blob: 7391f5f8f25f823ac47a2d8fb56c8471eb78fd24 [file] [log] [blame]
/*
This is part of the rtl8192 driver
released under the GPL (See file COPYING for details).
This files contains programming code for the rtl8256
radio frontend.
*Many* thanks to Realtek Corp. for their great support!
*/
#include "r8192E.h"
#include "r8192E_hw.h"
#include "r819xE_phyreg.h"
#include "r819xE_phy.h"
#include "r8190_rtl8256.h"
/*--------------------------------------------------------------------------
* Overview: set RF band width (20M or 40M)
* Input: struct net_device* dev
* WIRELESS_BANDWIDTH_E Bandwidth //20M or 40M
* Output: NONE
* Return: NONE
* Note: 8226 support both 20M and 40 MHz
*---------------------------------------------------------------------------*/
void PHY_SetRF8256Bandwidth(struct net_device* dev , HT_CHANNEL_WIDTH Bandwidth) //20M or 40M
{
u8 eRFPath;
struct r8192_priv *priv = ieee80211_priv(dev);
//for(eRFPath = RF90_PATH_A; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
for(eRFPath = 0; eRFPath <priv->NumTotalRFPath; eRFPath++)
{
if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath))
continue;
switch(Bandwidth)
{
case HT_CHANNEL_WIDTH_20:
if(priv->card_8192_version == VERSION_8190_BD || priv->card_8192_version == VERSION_8190_BE)// 8256 D-cut, E-cut, xiong: consider it later!
{
rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x0b, bMask12Bits, 0x100); //phy para:1ba
rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x2c, bMask12Bits, 0x3d7);
rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x0e, bMask12Bits, 0x021);
//cosa add for sd3's request 01/23/2008
//rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x14, bMask12Bits, 0x5ab);
}
else
{
RT_TRACE(COMP_ERR, "PHY_SetRF8256Bandwidth(): unknown hardware version\n");
}
break;
case HT_CHANNEL_WIDTH_20_40:
if(priv->card_8192_version == VERSION_8190_BD ||priv->card_8192_version == VERSION_8190_BE)// 8256 D-cut, E-cut, xiong: consider it later!
{
rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x0b, bMask12Bits, 0x300); //phy para:3ba
rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x2c, bMask12Bits, 0x3ff);
rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x0e, bMask12Bits, 0x0e1);
//cosa add for sd3's request 01/23/2008
#if 0
if(priv->chan == 3 || priv->chan == 9) //I need to set priv->chan whenever current channel changes
rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x14, bMask12Bits, 0x59b);
else
rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x14, bMask12Bits, 0x5ab);
#endif
}
else
{
RT_TRACE(COMP_ERR, "PHY_SetRF8256Bandwidth(): unknown hardware version\n");
}
break;
default:
RT_TRACE(COMP_ERR, "PHY_SetRF8256Bandwidth(): unknown Bandwidth: %#X\n",Bandwidth );
break;
}
}
return;
}
/*--------------------------------------------------------------------------
* Overview: Interface to config 8256
* Input: struct net_device* dev
* Output: NONE
* Return: NONE
*---------------------------------------------------------------------------*/
RT_STATUS PHY_RF8256_Config(struct net_device* dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
// Initialize general global value
//
RT_STATUS rtStatus = RT_STATUS_SUCCESS;
// TODO: Extend RF_PATH_C and RF_PATH_D in the future
priv->NumTotalRFPath = RTL819X_TOTAL_RF_PATH;
// Config BB and RF
rtStatus = phy_RF8256_Config_ParaFile(dev);
return rtStatus;
}
/*--------------------------------------------------------------------------
* Overview: Interface to config 8256
* Input: struct net_device* dev
* Output: NONE
* Return: NONE
*---------------------------------------------------------------------------*/
RT_STATUS phy_RF8256_Config_ParaFile(struct net_device* dev)
{
u32 u4RegValue = 0;
u8 eRFPath;
RT_STATUS rtStatus = RT_STATUS_SUCCESS;
BB_REGISTER_DEFINITION_T *pPhyReg;
struct r8192_priv *priv = ieee80211_priv(dev);
u32 RegOffSetToBeCheck = 0x3;
u32 RegValueToBeCheck = 0x7f1;
u32 RF3_Final_Value = 0;
u8 ConstRetryTimes = 5, RetryTimes = 5;
u8 ret = 0;
//3//-----------------------------------------------------------------
//3// <2> Initialize RF
//3//-----------------------------------------------------------------
for(eRFPath = (RF90_RADIO_PATH_E)RF90_PATH_A; eRFPath <priv->NumTotalRFPath; eRFPath++)
{
if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath))
continue;
pPhyReg = &priv->PHYRegDef[eRFPath];
// Joseph test for shorten RF config
// pHalData->RfReg0Value[eRFPath] = rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, rGlobalCtrl, bMaskDWord);
/*----Store original RFENV control type----*/
switch(eRFPath)
{
case RF90_PATH_A:
case RF90_PATH_C:
u4RegValue = rtl8192_QueryBBReg(dev, pPhyReg->rfintfs, bRFSI_RFENV);
break;
case RF90_PATH_B :
case RF90_PATH_D:
u4RegValue = rtl8192_QueryBBReg(dev, pPhyReg->rfintfs, bRFSI_RFENV<<16);
break;
}
/*----Set RF_ENV enable----*/
rtl8192_setBBreg(dev, pPhyReg->rfintfe, bRFSI_RFENV<<16, 0x1);
/*----Set RF_ENV output high----*/
rtl8192_setBBreg(dev, pPhyReg->rfintfo, bRFSI_RFENV, 0x1);
/* Set bit number of Address and Data for RF register */
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, b3WireAddressLength, 0x0); // Set 0 to 4 bits for Z-serial and set 1 to 6 bits for 8258
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, b3WireDataLength, 0x0); // Set 0 to 12 bits for Z-serial and 8258, and set 1 to 14 bits for ???
rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E) eRFPath, 0x0, bMask12Bits, 0xbf);
/*----Check RF block (for FPGA platform only)----*/
// TODO: this function should be removed on ASIC , Emily 2007.2.2
rtStatus = rtl8192_phy_checkBBAndRF(dev, HW90_BLOCK_RF, (RF90_RADIO_PATH_E)eRFPath);
if(rtStatus!= RT_STATUS_SUCCESS)
{
RT_TRACE(COMP_ERR, "PHY_RF8256_Config():Check Radio[%d] Fail!!\n", eRFPath);
goto phy_RF8256_Config_ParaFile_Fail;
}
RetryTimes = ConstRetryTimes;
RF3_Final_Value = 0;
/*----Initialize RF fom connfiguration file----*/
switch(eRFPath)
{
case RF90_PATH_A:
while(RF3_Final_Value!=RegValueToBeCheck && RetryTimes!=0)
{
ret = rtl8192_phy_ConfigRFWithHeaderFile(dev,(RF90_RADIO_PATH_E)eRFPath);
RF3_Final_Value = rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, RegOffSetToBeCheck, bMask12Bits);
RT_TRACE(COMP_RF, "RF %d %d register final value: %x\n", eRFPath, RegOffSetToBeCheck, RF3_Final_Value);
RetryTimes--;
}
break;
case RF90_PATH_B:
while(RF3_Final_Value!=RegValueToBeCheck && RetryTimes!=0)
{
ret = rtl8192_phy_ConfigRFWithHeaderFile(dev,(RF90_RADIO_PATH_E)eRFPath);
RF3_Final_Value = rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, RegOffSetToBeCheck, bMask12Bits);
RT_TRACE(COMP_RF, "RF %d %d register final value: %x\n", eRFPath, RegOffSetToBeCheck, RF3_Final_Value);
RetryTimes--;
}
break;
case RF90_PATH_C:
while(RF3_Final_Value!=RegValueToBeCheck && RetryTimes!=0)
{
ret = rtl8192_phy_ConfigRFWithHeaderFile(dev,(RF90_RADIO_PATH_E)eRFPath);
RF3_Final_Value = rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, RegOffSetToBeCheck, bMask12Bits);
RT_TRACE(COMP_RF, "RF %d %d register final value: %x\n", eRFPath, RegOffSetToBeCheck, RF3_Final_Value);
RetryTimes--;
}
break;
case RF90_PATH_D:
while(RF3_Final_Value!=RegValueToBeCheck && RetryTimes!=0)
{
ret = rtl8192_phy_ConfigRFWithHeaderFile(dev,(RF90_RADIO_PATH_E)eRFPath);
RF3_Final_Value = rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, RegOffSetToBeCheck, bMask12Bits);
RT_TRACE(COMP_RF, "RF %d %d register final value: %x\n", eRFPath, RegOffSetToBeCheck, RF3_Final_Value);
RetryTimes--;
}
break;
}
/*----Restore RFENV control type----*/;
switch(eRFPath)
{
case RF90_PATH_A:
case RF90_PATH_C:
rtl8192_setBBreg(dev, pPhyReg->rfintfs, bRFSI_RFENV, u4RegValue);
break;
case RF90_PATH_B :
case RF90_PATH_D:
rtl8192_setBBreg(dev, pPhyReg->rfintfs, bRFSI_RFENV<<16, u4RegValue);
break;
}
if(ret){
RT_TRACE(COMP_ERR, "phy_RF8256_Config_ParaFile():Radio[%d] Fail!!", eRFPath);
goto phy_RF8256_Config_ParaFile_Fail;
}
}
RT_TRACE(COMP_PHY, "PHY Initialization Success\n") ;
return RT_STATUS_SUCCESS;
phy_RF8256_Config_ParaFile_Fail:
RT_TRACE(COMP_ERR, "PHY Initialization failed\n") ;
return RT_STATUS_FAILURE;
}
void PHY_SetRF8256CCKTxPower(struct net_device* dev, u8 powerlevel)
{
u32 TxAGC=0;
struct r8192_priv *priv = ieee80211_priv(dev);
#ifdef RTL8190P
u8 byte0, byte1;
TxAGC |= ((powerlevel<<8)|powerlevel);
TxAGC += priv->CCKTxPowerLevelOriginalOffset;
if(priv->bDynamicTxLowPower == true //cosa 04282008 for cck long range
/*pMgntInfo->bScanInProgress == TRUE*/ ) //cosa 05/22/2008 for scan
{
if(priv->CustomerID == RT_CID_819x_Netcore)
TxAGC = 0x2222;
else
TxAGC += ((priv->CckPwEnl<<8)|priv->CckPwEnl);
}
byte0 = (u8)(TxAGC & 0xff);
byte1 = (u8)((TxAGC & 0xff00)>>8);
if(byte0 > 0x24)
byte0 = 0x24;
if(byte1 > 0x24)
byte1 = 0x24;
if(priv->rf_type == RF_2T4R) //Only 2T4R you have to care the Antenna Tx Power offset
{ // check antenna C over the max index 0x24
if(priv->RF_C_TxPwDiff > 0)
