iq_calibration_loop()\n"));
PHY_DEBUG(("[CAL] ** a_2_threshold = %d\n", a_2_threshold));
PHY_DEBUG(("[CAL] ** b_2_threshold = %d\n", b_2_threshold));
verify_count = 0;
hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (read) = 0x%08X\n", reg_mode_ctrl));
loop = LOOP_TIMES;
while (loop > 0)
{
PHY_DEBUG(("[CAL] [%d.] <_tx_iq_calibration_loop>\n", (LOOP_TIMES-loop+1)));
iqcal_tone_i_avg=0;
iqcal_tone_q_avg=0;
if( !hw_set_dxx_reg(phw_data, 0x3C, 0x00) ) // 20060718.1 modify
return 0;
for(capture_time=0;capture_time<10;capture_time++)
{
// a. Set iqcal_mode[1:0] to 0x2 and set "calib_start" to 0x1 to
// enable "IQ alibration Mode II"
reg_mode_ctrl &= ~(MASK_IQCAL_TONE_SEL|MASK_IQCAL_MODE);
reg_mode_ctrl &= ~MASK_IQCAL_MODE;
reg_mode_ctrl |= (MASK_CALIB_START|0x02);
reg_mode_ctrl |= (MASK_CALIB_START|0x02|2<<2);
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
// b.
hw_get_dxx_reg(phw_data, REG_CALIB_READ1, &val);
PHY_DEBUG(("[CAL] CALIB_READ1 = 0x%08X\n", val));
iqcal_tone_i0 = _s13_to_s32(val & 0x00001FFF);
iqcal_tone_q0 = _s13_to_s32((val & 0x03FFE000) >> 13);
PHY_DEBUG(("[CAL] ** iqcal_tone_i0=%d, iqcal_tone_q0=%d\n",
iqcal_tone_i0, iqcal_tone_q0));
sqsum = iqcal_tone_i0*iqcal_tone_i0 +
iqcal_tone_q0*iqcal_tone_q0;
iq_mag_0_tx = (s32) _sqrt(sqsum);
PHY_DEBUG(("[CAL] ** iq_mag_0_tx=%d\n", iq_mag_0_tx));
// c. Set "calib_start" to 0x0
reg_mode_ctrl &= ~MASK_CALIB_START;
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
// d. Set iqcal_mode[1:0] to 0x3 and set "calib_start" to 0x1 to
// enable "IQ alibration Mode II"
//hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &val);
hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
reg_mode_ctrl &= ~MASK_IQCAL_MODE;
reg_mode_ctrl |= (MASK_CALIB_START|0x03);
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
// e.
hw_get_dxx_reg(phw_data, REG_CALIB_READ1, &val);
PHY_DEBUG(("[CAL] CALIB_READ1 = 0x%08X\n", val));
iqcal_tone_i = _s13_to_s32(val & 0x00001FFF);
iqcal_tone_q = _s13_to_s32((val & 0x03FFE000) >> 13);
PHY_DEBUG(("[CAL] ** iqcal_tone_i = %d, iqcal_tone_q = %d\n",
iqcal_tone_i, iqcal_tone_q));
if( capture_time == 0)
{
continue;
}
else
{
iqcal_tone_i_avg=( iqcal_tone_i_avg*(capture_time-1) +iqcal_tone_i)/capture_time;
iqcal_tone_q_avg=( iqcal_tone_q_avg*(capture_time-1) +iqcal_tone_q)/capture_time;
}
}
iqcal_tone_i = iqcal_tone_i_avg;
iqcal_tone_q = iqcal_tone_q_avg;
rot_i_b = (iqcal_tone_i * iqcal_tone_i0 +
iqcal_tone_q * iqcal_tone_q0) / 1024;
rot_q_b = (iqcal_tone_i * iqcal_tone_q0 * (-1) +
iqcal_tone_q * iqcal_tone_i0) / 1024;
PHY_DEBUG(("[CAL] ** rot_i_b = %d, rot_q_b = %d\n",
rot_i_b, rot_q_b));
// f.