{
if( (byte0 + (u8)priv->RF_C_TxPwDiff) > 0x24)
byte0 = 0x24 - priv->RF_C_TxPwDiff;
if( (byte1 + (u8)priv->RF_C_TxPwDiff) > 0x24)
byte1 = 0x24 - priv->RF_C_TxPwDiff;
}
}
TxAGC = (byte1<<8) |byte0;
write_nic_dword(dev, CCK_TXAGC, TxAGC);
#else
#ifdef RTL8192E
TxAGC = powerlevel;
if(priv->bDynamicTxLowPower == true)//cosa 04282008 for cck long range
{
if(priv->CustomerID == RT_CID_819x_Netcore)
TxAGC = 0x22;
else
TxAGC += priv->CckPwEnl;
}
if(TxAGC > 0x24)
TxAGC = 0x24;
rtl8192_setBBreg(dev, rTxAGC_CCK_Mcs32, bTxAGCRateCCK, TxAGC);
#endif
#endif
}
void PHY_SetRF8256OFDMTxPower(struct net_device* dev, u8 powerlevel)
{
struct r8192_priv *priv = ieee80211_priv(dev);
//Joseph TxPower for 8192 testing
#ifdef RTL8190P
u32 TxAGC1=0, TxAGC2=0, TxAGC2_tmp = 0;
u8 i, byteVal1[4], byteVal2[4], byteVal3[4];
if(priv->bDynamicTxHighPower == true) //Add by Jacken 2008/03/06
{
TxAGC1 |= ((powerlevel<<24)|(powerlevel<<16)|(powerlevel<<8)|powerlevel);
//for tx power track
TxAGC2_tmp = TxAGC1;
TxAGC1 += priv->MCSTxPowerLevelOriginalOffset[0];
TxAGC2 =0x03030303;
//for tx power track
TxAGC2_tmp += priv->MCSTxPowerLevelOriginalOffset[1];
}
else
{
TxAGC1 |= ((powerlevel<<24)|(powerlevel<<16)|(powerlevel<<8)|powerlevel);
TxAGC2 = TxAGC1;
TxAGC1 += priv->MCSTxPowerLevelOriginalOffset[0];
TxAGC2 += priv->MCSTxPowerLevelOriginalOffset[1];
TxAGC2_tmp = TxAGC2;
}
for(i=0; i<4; i++)
{
byteVal1[i] = (u8)( (TxAGC1 & (0xff<<(i*8))) >>(i*8) );
if(byteVal1[i] > 0x24)
byteVal1[i] = 0x24;
byteVal2[i] = (u8)( (TxAGC2 & (0xff<<(i*8))) >>(i*8) );
if(byteVal2[i] > 0x24)
byteVal2[i] = 0x24;
//for tx power track
byteVal3[i] = (u8)( (TxAGC2_tmp & (0xff<<(i*8))) >>(i*8) );
if(byteVal3[i] > 0x24)
byteVal3[i] = 0x24;
}
if(priv->rf_type == RF_2T4R) //Only 2T4R you have to care the Antenna Tx Power offset
{ // check antenna C over the max index 0x24
if(priv->RF_C_TxPwDiff > 0)
{
for(i=0; i<4; i++)
{
if( (byteVal1[i] + (u8)priv->RF_C_TxPwDiff) > 0x24)
byteVal1[i] = 0x24 - priv->RF_C_TxPwDiff;
if( (byteVal2[i] + (u8)priv->RF_C_TxPwDiff) > 0x24)
byteVal2[i] = 0x24 - priv->RF_C_TxPwDiff;
if( (byteVal3[i] + (u8)priv->RF_C_TxPwDiff) > 0x24)
byteVal3[i] = 0x24 - priv->RF_C_TxPwDiff;
}
}
}
TxAGC1 = (byteVal1[3]<<24) | (byteVal1[2]<<16) |(byteVal1[1]<<8) |byteVal1[0];
TxAGC2 = (byteVal2[3]<<24) | (byteVal2[2]<<16) |(byteVal2[1]<<8) |byteVal2[0];
//for tx power track
TxAGC2_tmp = (byteVal3[3]<<24) | (byteVal3[2]<<16) |(byteVal3[1]<<8) |byteVal3[0];
priv->Pwr_Track = TxAGC2_tmp;
//DbgPrint("TxAGC2_tmp = 0x%x\n", TxAGC2_tmp);
//DbgPrint("TxAGC1/TxAGC2 = 0x%x/0x%x\n", TxAGC1, TxAGC2);
write_nic_dword(dev, MCS_TXAGC, TxAGC1);
write_nic_dword(dev, MCS_TXAGC+4, TxAGC2);
#else
#ifdef RTL8192E
u32 writeVal, powerBase0, powerBase1, writeVal_tmp;
u8 index = 0;
u16 RegOffset[6] = {0xe00, 0xe04, 0xe10, 0xe14, 0xe18, 0xe1c};
u8 byte0, byte1, byte2, byte3;
powerBase0 = powerlevel + priv->LegacyHTTxPowerDiff; //OFDM rates
powerBase0 = (powerBase0<<24) | (powerBase0<<16) |(powerBase0<<8) |powerBase0;
powerBase1 = powerlevel; //MCS rates
powerBase1 = (powerBase1<<24) | (powerBase1<<16) |(powerBase1<<8) |powerBase1;
for(index=0; index<6; index++)
{
writeVal = priv->MCSTxPowerLevelOriginalOffset[index] + ((index<2)?powerBase0:powerBase1);
byte0 = (u8)(writeVal & 0x7f);
byte1 = (u8)((writeVal & 0x7f00)>>8);
byte2 = (u8)((writeVal & 0x7f0000)>>16);
byte3 = (u8)((writeVal & 0x7f000000)>>24);
if(byte0 > 0x24) // Max power index = 0x24
byte0 = 0x24;
if(byte1 > 0x24)
byte1 = 0x24;
if(byte2 > 0x24)
byte2 = 0x24;
if(byte3 > 0x24)
byte3 = 0x24;
if(index == 3)
{
writeVal_tmp = (byte3<<24) | (byte2<<16) |(byte1<<8) |byte0;
priv->Pwr_Track = writeVal_tmp;
}
if(priv->bDynamicTxHighPower == true) //Add by Jacken 2008/03/06 //when DM implement, add this
{
writeVal = 0x03030303;
}
else
{
writeVal = (byte3<<24) | (byte2<<16) |(byte1<<8) |byte0;
}
rtl8192_setBBreg(dev, RegOffset[index], 0x7f7f7f7f, writeVal);
}
#endif
#endif
return;
}
#define MAX_DOZE_WAITING_TIMES_9x 64
static bool
SetRFPowerState8190(
struct net_device* dev,
RT_RF_POWER_STATE eRFPowerState
)
{
struct r8192_priv *priv = ieee80211_priv(dev);
PRT_POWER_SAVE_CONTROL pPSC = (PRT_POWER_SAVE_CONTROL)(&(priv->ieee80211->PowerSaveControl));
bool bResult = true;
//u8 eRFPath;
u8 i = 0, QueueID = 0;
//ptx_ring head=NULL,tail=NULL;
struct rtl8192_tx_ring *ring = NULL;
if(priv->SetRFPowerStateInProgress == true)
return false;
//RT_TRACE(COMP_PS, "===========> SetRFPowerState8190()!\n");
priv->SetRFPowerStateInProgress = true;
switch(priv->rf_chip)
{
case RF_8256:
switch( eRFPowerState )
{
case eRfOn:
//RT_TRACE(COMP_PS, "SetRFPowerState8190() eRfOn !\n");
//RXTX enable control: On
//for(eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
// PHY_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x4, 0xC00, 0x2);
#ifdef RTL8190P
if(priv->rf_type == RF_2T4R)
{
//enable RF-Chip A/B
rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1); // 0x860[4]
//enable RF-Chip C/D
rtl8192_setBBreg(dev, rFPGA0_XC_RFInterfaceOE, BIT4, 0x1); // 0x868[4]
//analog to digital on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0xf);// 0x88c[11:8]
//digital to analog on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1e0, 0xf); // 0x880[8:5]
//rx antenna on
rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xf, 0xf);// 0xc04[3:0]
//rx antenna on
rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xf, 0xf);// 0xd04[3:0]
//analog to digital part2 on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1e00, 0xf); // 0x880[12:9]
}
else if(priv->rf_type == RF_1T2R) //RF-C, RF-D
{
//enable RF-Chip C/D
rtl8192_setBBreg(dev, rFPGA0_XC_RFInterfaceOE, BIT4, 0x1); // 0x868[4]
//analog to digital on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xc00, 0x3);// 0x88c[11:10]
//digital to analog on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x180, 0x3); // 0x880[8:7]
//rx antenna on
rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xc, 0x3);// 0xc04[3:2]
//rx antenna on
rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xc, 0x3);// 0xd04[3:2]
//analog to digital part2 on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1800, 0x3); // 0x880[12:11]
}
else if(priv->rf_type == RF_1T1R) //RF-C
{
//enable RF-Chip C/D
rtl8192_setBBreg(dev, rFPGA0_XC_RFInterfaceOE, BIT4, 0x1); // 0x868[4]
//analog to digital on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x400, 0x1);// 0x88c[10]
//digital to analog on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x80, 0x1); // 0x880[7]
//rx antenna on
rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0x4, 0x1);// 0xc04[2]
//rx antenna on
rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0x4, 0x1);// 0xd04[2]
//analog to digital part2 on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x800, 0x1); // 0x880[11]
}
#elif defined RTL8192E
// turn on RF
if((priv->ieee80211->eRFPowerState == eRfOff) && RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC))
{ // The current RF state is OFF and the RF OFF level is halting the NIC, re-initialize the NIC.