divisor = ((iq_mag_0_tx * iq_mag_0_tx * 2)/1024 - rot_i_b) * 2;
if (divisor == 0)
{
PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> ERROR *******\n"));
PHY_DEBUG(("[CAL] ** divisor=0 to calculate EPS and THETA !!\n"));
PHY_DEBUG(("[CAL] ******************************************\n"));
break;
}
a_2 = (rot_i_b * 32768) / divisor;
b_2 = (rot_q_b * (-32768)) / divisor;
PHY_DEBUG(("[CAL] ***** EPSILON/2 = %d\n", a_2));
PHY_DEBUG(("[CAL] ***** THETA/2 = %d\n", b_2));
phw_data->iq_rsdl_gain_tx_d2 = a_2;
phw_data->iq_rsdl_phase_tx_d2 = b_2;
//if ((abs(a_2) < 150) && (abs(b_2) < 100))
//if ((abs(a_2) < 200) && (abs(b_2) < 200))
if ((abs(a_2) < a_2_threshold) && (abs(b_2) < b_2_threshold))
{
verify_count++;
PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> *************\n"));
PHY_DEBUG(("[CAL] ** VERIFY OK # %d !!\n", verify_count));
PHY_DEBUG(("[CAL] ******************************************\n"));
if (verify_count > 2)
{
PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> *********\n"));
PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION (EPS,THETA) OK !!\n"));
PHY_DEBUG(("[CAL] **************************************\n"));
return 0;
}
continue;
}
else
{
verify_count = 0;
}
_sin_cos(b_2, &sin_b, &cos_b);
_sin_cos(b_2*2, &sin_2b, &cos_2b);
PHY_DEBUG(("[CAL] ** sin(b/2)=%d, cos(b/2)=%d\n", sin_b, cos_b));
PHY_DEBUG(("[CAL] ** sin(b)=%d, cos(b)=%d\n", sin_2b, cos_2b));
if (cos_2b == 0)
{
PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> ERROR *******\n"));
PHY_DEBUG(("[CAL] ** cos(b)=0 !!\n"));
PHY_DEBUG(("[CAL] ******************************************\n"));
break;
}
// 1280 * 32768 = 41943040
temp1 = (41943040/cos_2b)*cos_b;
//temp2 = (41943040/cos_2b)*sin_b*(-1);
if (phw_data->revision == 0x2002) // 1st-cut
{
temp2 = (41943040/cos_2b)*sin_b*(-1);
}
else // 2nd-cut
{
temp2 = (41943040*4/cos_2b)*sin_b*(-1);
}
tx_cal_flt_b[0] = _floor(temp1/(32768+a_2));
tx_cal_flt_b[1] = _floor(temp2/(32768+a_2));
tx_cal_flt_b[2] = _floor(temp2/(32768-a_2));
tx_cal_flt_b[3] = _floor(temp1/(32768-a_2));
PHY_DEBUG(("[CAL] ** tx_cal_flt_b[0] = %d\n", tx_cal_flt_b[0]));
PHY_DEBUG(("[CAL] tx_cal_flt_b[1] = %d\n", tx_cal_flt_b[1]));
PHY_DEBUG(("[CAL] tx_cal_flt_b[2] = %d\n", tx_cal_flt_b[2]));
PHY_DEBUG(("[CAL] tx_cal_flt_b[3] = %d\n", tx_cal_flt_b[3]));
tx_cal[2] = tx_cal_flt_b[2];
tx_cal[2] = tx_cal[2] +3;
tx_cal[1] = tx_cal[2];
tx_cal[3] = tx_cal_flt_b[3] - 128;
tx_cal[0] = -tx_cal[3]+1;
PHY_DEBUG(("[CAL] tx_cal[0] = %d\n", tx_cal[0]));
PHY_DEBUG(("[CAL] tx_cal[1] = %d\n", tx_cal[1]));
PHY_DEBUG(("[CAL] tx_cal[2] = %d\n", tx_cal[2]));
PHY_DEBUG(("[CAL] tx_cal[3] = %d\n", tx_cal[3]));
//if ((tx_cal[0] == 0) && (tx_cal[1] == 0) &&
// (tx_cal[2] == 0) && (tx_cal[3] == 0))
//{
// PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> *************\n"));
// PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION COMPLETE !!\n"));
// PHY_DEBUG(("[CAL] ******************************************\n"));
// return 0;
//}
// g.
if (phw_data->revision == 0x2002) // 1st-cut
{
hw_get_dxx_reg(phw_data, 0x54, &val);
PHY_DEBUG(("[CAL] ** 0x54 = 0x%08X\n", val));
tx_cal_reg[0] = _s4_to_s32((val & 0xF0000000) >> 28);
tx_cal_reg[1] = _s4_to_s32((val & 0x0F000000) >> 24);
tx_cal_reg[2] = _s4_to_s32((val & 0x00F00000) >> 20);
tx_cal_reg[3] = _s4_to_s32((val & 0x000F0000) >> 16);
}
else // 2nd-cut
{
hw_get_dxx_reg(phw_data, 0x3C, &val);
PHY_DEBUG(("[CAL] ** 0x3C = 0x%08X\n", val));
tx_cal_reg[0] = _s5_to_s32((val & 0xF8000000) >> 27);
tx_cal_reg[1] = _s6_to_s32((val & 0x07E00000) >> 21);
tx_cal_reg[2] = _s6_to_s32((val & 0x001F8000) >> 15);
tx_cal_reg[3] = _s5_to_s32((val & 0x00007C00) >> 10);
}
PHY_DEBUG(("[CAL] ** tx_cal_reg[0] = %d\n", tx_cal_reg[0]));
PHY_DEBUG(("[CAL] tx_cal_reg[1] = %d\n", tx_cal_reg[1]));
PHY_DEBUG(("[CAL] tx_cal_reg[2] = %d\n", tx_cal_reg[2]));
PHY_DEBUG(("[CAL] tx_cal_reg[3] = %d\n", tx_cal_reg[3]));
if (phw_data->revision == 0x2002) // 1st-cut
{
if (((tx_cal_reg[0]==7) || (tx_cal_reg[0]==(-8))) &&
((tx_cal_reg[3]==7) || (tx_cal_reg[3]==(-8))))
{
PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> *********\n"));
PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION SATUATION !!\n"));
PHY_DEBUG(("[CAL] **************************************\n"));
break;
}
}
else // 2nd-cut
{
if (((tx_cal_reg[0]==31) || (tx_cal_reg[0]==(-32))) &&
((tx_cal_reg[3]==31) || (tx_cal_reg[3]==(-32))))
{
PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> *********\n"));
PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION SATUATION !!\n"));
PHY_DEBUG(("[CAL] **************************************\n"));
break;
}
}
tx_cal[0] = tx_cal[0] + tx_cal_reg[0];
tx_cal[1] = tx_cal[1] + tx_cal_reg[1];
tx_cal[2] = tx_cal[2] + tx_cal_reg[2];
tx_cal[3] = tx_cal[3] + tx_cal_reg[3];
PHY_DEBUG(("[CAL] ** apply tx_cal[0] = %d\n", tx_cal[0]));
PHY_DEBUG(("[CAL] apply tx_cal[1] = %d\n", tx_cal[1]));
PHY_DEBUG(("[CAL] apply tx_cal[2] = %d\n", tx_cal[2]));
PHY_DEBUG(("[CAL] apply tx_cal[3] = %d\n", tx_cal[3]));
if (phw_data->revision == 0x2002) // 1st-cut
{
val &= 0x0000FFFF;
val |= ((_s32_to_s4(tx_cal[0]) << 28)|
(_s32_to_s4(tx_cal[1]) << 24)|
(_s32_to_s4(tx_cal[2]) << 20)|
(_s32_to_s4(tx_cal[3]) << 16));
hw_set_dxx_reg(phw_data, 0x54, val);
PHY_DEBUG(("[CAL] ** CALIB_DATA = 0x%08X\n", val));
return 0;
}
else // 2nd-cut
{
val &= 0x000003FF;
val |= ((_s32_to_s5(tx_cal[0]) << 27)|
(_s32_to_s6(tx_cal[1]) << 21)|
(_s32_to_s6(tx_cal[2]) << 15)|
(_s32_to_s5(tx_cal[3]) << 10));
hw_set_dxx_reg(phw_data, 0x3C, val);
PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION = 0x%08X\n", val));
return 0;
}
// i. Set "calib_start" to 0x0
reg_mode_ctrl &= ~MASK_CALIB_START;
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
loop--;
}
return 1;
}
void _tx_iq_calibration_winbond(struct hw_data *phw_data)
{
u32 reg_agc_ctrl3;
#ifdef _DEBUG
s32 tx_cal_reg[4];
#endif
u32 reg_mode_ctrl;
u32 val;
u8 result;
PHY_DEBUG(("[CAL] -> [4]_tx_iq_calibration()\n"));
//0x01 0xEE3FC2 ; 3B8FF ; Calibration (6a). enable TX IQ calibration loop circuits
phy_set_rf_data(phw_data, 1, (1<<24)|0xEE3FC2);
//0x0B 0x1905D6 ; 06417 ; Calibration (6b). enable TX I/Q cal loop squaring circuit
phy_set_rf_data(phw_data, 11, (11<<24)|0x19BDD6); // 20060612.1.a 0x1905D6);
//0x05 0x24C60A ; 09318 ; Calibration (6c). setting TX-VGA gain: TXGCH=2 & GPK=110 --> to be optimized
phy_set_rf_data(phw_data, 5, (5<<24)|0x24C60A); //0x24C60A (high temperature)
//0x06 0x06880C ; 01A20 ; Calibration (6d). RXGCH=00; RXGCL=100 000 (RXVGA=32) --> to be optimized
phy_set_rf_data(phw_data, 6, (6<<24)|0x34880C); // 20060612.1.a 0x06890C);
//0x00 0xFDF1C0 ; 3F7C7 ; Calibration (6e). turn on IQ imbalance/Test mode
phy_set_rf_data(phw_data, 0, (0<<24)|0xFDF1C0);
//; [BB-chip]: Calibration (6f).Send test pattern
//; [BB-chip]: Calibration (6g). Search RXGCL optimal value
//; [BB-chip]: Calibration (6h). Caculate TX-path IQ imbalance and setting TX path IQ compensation table
//phy_set_rf_data(phw_data, 3, (3<<24)|0x025586);
msleep(30); // 20060612.1.a 30ms delay. Add the follow 2 lines
//To adjust TXVGA to fit iq_mag_0 range from 1250 ~ 1750
adjust_TXVGA_for_iq_mag( phw_data );
// a. Disable AGC
hw_get_dxx_reg(phw_data, REG_AGC_CTRL3, &reg_agc_ctrl3);
reg_agc_ctrl3 &= ~BIT(2);
reg_agc_ctrl3 |= (MASK_LNA_FIX_GAIN|MASK_AGC_FIX);
hw_set_dxx_reg(phw_data, REG_AGC_CTRL3, reg_agc_ctrl3);
hw_get_dxx_reg(phw_data, REG_AGC_CTRL5, &val);
val |= MASK_AGC_FIX_GAIN;
hw_set_dxx_reg(phw_data, REG_AGC_CTRL5, val);
result = _tx_iq_calibration_loop_winbond(phw_data, 150, 100);
if (result > 0)
{
if (phw_data->revision == 0x2002) // 1st-cut
{
hw_get_dxx_reg(phw_data, 0x54, &val);