bool rtstatus = true;
u32 InitilizeCount = 3;
do
{
InitilizeCount--;
priv->RegRfOff = false;
rtstatus = NicIFEnableNIC(dev);
}while( (rtstatus != true) &&(InitilizeCount >0) );
if(rtstatus != true)
{
RT_TRACE(COMP_ERR,"%s():Initialize Adapter fail,return\n",__FUNCTION__);
priv->SetRFPowerStateInProgress = false;
return false;
}
RT_CLEAR_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC);
} else {
write_nic_byte(dev, ANAPAR, 0x37);//160MHz
//write_nic_byte(dev, MacBlkCtrl, 0x17); // 0x403
mdelay(1);
//enable clock 80/88 MHz
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x4, 0x1); // 0x880[2]
priv->bHwRfOffAction = 0;
//}
//RF-A, RF-B
//enable RF-Chip A/B
rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1); // 0x860[4]
//analog to digital on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3);// 0x88c[9:8]
//digital to analog on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18, 0x3); // 0x880[4:3]
//rx antenna on
rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0x3, 0x3);// 0xc04[1:0]
//rx antenna on
rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0x3, 0x3);// 0xd04[1:0]
//analog to digital part2 on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x3); // 0x880[6:5]
// Baseband reset 2008.09.30 add
//write_nic_byte(dev, BB_RESET, (read_nic_byte(dev, BB_RESET)|BIT0));
//2 AFE
// 2008.09.30 add
//rtl8192_setBBreg(dev, rFPGA0_AnalogParameter2, 0x20000000, 0x1); // 0x884
//analog to digital part2 on
//rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x3); // 0x880[6:5]
//digital to analog on
//rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x98, 0x13); // 0x880[4:3]
//analog to digital on
//rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf03, 0xf03);// 0x88c[9:8]
//rx antenna on
//PHY_SetBBReg(dev, rOFDM0_TRxPathEnable, 0x3, 0x3);// 0xc04[1:0]
//rx antenna on 2008.09.30 mark
//PHY_SetBBReg(dev, rOFDM1_TRxPathEnable, 0x3, 0x3);// 0xd04[1:0]
//2 RF
//enable RF-Chip A/B
//rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1); // 0x860[4]
//rtl8192_setBBreg(dev, rFPGA0_XB_RFInterfaceOE, BIT4, 0x1); // 0x864[4]
}
#endif
break;
//
// In current solution, RFSleep=RFOff in order to save power under 802.11 power save.
// By Bruce, 2008-01-16.
//
case eRfSleep:
{
// HW setting had been configured with deeper mode.
if(priv->ieee80211->eRFPowerState == eRfOff)
break;
// Update current RF state variable.
//priv->ieee80211->eRFPowerState = eRFPowerState;
//if (pPSC->bLeisurePs)
{
for(QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; )
{
ring = &priv->tx_ring[QueueID];
if(skb_queue_len(&ring->queue) == 0)
{
QueueID++;
continue;
}
else
{
RT_TRACE((COMP_POWER|COMP_RF), "eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 before doze!\n", (i+1), QueueID);
udelay(10);
i++;
}
if(i >= MAX_DOZE_WAITING_TIMES_9x)
{
RT_TRACE(COMP_POWER, "\n\n\n TimeOut!! SetRFPowerState8190(): eRfOff: %d times TcbBusyQueue[%d] != 0 !!!\n\n\n", MAX_DOZE_WAITING_TIMES_9x, QueueID);
break;
}
}
}
//if(Adapter->HardwareType == HARDWARE_TYPE_RTL8190P)
#ifdef RTL8190P
{
PHY_SetRtl8190pRfOff(dev);
}
//else if(Adapter->HardwareType == HARDWARE_TYPE_RTL8192E)
#elif defined RTL8192E
{
PHY_SetRtl8192eRfOff(dev);
}
#endif
}
break;
case eRfOff:
//RT_TRACE(COMP_PS, "SetRFPowerState8190() eRfOff/Sleep !\n");
// Update current RF state variable.
//priv->ieee80211->eRFPowerState = eRFPowerState;
//
// Disconnect with Any AP or STA.
//
for(QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; )
{
ring = &priv->tx_ring[QueueID];
if(skb_queue_len(&ring->queue) == 0)
{
QueueID++;
continue;
}
else
{
RT_TRACE(COMP_POWER,
"eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 before doze!\n", (i+1), QueueID);
udelay(10);
i++;
}
if(i >= MAX_DOZE_WAITING_TIMES_9x)
{
RT_TRACE(COMP_POWER, "\n\n\n SetZebraRFPowerState8185B(): eRfOff: %d times TcbBusyQueue[%d] != 0 !!!\n\n\n", MAX_DOZE_WAITING_TIMES_9x, QueueID);
break;
}
}
//if(Adapter->HardwareType == HARDWARE_TYPE_RTL8190P)
#if defined RTL8190P
{
PHY_SetRtl8190pRfOff(dev);
}
//else if(Adapter->HardwareType == HARDWARE_TYPE_RTL8192E)
#elif defined RTL8192E
{
//if(pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC && !RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC) && priv->ieee80211->RfOffReason > RF_CHANGE_BY_PS)
if (pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC && !RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC))
{ // Disable all components.