val &= 0x0000FFFF;
hw_set_dxx_reg(phw_data, 0x54, val);
}
else // 2nd-cut
{
hw_get_dxx_reg(phw_data, 0x3C, &val);
val &= 0x000003FF;
hw_set_dxx_reg(phw_data, 0x3C, val);
}
result = _tx_iq_calibration_loop_winbond(phw_data, 300, 200);
if (result > 0)
{
if (phw_data->revision == 0x2002) // 1st-cut
{
hw_get_dxx_reg(phw_data, 0x54, &val);
val &= 0x0000FFFF;
hw_set_dxx_reg(phw_data, 0x54, val);
}
else // 2nd-cut
{
hw_get_dxx_reg(phw_data, 0x3C, &val);
val &= 0x000003FF;
hw_set_dxx_reg(phw_data, 0x3C, val);
}
result = _tx_iq_calibration_loop_winbond(phw_data, 500, 400);
if (result > 0)
{
if (phw_data->revision == 0x2002) // 1st-cut
{
hw_get_dxx_reg(phw_data, 0x54, &val);
val &= 0x0000FFFF;
hw_set_dxx_reg(phw_data, 0x54, val);
}
else // 2nd-cut
{
hw_get_dxx_reg(phw_data, 0x3C, &val);
val &= 0x000003FF;
hw_set_dxx_reg(phw_data, 0x3C, val);
}
result = _tx_iq_calibration_loop_winbond(phw_data, 700, 500);
if (result > 0)
{
PHY_DEBUG(("[CAL] ** <_tx_iq_calibration> **************\n"));
PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION FAILURE !!\n"));
PHY_DEBUG(("[CAL] **************************************\n"));
if (phw_data->revision == 0x2002) // 1st-cut
{
hw_get_dxx_reg(phw_data, 0x54, &val);
val &= 0x0000FFFF;
hw_set_dxx_reg(phw_data, 0x54, val);
}
else // 2nd-cut
{
hw_get_dxx_reg(phw_data, 0x3C, &val);
val &= 0x000003FF;
hw_set_dxx_reg(phw_data, 0x3C, val);
}
}
}
}
}
// i. Set "calib_start" to 0x0
hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
reg_mode_ctrl &= ~MASK_CALIB_START;
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
// g. Enable AGC
//hw_get_dxx_reg(phw_data, REG_AGC_CTRL3, &val);
reg_agc_ctrl3 |= BIT(2);
reg_agc_ctrl3 &= ~(MASK_LNA_FIX_GAIN|MASK_AGC_FIX);
hw_set_dxx_reg(phw_data, REG_AGC_CTRL3, reg_agc_ctrl3);
#ifdef _DEBUG
if (phw_data->revision == 0x2002) // 1st-cut
{
hw_get_dxx_reg(phw_data, 0x54, &val);
PHY_DEBUG(("[CAL] ** 0x54 = 0x%08X\n", val));
tx_cal_reg[0] = _s4_to_s32((val & 0xF0000000) >> 28);
tx_cal_reg[1] = _s4_to_s32((val & 0x0F000000) >> 24);
tx_cal_reg[2] = _s4_to_s32((val & 0x00F00000) >> 20);
tx_cal_reg[3] = _s4_to_s32((val & 0x000F0000) >> 16);
}
else // 2nd-cut
{
hw_get_dxx_reg(phw_data, 0x3C, &val);
PHY_DEBUG(("[CAL] ** 0x3C = 0x%08X\n", val));
tx_cal_reg[0] = _s5_to_s32((val & 0xF8000000) >> 27);
tx_cal_reg[1] = _s6_to_s32((val & 0x07E00000) >> 21);
tx_cal_reg[2] = _s6_to_s32((val & 0x001F8000) >> 15);
tx_cal_reg[3] = _s5_to_s32((val & 0x00007C00) >> 10);
}
PHY_DEBUG(("[CAL] ** tx_cal_reg[0] = %d\n", tx_cal_reg[0]));
PHY_DEBUG(("[CAL] tx_cal_reg[1] = %d\n", tx_cal_reg[1]));
PHY_DEBUG(("[CAL] tx_cal_reg[2] = %d\n", tx_cal_reg[2]));
PHY_DEBUG(("[CAL] tx_cal_reg[3] = %d\n", tx_cal_reg[3]));
#endif
// for test - BEN
// RF Control Override
}
/////////////////////////////////////////////////////////////////////////////////////////
u8 _rx_iq_calibration_loop_winbond(struct hw_data *phw_data, u16 factor, u32 frequency)
{
u32 reg_mode_ctrl;
s32 iqcal_tone_i;
s32 iqcal_tone_q;
s32 iqcal_image_i;
s32 iqcal_image_q;
s32 rot_tone_i_b;
s32 rot_tone_q_b;
s32 rot_image_i_b;
s32 rot_image_q_b;
s32 rx_cal_flt_b[4];
s32 rx_cal[4];
s32 rx_cal_reg[4];
s32 a_2, b_2;
s32 sin_b, sin_2b;
s32 cos_b, cos_2b;
s32 temp1, temp2;
u32 val;
u16 loop;
u32 pwr_tone;
u32 pwr_image;
u8 verify_count;
s32 iqcal_tone_i_avg,iqcal_tone_q_avg;
s32 iqcal_image_i_avg,iqcal_image_q_avg;
u16 capture_time;
PHY_DEBUG(("[CAL] -> [5]_rx_iq_calibration_loop()\n"));
PHY_DEBUG(("[CAL] ** factor = %d\n", factor));
// RF Control Override
hw_get_cxx_reg(phw_data, 0x80, &val);
val |= BIT(19);
hw_set_cxx_reg(phw_data, 0x80, val);
// RF_Ctrl
hw_get_cxx_reg(phw_data, 0xE4, &val);
val |= BIT(0);
hw_set_cxx_reg(phw_data, 0xE4, val);
PHY_DEBUG(("[CAL] ** RF_CTRL(0xE4) = 0x%08X", val));
hw_set_dxx_reg(phw_data, 0x58, 0x44444444); // IQ_Alpha
// b.
hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (read) = 0x%08X\n", reg_mode_ctrl));
verify_count = 0;
//for (loop = 0; loop < 1; loop++)
//for (loop = 0; loop < LOOP_TIMES; loop++)
loop = LOOP_TIMES;
while (loop > 0)
{
PHY_DEBUG(("[CAL] [%d.] <_rx_iq_calibration_loop>\n", (LOOP_TIMES-loop+1)));
iqcal_tone_i_avg=0;
iqcal_tone_q_avg=0;
iqcal_image_i_avg=0;
iqcal_image_q_avg=0;
capture_time=0;
for(capture_time=0; capture_time<10; capture_time++)
{
// i. Set "calib_start" to 0x0
reg_mode_ctrl &= ~MASK_CALIB_START;
if( !hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl) )//20060718.1 modify
return 0;
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
reg_mode_ctrl &= ~MASK_IQCAL_MODE;
reg_mode_ctrl |= (MASK_CALIB_START|0x1);
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
// c.
hw_get_dxx_reg(phw_data, REG_CALIB_READ1, &val);
PHY_DEBUG(("[CAL] CALIB_READ1 = 0x%08X\n", val));
iqcal_tone_i = _s13_to_s32(val & 0x00001FFF);
iqcal_tone_q = _s13_to_s32((val & 0x03FFE000) >> 13);
PHY_DEBUG(("[CAL] ** iqcal_tone_i = %d, iqcal_tone_q = %d\n",
iqcal_tone_i, iqcal_tone_q));
hw_get_dxx_reg(phw_data, REG_CALIB_READ2, &val);
PHY_DEBUG(("[CAL] CALIB_READ2 = 0x%08X\n", val));
iqcal_image_i = _s13_to_s32(val & 0x00001FFF);
iqcal_image_q = _s13_to_s32((val & 0x03FFE000) >> 13);
PHY_DEBUG(("[CAL] ** iqcal_image_i = %d, iqcal_image_q = %d\n",
iqcal_image_i, iqcal_image_q));
if( capture_time == 0)
{
continue;
}
else
{
iqcal_image_i_avg=( iqcal_image_i_avg*(capture_time-1) +iqcal_image_i)/capture_time;
iqcal_image_q_avg=( iqcal_image_q_avg*(capture_time-1) +iqcal_image_q)/capture_time;
iqcal_tone_i_avg=( iqcal_tone_i_avg*(capture_time-1) +iqcal_tone_i)/capture_time;
iqcal_tone_q_avg=( iqcal_tone_q_avg*(capture_time-1) +iqcal_tone_q)/capture_time;
}
}
iqcal_image_i = iqcal_image_i_avg;
iqcal_image_q = iqcal_image_q_avg;
iqcal_tone_i = iqcal_tone_i_avg;
iqcal_tone_q = iqcal_tone_q_avg;
// d.
rot_tone_i_b = (iqcal_tone_i * iqcal_tone_i +
iqcal_tone_q * iqcal_tone_q) / 1024;
rot_tone_q_b = (iqcal_tone_i * iqcal_tone_q * (-1) +
iqcal_tone_q * iqcal_tone_i) / 1024;
rot_image_i_b = (iqcal_image_i * iqcal_tone_i -
iqcal_image_q * iqcal_tone_q) / 1024;
rot_image_q_b = (iqcal_image_i * iqcal_tone_q +
iqcal_image_q * iqcal_tone_i) / 1024;
PHY_DEBUG(("[CAL] ** rot_tone_i_b = %d\n", rot_tone_i_b));
PHY_DEBUG(("[CAL] ** rot_tone_q_b = %d\n", rot_tone_q_b));
PHY_DEBUG(("[CAL] ** rot_image_i_b = %d\n", rot_image_i_b));
PHY_DEBUG(("[CAL] ** rot_image_q_b = %d\n", rot_image_q_b));
// f.
if (rot_tone_i_b == 0)
{
PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> ERROR *******\n"));
PHY_DEBUG(("[CAL] ** rot_tone_i_b=0 to calculate EPS and THETA !!\n"));
PHY_DEBUG(("[CAL] ******************************************\n"));
break;
}
a_2 = (rot_image_i_b * 32768) / rot_tone_i_b -
phw_data->iq_rsdl_gain_tx_d2;
b_2 = (rot_image_q_b * 32768) / rot_tone_i_b -
phw_data->iq_rsdl_phase_tx_d2;
PHY_DEBUG(("[CAL] ** iq_rsdl_gain_tx_d2 = %d\n", phw_data->iq_rsdl_gain_tx_d2));
PHY_DEBUG(("[CAL] ** iq_rsdl_phase_tx_d2= %d\n", phw_data->iq_rsdl_phase_tx_d2));
PHY_DEBUG(("[CAL] ***** EPSILON/2 = %d\n", a_2));
PHY_DEBUG(("[CAL] ***** THETA/2 = %d\n", b_2));
_sin_cos(b_2, &sin_b, &cos_b);
_sin_cos(b_2*2, &sin_2b, &cos_2b);
PHY_DEBUG(("[CAL] ** sin(b/2)=%d, cos(b/2)=%d\n", sin_b, cos_b));
PHY_DEBUG(("[CAL] ** sin(b)=%d, cos(b)=%d\n", sin_2b, cos_2b));
if (cos_2b == 0)
{
PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> ERROR *******\n"));
PHY_DEBUG(("[CAL] ** cos(b)=0 !!\n"));
PHY_DEBUG(("[CAL] ******************************************\n"));
break;
}
// 1280 * 32768 = 41943040
temp1 = (41943040/cos_2b)*cos_b;
//temp2 = (41943040/cos_2b)*sin_b*(-1);
if (phw_data->revision == 0x2002) // 1st-cut
{
temp2 = (41943040/cos_2b)*sin_b*(-1);
}
else // 2nd-cut
{
temp2 = (41943040*4/cos_2b)*sin_b*(-1);
}
rx_cal_flt_b[0] = _floor(temp1/(32768+a_2));
rx_cal_flt_b[1] = _floor(temp2/(32768-a_2));
rx_cal_flt_b[2] = _floor(temp2/(32768+a_2));
rx_cal_flt_b[3] = _floor(temp1/(32768-a_2));
PHY_DEBUG(("[CAL] ** rx_cal_flt_b[0] = %d\n", rx_cal_flt_b[0]));
PHY_DEBUG(("[CAL] rx_cal_flt_b[1] = %d\n", rx_cal_flt_b[1]));
PHY_DEBUG(("[CAL] rx_cal_flt_b[2] = %d\n", rx_cal_flt_b[2]));
PHY_DEBUG(("[CAL] rx_cal_flt_b[3] = %d\n", rx_cal_flt_b[3]));
rx_cal[0] = rx_cal_flt_b[0] - 128;
rx_cal[1] = rx_cal_flt_b[1];
rx_cal[2] = rx_cal_flt_b[2];
rx_cal[3] = rx_cal_flt_b[3] - 128;
PHY_DEBUG(("[CAL] ** rx_cal[0] = %d\n", rx_cal[0]));
PHY_DEBUG(("[CAL] rx_cal[1] = %d\n", rx_cal[1]));
PHY_DEBUG(("[CAL] rx_cal[2] = %d\n", rx_cal[2]));
PHY_DEBUG(("[CAL] rx_cal[3] = %d\n", rx_cal[3]));
// e.
pwr_tone = (iqcal_tone_i*iqcal_tone_i + iqcal_tone_q*iqcal_tone_q);
pwr_image = (iqcal_image_i*iqcal_image_i + iqcal_image_q*iqcal_image_q)*factor;
PHY_DEBUG(("[CAL] ** pwr_tone = %d\n", pwr_tone));
PHY_DEBUG(("[CAL] ** pwr_image = %d\n", pwr_image));
if (pwr_tone > pwr_image)
{
verify_count++;
PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> *************\n"));
PHY_DEBUG(("[CAL] ** VERIFY OK # %d !!\n", verify_count));
PHY_DEBUG(("[CAL] ******************************************\n"));
if (verify_count > 2)
{
PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> *********\n"));
PHY_DEBUG(("[CAL] ** RX_IQ_CALIBRATION OK !!\n"));
PHY_DEBUG(("[CAL] **************************************\n"));
return 0;
}
continue;
}
// g.
hw_get_dxx_reg(phw_data, 0x54, &val);
PHY_DEBUG(("[CAL] ** 0x54 = 0x%08X\n", val));
if (phw_data->revision == 0x2002) // 1st-cut
{
rx_cal_reg[0] = _s4_to_s32((val & 0x0000F000) >> 12);
rx_cal_reg[1] = _s4_to_s32((val & 0x00000F00) >> 8);
rx_cal_reg[2] = _s4_to_s32((val & 0x000000F0) >> 4);
rx_cal_reg[3] = _s4_to_s32((val & 0x0000000F));
}
else // 2nd-cut
{
rx_cal_reg[0] = _s5_to_s32((val & 0xF8000000) >> 27);
rx_cal_reg[1] = _s6_to_s32((val & 0x07E00000) >> 21);
rx_cal_reg[2] = _s6_to_s32((val & 0x001F8000) >> 15);
rx_cal_reg[3] = _s5_to_s32((val & 0x00007C00) >> 10);
}
PHY_DEBUG(("[CAL] ** rx_cal_reg[0] = %d\n", rx_cal_reg[0]));
PHY_DEBUG(("[CAL] rx_cal_reg[1] = %d\n", rx_cal_reg[1]));
PHY_DEBUG(("[CAL] rx_cal_reg[2] = %d\n", rx_cal_reg[2]));
PHY_DEBUG(("[CAL] rx_cal_reg[3] = %d\n", rx_cal_reg[3]));
if (phw_data->revision == 0x2002) // 1st-cut
{
if (((rx_cal_reg[0]==7) || (rx_cal_reg[0]==(-8))) &&
((rx_cal_reg[3]==7) || (rx_cal_reg[3]==(-8))))
{
PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> *********\n"));
PHY_DEBUG(("[CAL] ** RX_IQ_CALIBRATION SATUATION !!\n"));
PHY_DEBUG(("[CAL] **************************************\n"));
break;
}
}
else // 2nd-cut