//
// Note:
// NicIFSetLinkStatus is a big problem when we indicate the status to OS,
// the OS(XP) will reset. But now, we cnnot find why the NIC is hard to receive
// packets after RF ON. Just keep this function here and still work to find out the root couse.
// By Bruce, 2009-05-01.
//
//NicIFSetLinkStatus( Adapter, RT_MEDIA_DISCONNECT );
//if HW radio of , need to indicate scan complete first for not be reset.
//if(MgntScanInProgress(pMgntInfo))
// MgntResetScanProcess( Adapter );
// <1> Disable Interrupt
//rtl8192_irq_disable(dev);
// <2> Stop all timer
//MgntCancelAllTimer(Adapter);
// <3> Disable Adapter
//NicIFHaltAdapter(Adapter, false);
NicIFDisableNIC(dev);
RT_SET_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC);
}
else if (!(pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC))
{ // Normal case.
// IPS should go to this.
PHY_SetRtl8192eRfOff(dev);
}
}
#else
else
{
RT_TRACE(COMP_DBG,DBG_TRACE,("It is not 8190Pci and 8192PciE \n"));
}
#endif
break;
default:
bResult = false;
RT_TRACE(COMP_ERR, "SetRFPowerState8190(): unknow state to set: 0x%X!!!\n", eRFPowerState);
break;
}
break;
default:
RT_TRACE(COMP_ERR, "SetRFPowerState8190(): Unknown RF type\n");
break;
}
if(bResult)
{
// Update current RF state variable.
priv->ieee80211->eRFPowerState = eRFPowerState;
}
//printk("%s()priv->ieee80211->eRFPowerState:%s\n" ,__func__,priv->ieee80211->eRFPowerState == eRfOn ? "On" : "Off");
priv->SetRFPowerStateInProgress = false;
//RT_TRACE(COMP_PS, "<=========== SetRFPowerState8190() bResult = %d!\n", bResult);
return bResult;
}
//
// Description:
// Change RF power state.
//
// Assumption:
// This function must be executed in re-schdulable context,
// ie. PASSIVE_LEVEL.
//
// 050823, by rcnjko.
//
static bool
SetRFPowerState(
struct net_device* dev,
RT_RF_POWER_STATE eRFPowerState
)
{
struct r8192_priv *priv = ieee80211_priv(dev);
bool bResult = false;
RT_TRACE(COMP_RF,"---------> SetRFPowerState(): eRFPowerState(%d)\n", eRFPowerState);
#ifdef RTL8192E
if(eRFPowerState == priv->ieee80211->eRFPowerState && priv->bHwRfOffAction == 0)
#else
if(eRFPowerState == priv->ieee80211->eRFPowerState)
#endif
{
RT_TRACE(COMP_POWER, "<--------- SetRFPowerState(): discard the request for eRFPowerState(%d) is the same.\n", eRFPowerState);
return bResult;
}
bResult = SetRFPowerState8190(dev, eRFPowerState);
RT_TRACE(COMP_POWER, "<--------- SetRFPowerState(): bResult(%d)\n", bResult);
return bResult;
}
static void
MgntDisconnectIBSS(
struct net_device* dev
)
{
struct r8192_priv *priv = ieee80211_priv(dev);
//RT_OP_MODE OpMode;
u8 i;
bool bFilterOutNonAssociatedBSSID = false;
//IEEE80211_DEBUG(IEEE80211_DL_TRACE, "XXXXXXXXXX MgntDisconnect IBSS\n");
priv->ieee80211->state = IEEE80211_NOLINK;
// PlatformZeroMemory( pMgntInfo->Bssid, 6 );
for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i]= 0x55;
priv->OpMode = RT_OP_MODE_NO_LINK;
write_nic_word(dev, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]);
write_nic_dword(dev, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]);
{
RT_OP_MODE OpMode = priv->OpMode;
//LED_CTL_MODE LedAction = LED_CTL_NO_LINK;
u8 btMsr = read_nic_byte(dev, MSR);
btMsr &= 0xfc;
switch(OpMode)
{
case RT_OP_MODE_INFRASTRUCTURE:
btMsr |= MSR_LINK_MANAGED;
//LedAction = LED_CTL_LINK;
break;
case RT_OP_MODE_IBSS:
btMsr |= MSR_LINK_ADHOC;
// led link set separate
break;
case RT_OP_MODE_AP:
btMsr |= MSR_LINK_MASTER;
//LedAction = LED_CTL_LINK;
break;
default:
btMsr |= MSR_LINK_NONE;
break;
}
write_nic_byte(dev, MSR, btMsr);
// LED control
//Adapter->HalFunc.LedControlHandler(Adapter, LedAction);
}
ieee80211_stop_send_beacons(priv->ieee80211);
// If disconnect, clear RCR CBSSID bit
bFilterOutNonAssociatedBSSID = false;
{
u32 RegRCR, Type;
Type = bFilterOutNonAssociatedBSSID;
RegRCR = read_nic_dword(dev,RCR);
priv->ReceiveConfig = RegRCR;
if (Type == true)
RegRCR |= (RCR_CBSSID);
else if (Type == false)
RegRCR &= (~RCR_CBSSID);
{
write_nic_dword(dev, RCR,RegRCR);
priv->ReceiveConfig = RegRCR;
}
}
//MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE );
notify_wx_assoc_event(priv->ieee80211);
}
static void
MlmeDisassociateRequest(
struct net_device* dev,
u8* asSta,
u8 asRsn
)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u8 i;
RemovePeerTS(priv->ieee80211, asSta);
SendDisassociation( priv->ieee80211, asSta, asRsn );
if(memcpy(priv->ieee80211->current_network.bssid,asSta,6) == NULL)
{
//ShuChen TODO: change media status.
//ShuChen TODO: What to do when disassociate.
priv->ieee80211->state = IEEE80211_NOLINK;
//pMgntInfo->AsocTimestamp = 0;
for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i] = 0x22;
// pMgntInfo->mBrates.Length = 0;
// Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_BASIC_RATE, (pu1Byte)(&pMgntInfo->mBrates) );
priv->OpMode = RT_OP_MODE_NO_LINK;
{
RT_OP_MODE OpMode = priv->OpMode;
//LED_CTL_MODE LedAction = LED_CTL_NO_LINK;
u8 btMsr = read_nic_byte(dev, MSR);
btMsr &= 0xfc;
switch(OpMode)
{
case RT_OP_MODE_INFRASTRUCTURE:
btMsr |= MSR_LINK_MANAGED;
//LedAction = LED_CTL_LINK;
break;
case RT_OP_MODE_IBSS:
btMsr |= MSR_LINK_ADHOC;
// led link set separate
break;
case RT_OP_MODE_AP:
btMsr |= MSR_LINK_MASTER;
//LedAction = LED_CTL_LINK;
break;
default:
btMsr |= MSR_LINK_NONE;
break;
}
write_nic_byte(dev, MSR, btMsr);
// LED control
//Adapter->HalFunc.LedControlHandler(Adapter, LedAction);
}
ieee80211_disassociate(priv->ieee80211);
write_nic_word(dev, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]);
write_nic_dword(dev, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]);
}
}
static void
MgntDisconnectAP(
struct net_device* dev,
u8 asRsn
)
{
struct r8192_priv *priv = ieee80211_priv(dev);
bool bFilterOutNonAssociatedBSSID = false;
//
// Commented out by rcnjko, 2005.01.27:
// I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE().
//
// //2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success
// SecClearAllKeys(Adapter);
// In WPA WPA2 need to Clear all key ... because new key will set after new handshaking.
#ifdef TO_DO
if( pMgntInfo->SecurityInfo.AuthMode > RT_802_11AuthModeAutoSwitch ||
(pMgntInfo->bAPSuportCCKM && pMgntInfo->bCCX8021xenable) ) // In CCKM mode will Clear key
{
SecClearAllKeys(Adapter);
RT_TRACE(COMP_SEC, DBG_LOUD,("======>CCKM clear key..."))
}
#endif
// If disconnect, clear RCR CBSSID bit
bFilterOutNonAssociatedBSSID = false;
{
u32 RegRCR, Type;
Type = bFilterOutNonAssociatedBSSID;
//Adapter->HalFunc.GetHwRegHandler(Adapter, HW_VAR_RCR, (pu1Byte)(&RegRCR));
RegRCR = read_nic_dword(dev,RCR);
priv->ReceiveConfig = RegRCR;
if (Type == true)
RegRCR |= (RCR_CBSSID);
else if (Type == false)
RegRCR &= (~RCR_CBSSID);
write_nic_dword(dev, RCR,RegRCR);
priv->ReceiveConfig = RegRCR;
}
// 2004.10.11, by rcnjko.
//MlmeDisassociateRequest( Adapter, pMgntInfo->Bssid, disas_lv_ss );
MlmeDisassociateRequest( dev, priv->ieee80211->current_network.bssid, asRsn );
priv->ieee80211->state = IEEE80211_NOLINK;
//pMgntInfo->AsocTimestamp = 0;
}
static bool
MgntDisconnect(
struct net_device* dev,
u8 asRsn
)
{
struct r8192_priv *priv = ieee80211_priv(dev);
//
// Schedule an workitem to wake up for ps mode, 070109, by rcnjko.
//
#ifdef TO_DO
if(pMgntInfo->mPss != eAwake)
{
//
// Using AwkaeTimer to prevent mismatch ps state.
// In the timer the state will be changed according to the RF is being awoke or not. By Bruce, 2007-10-31.
//
// PlatformScheduleWorkItem( &(pMgntInfo->AwakeWorkItem) );
PlatformSetTimer( Adapter, &(pMgntInfo->AwakeTimer), 0 );
}
#endif
// Follow 8180 AP mode, 2005.05.30, by rcnjko.
#ifdef TO_DO
if(pMgntInfo->mActingAsAp)
{
RT_TRACE(COMP_MLME, DBG_LOUD, ("MgntDisconnect() ===> AP_DisassociateAllStation\n"));
AP_DisassociateAllStation(Adapter, unspec_reason);
return TRUE;
}
#endif
// Indication of disassociation event.
//DrvIFIndicateDisassociation(Adapter, asRsn);
// In adhoc mode, update beacon frame.
if( priv->ieee80211->state == IEEE80211_LINKED )
{
if( priv->ieee80211->iw_mode == IW_MODE_ADHOC )
{
//RT_TRACE(COMP_MLME, "MgntDisconnect() ===> MgntDisconnectIBSS\n");
MgntDisconnectIBSS(dev);
}
if( priv->ieee80211->iw_mode == IW_MODE_INFRA )
{
// We clear key here instead of MgntDisconnectAP() because that
// MgntActSet_802_11_DISASSOCIATE() is an interface called by OS,
// e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is
// used to handle disassociation related things to AP, e.g. send Disassoc
// frame to AP. 2005.01.27, by rcnjko.