{
if (((rx_cal_reg[0]==31) || (rx_cal_reg[0]==(-32))) &&
((rx_cal_reg[3]==31) || (rx_cal_reg[3]==(-32))))
{
PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> *********\n"));
PHY_DEBUG(("[CAL] ** RX_IQ_CALIBRATION SATUATION !!\n"));
PHY_DEBUG(("[CAL] **************************************\n"));
break;
}
}
rx_cal[0] = rx_cal[0] + rx_cal_reg[0];
rx_cal[1] = rx_cal[1] + rx_cal_reg[1];
rx_cal[2] = rx_cal[2] + rx_cal_reg[2];
rx_cal[3] = rx_cal[3] + rx_cal_reg[3];
PHY_DEBUG(("[CAL] ** apply rx_cal[0] = %d\n", rx_cal[0]));
PHY_DEBUG(("[CAL] apply rx_cal[1] = %d\n", rx_cal[1]));
PHY_DEBUG(("[CAL] apply rx_cal[2] = %d\n", rx_cal[2]));
PHY_DEBUG(("[CAL] apply rx_cal[3] = %d\n", rx_cal[3]));
hw_get_dxx_reg(phw_data, 0x54, &val);
if (phw_data->revision == 0x2002) // 1st-cut
{
val &= 0x0000FFFF;
val |= ((_s32_to_s4(rx_cal[0]) << 12)|
(_s32_to_s4(rx_cal[1]) << 8)|
(_s32_to_s4(rx_cal[2]) << 4)|
(_s32_to_s4(rx_cal[3])));
hw_set_dxx_reg(phw_data, 0x54, val);
}
else // 2nd-cut
{
val &= 0x000003FF;
val |= ((_s32_to_s5(rx_cal[0]) << 27)|
(_s32_to_s6(rx_cal[1]) << 21)|
(_s32_to_s6(rx_cal[2]) << 15)|
(_s32_to_s5(rx_cal[3]) << 10));
hw_set_dxx_reg(phw_data, 0x54, val);
if( loop == 3 )
return 0;
}
PHY_DEBUG(("[CAL] ** CALIB_DATA = 0x%08X\n", val));
loop--;
}
return 1;
}
//////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
void _rx_iq_calibration_winbond(struct hw_data *phw_data, u32 frequency)
{
// figo 20050523 marked thsi flag for can't compile for relesase
#ifdef _DEBUG
s32 rx_cal_reg[4];
u32 val;
#endif
u8 result;
PHY_DEBUG(("[CAL] -> [5]_rx_iq_calibration()\n"));
// a. Set RFIC to "RX calibration mode"
//; ----- Calibration (7). RX path IQ imbalance calibration loop
// 0x01 0xFFBFC2 ; 3FEFF ; Calibration (7a). enable RX IQ calibration loop circuits
phy_set_rf_data(phw_data, 1, (1<<24)|0xEFBFC2);
// 0x0B 0x1A01D6 ; 06817 ; Calibration (7b). enable RX I/Q cal loop SW1 circuit
phy_set_rf_data(phw_data, 11, (11<<24)|0x1A05D6);
//0x05 0x24848A ; 09212 ; Calibration (7c). setting TX-VGA gain (TXGCH) to 2 --> to be optimized
phy_set_rf_data(phw_data, 5, (5<<24)| phw_data->txvga_setting_for_cal);
//0x06 0x06840C ; 01A10 ; Calibration (7d). RXGCH=00; RXGCL=010 000 (RXVGA) --> to be optimized
phy_set_rf_data(phw_data, 6, (6<<24)|0x06834C);
//0x00 0xFFF1C0 ; 3F7C7 ; Calibration (7e). turn on IQ imbalance/Test mode
phy_set_rf_data(phw_data, 0, (0<<24)|0xFFF1C0);
// ; [BB-chip]: Calibration (7f). Send test pattern
// ; [BB-chip]: Calibration (7g). Search RXGCL optimal value
// ; [BB-chip]: Calibration (7h). Caculate RX-path IQ imbalance and setting RX path IQ compensation table
result = _rx_iq_calibration_loop_winbond(phw_data, 12589, frequency);
if (result > 0)
{
_reset_rx_cal(phw_data);
result = _rx_iq_calibration_loop_winbond(phw_data, 7943, frequency);
if (result > 0)
{
_reset_rx_cal(phw_data);
result = _rx_iq_calibration_loop_winbond(phw_data, 5011, frequency);
if (result > 0)
{
PHY_DEBUG(("[CAL] ** <_rx_iq_calibration> **************\n"));
PHY_DEBUG(("[CAL] ** RX_IQ_CALIBRATION FAILURE !!\n"));
PHY_DEBUG(("[CAL] **************************************\n"));
_reset_rx_cal(phw_data);
}
}
}
#ifdef _DEBUG
hw_get_dxx_reg(phw_data, 0x54, &val);
PHY_DEBUG(("[CAL] ** 0x54 = 0x%08X\n", val));
if (phw_data->revision == 0x2002) // 1st-cut
{
rx_cal_reg[0] = _s4_to_s32((val & 0x0000F000) >> 12);
rx_cal_reg[1] = _s4_to_s32((val & 0x00000F00) >> 8);
rx_cal_reg[2] = _s4_to_s32((val & 0x000000F0) >> 4);
rx_cal_reg[3] = _s4_to_s32((val & 0x0000000F));
}
else // 2nd-cut
{
rx_cal_reg[0] = _s5_to_s32((val & 0xF8000000) >> 27);
rx_cal_reg[1] = _s6_to_s32((val & 0x07E00000) >> 21);
rx_cal_reg[2] = _s6_to_s32((val & 0x001F8000) >> 15);
rx_cal_reg[3] = _s5_to_s32((val & 0x00007C00) >> 10);
}
PHY_DEBUG(("[CAL] ** rx_cal_reg[0] = %d\n", rx_cal_reg[0]));
PHY_DEBUG(("[CAL] rx_cal_reg[1] = %d\n", rx_cal_reg[1]));
PHY_DEBUG(("[CAL] rx_cal_reg[2] = %d\n", rx_cal_reg[2]));
PHY_DEBUG(("[CAL] rx_cal_reg[3] = %d\n", rx_cal_reg[3]));
#endif
}
////////////////////////////////////////////////////////////////////////
void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency)
{
u32 reg_mode_ctrl;
u32 iq_alpha;
PHY_DEBUG(("[CAL] -> phy_calibration_winbond()\n"));
// 20040701 1.1.25.1000 kevin
hw_get_cxx_reg(phw_data, 0x80, &mac_ctrl);
hw_get_cxx_reg(phw_data, 0xE4, &rf_ctrl);
hw_get_dxx_reg(phw_data, 0x58, &iq_alpha);
_rxadc_dc_offset_cancellation_winbond(phw_data, frequency);
//_txidac_dc_offset_cancellation_winbond(phw_data);
//_txqdac_dc_offset_cacellation_winbond(phw_data);
_tx_iq_calibration_winbond(phw_data);
_rx_iq_calibration_winbond(phw_data, frequency);
//------------------------------------------------------------------------
hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
reg_mode_ctrl &= ~(MASK_IQCAL_TONE_SEL|MASK_IQCAL_MODE|MASK_CALIB_START); // set when finish
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
// i. Set RFIC to "Normal mode"
hw_set_cxx_reg(phw_data, 0x80, mac_ctrl);
hw_set_cxx_reg(phw_data, 0xE4, rf_ctrl);
hw_set_dxx_reg(phw_data, 0x58, iq_alpha);
//------------------------------------------------------------------------
phy_init_rf(phw_data);
}
//===========================
void phy_set_rf_data( struct hw_data * pHwData, u32 index, u32 value )
{
u32 ltmp=0;
switch( pHwData->phy_type )
{
case RF_MAXIM_2825:
case RF_MAXIM_V1: // 11g Winbond 2nd BB(with Phy board (v1) + Maxim 331)
ltmp = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( value, 18 );
break;
case RF_MAXIM_2827:
ltmp = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( value, 18 );
break;
case RF_MAXIM_2828:
ltmp = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( value, 18 );
break;
case RF_MAXIM_2829:
ltmp = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( value, 18 );
break;
case RF_AIROHA_2230:
case RF_AIROHA_2230S: // 20060420 Add this
ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( value, 20 );
break;
case RF_AIROHA_7230:
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | (value&0xffffff);
break;
case RF_WB_242:
case RF_WB_242_1: // 20060619.5 Add
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( value, 24 );
break;
}
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
}
// 20060717 modify as Bruce's mail
unsigned char adjust_TXVGA_for_iq_mag(struct hw_data *phw_data)
{
int init_txvga = 0;
u32 reg_mode_ctrl;
u32 val;
s32 iqcal_tone_i0;
s32 iqcal_tone_q0;
u32 sqsum;
s32 iq_mag_0_tx;
u8 reg_state;
int current_txvga;
reg_state = 0;
for( init_txvga=0; init_txvga<10; init_txvga++)
{
current_txvga = ( 0x24C40A|(init_txvga<<6) );
phy_set_rf_data(phw_data, 5, ((5<<24)|current_txvga) );
phw_data->txvga_setting_for_cal = current_txvga;
msleep(30); // 20060612.1.a
if( !hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl) ) // 20060718.1 modify
return false;
PHY_DEBUG(("[CAL] MODE_CTRL (read) = 0x%08X\n", reg_mode_ctrl));
// a. Set iqcal_mode[1:0] to 0x2 and set "calib_start" to 0x1 to
// enable "IQ alibration Mode II"
reg_mode_ctrl &= ~(MASK_IQCAL_TONE_SEL|MASK_IQCAL_MODE);
reg_mode_ctrl &= ~MASK_IQCAL_MODE;
reg_mode_ctrl |= (MASK_CALIB_START|0x02);
reg_mode_ctrl |= (MASK_CALIB_START|0x02|2<<2);
hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
PHY_DEBUG(("[CAL] MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));
udelay(1); // 20060612.1.a
udelay(300); // 20060612.1.a
// b.
hw_get_dxx_reg(phw_data, REG_CALIB_READ1, &val);
PHY_DEBUG(("[CAL] CALIB_READ1 = 0x%08X\n", val));
udelay(300); // 20060612.1.a
iqcal_tone_i0 = _s13_to_s32(val & 0x00001FFF);
iqcal_tone_q0 = _s13_to_s32((val & 0x03FFE000) >> 13);
PHY_DEBUG(("[CAL] ** iqcal_tone_i0=%d, iqcal_tone_q0=%d\n",
iqcal_tone_i0, iqcal_tone_q0));
sqsum = iqcal_tone_i0*iqcal_tone_i0 + iqcal_tone_q0*iqcal_tone_q0;
iq_mag_0_tx = (s32) _sqrt(sqsum);
PHY_DEBUG(("[CAL] ** auto_adjust_txvga_for_iq_mag_0_tx=%d\n", iq_mag_0_tx));
if( iq_mag_0_tx>=700 && iq_mag_0_tx<=1750 )
break;
else if(iq_mag_0_tx > 1750)
{
init_txvga=-2;
continue;
}
else
continue;
}
if( iq_mag_0_tx>=700 && iq_mag_0_tx<=1750 )
return true;
else
return false;
}