//IEEE80211_DEBUG(IEEE80211_DL_TRACE,"MgntDisconnect() ===> MgntDisconnectAP\n");
MgntDisconnectAP(dev, asRsn);
}
// Inidicate Disconnect, 2005.02.23, by rcnjko.
//MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE);
}
return true;
}
//
// Description:
// Chang RF Power State.
// Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE.
//
// Assumption:
// PASSIVE LEVEL.
//
bool
MgntActSet_RF_State(
struct net_device* dev,
RT_RF_POWER_STATE StateToSet,
RT_RF_CHANGE_SOURCE ChangeSource
)
{
struct r8192_priv *priv = ieee80211_priv(dev);
bool bActionAllowed = false;
bool bConnectBySSID = false;
RT_RF_POWER_STATE rtState;
u16 RFWaitCounter = 0;
unsigned long flag;
RT_TRACE(COMP_POWER, "===>MgntActSet_RF_State(): StateToSet(%d)\n",StateToSet);
//1//
//1//<1>Prevent the race condition of RF state change.
//1//
// Only one thread can change the RF state at one time, and others should wait to be executed. By Bruce, 2007-11-28.
while(true)
{
spin_lock_irqsave(&priv->rf_ps_lock,flag);
if(priv->RFChangeInProgress)
{
spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
RT_TRACE(COMP_POWER, "MgntActSet_RF_State(): RF Change in progress! Wait to set..StateToSet(%d).\n", StateToSet);
// Set RF after the previous action is done.
while(priv->RFChangeInProgress)
{
RFWaitCounter ++;
RT_TRACE(COMP_POWER, "MgntActSet_RF_State(): Wait 1 ms (%d times)...\n", RFWaitCounter);
udelay(1000); // 1 ms
// Wait too long, return FALSE to avoid to be stuck here.
if(RFWaitCounter > 100)
{
RT_TRACE(COMP_ERR, "MgntActSet_RF_State(): Wait too logn to set RF\n");
// TODO: Reset RF state?
return false;
}
}
}
else
{
priv->RFChangeInProgress = true;
spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
break;
}
}
rtState = priv->ieee80211->eRFPowerState;
switch(StateToSet)
{
case eRfOn:
//
// Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or
// the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02.
//
priv->ieee80211->RfOffReason &= (~ChangeSource);
if(! priv->ieee80211->RfOffReason)
{
priv->ieee80211->RfOffReason = 0;
bActionAllowed = true;
if(rtState == eRfOff && ChangeSource >=RF_CHANGE_BY_HW )
{
bConnectBySSID = true;
}
}
else
RT_TRACE(COMP_POWER, "MgntActSet_RF_State - eRfon reject pMgntInfo->RfOffReason= 0x%x, ChangeSource=0x%X\n", priv->ieee80211->RfOffReason, ChangeSource);
break;
case eRfOff:
if (priv->ieee80211->RfOffReason > RF_CHANGE_BY_IPS)
{
//
// 060808, Annie:
// Disconnect to current BSS when radio off. Asked by QuanTa.
//
// Set all link status falg, by Bruce, 2007-06-26.
//MgntActSet_802_11_DISASSOCIATE( Adapter, disas_lv_ss );
MgntDisconnect(dev, disas_lv_ss);
// Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI.
// 2007.05.28, by shien chang.
}
priv->ieee80211->RfOffReason |= ChangeSource;
bActionAllowed = true;
break;
case eRfSleep:
priv->ieee80211->RfOffReason |= ChangeSource;
bActionAllowed = true;
break;
default:
break;
}
if(bActionAllowed)
{
RT_TRACE(COMP_POWER, "MgntActSet_RF_State(): Action is allowed.... StateToSet(%d), RfOffReason(%#X)\n", StateToSet, priv->ieee80211->RfOffReason);
// Config HW to the specified mode.
SetRFPowerState(dev, StateToSet);
// Turn on RF.
if(StateToSet == eRfOn)
{
//Adapter->HalFunc.HalEnableRxHandler(Adapter);
if(bConnectBySSID)
{
//MgntActSet_802_11_SSID(Adapter, Adapter->MgntInfo.Ssid.Octet, Adapter->MgntInfo.Ssid.Length, TRUE );
}
}
// Turn off RF.
else if(StateToSet == eRfOff)
{
//Adapter->HalFunc.HalDisableRxHandler(Adapter);
}
}
else
{
RT_TRACE(COMP_POWER, "MgntActSet_RF_State(): Action is rejected.... StateToSet(%d), ChangeSource(%#X), RfOffReason(%#X)\n", StateToSet, ChangeSource, priv->ieee80211->RfOffReason);
}
// Release RF spinlock
spin_lock_irqsave(&priv->rf_ps_lock,flag);
priv->RFChangeInProgress = false;
spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
RT_TRACE(COMP_POWER, "<===MgntActSet_RF_State()\n");
return bActionAllowed;
}