blob: 6474c3a77e6c32fd4285a2a795ecaeae4c2ef0d9 [file] [log] [blame]
/*
* Front panel driver for Linux
* Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
* connected to a parallel printer port.
*
* The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
* serial module compatible with Samsung's KS0074. The pins may be connected in
* any combination, everything is programmable.
*
* The keypad consists in a matrix of push buttons connecting input pins to
* data output pins or to the ground. The combinations have to be hard-coded
* in the driver, though several profiles exist and adding new ones is easy.
*
* Several profiles are provided for commonly found LCD+keypad modules on the
* market, such as those found in Nexcom's appliances.
*
* FIXME:
* - the initialization/deinitialization process is very dirty and should
* be rewritten. It may even be buggy.
*
* TODO:
* - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
* - make the LCD a part of a virtual screen of Vx*Vy
* - make the inputs list smp-safe
* - change the keyboard to a double mapping : signals -> key_id -> values
* so that applications can change values without knowing signals
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/parport.h>
#include <linux/version.h>
#include <linux/list.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <generated/utsrelease.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <asm/system.h>
#define LCD_MINOR 156
#define KEYPAD_MINOR 185
#define PANEL_VERSION "0.9.5"
#define LCD_MAXBYTES 256 /* max burst write */
#define KEYPAD_BUFFER 64
#define INPUT_POLL_TIME (HZ/50) /* poll the keyboard this every second */
#define KEYPAD_REP_START (10) /* a key starts to repeat after this times INPUT_POLL_TIME */
#define KEYPAD_REP_DELAY (2) /* a key repeats this times INPUT_POLL_TIME */
#define FLASH_LIGHT_TEMPO (200) /* keep the light on this times INPUT_POLL_TIME for each flash */
/* converts an r_str() input to an active high, bits string : 000BAOSE */
#define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
#define PNL_PBUSY 0x80 /* inverted input, active low */
#define PNL_PACK 0x40 /* direct input, active low */
#define PNL_POUTPA 0x20 /* direct input, active high */
#define PNL_PSELECD 0x10 /* direct input, active high */
#define PNL_PERRORP 0x08 /* direct input, active low */
#define PNL_PBIDIR 0x20 /* bi-directional ports */
#define PNL_PINTEN 0x10 /* high to read data in or-ed with data out */
#define PNL_PSELECP 0x08 /* inverted output, active low */
#define PNL_PINITP 0x04 /* direct output, active low */
#define PNL_PAUTOLF 0x02 /* inverted output, active low */
#define PNL_PSTROBE 0x01 /* inverted output */
#define PNL_PD0 0x01
#define PNL_PD1 0x02
#define PNL_PD2 0x04
#define PNL_PD3 0x08
#define PNL_PD4 0x10
#define PNL_PD5 0x20
#define PNL_PD6 0x40
#define PNL_PD7 0x80
#define PIN_NONE 0
#define PIN_STROBE 1
#define PIN_D0 2
#define PIN_D1 3
#define PIN_D2 4
#define PIN_D3 5
#define PIN_D4 6
#define PIN_D5 7
#define PIN_D6 8
#define PIN_D7 9
#define PIN_AUTOLF 14
#define PIN_INITP 16
#define PIN_SELECP 17
#define PIN_NOT_SET 127
#define LCD_FLAG_S 0x0001
#define LCD_FLAG_ID 0x0002
#define LCD_FLAG_B 0x0004 /* blink on */
#define LCD_FLAG_C 0x0008 /* cursor on */
#define LCD_FLAG_D 0x0010 /* display on */
#define LCD_FLAG_F 0x0020 /* large font mode */
#define LCD_FLAG_N 0x0040 /* 2-rows mode */
#define LCD_FLAG_L 0x0080 /* backlight enabled */
#define LCD_ESCAPE_LEN 24 /* 24 chars max for an LCD escape command */
#define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
/* macros to simplify use of the parallel port */
#define r_ctr(x) (parport_read_control((x)->port))
#define r_dtr(x) (parport_read_data((x)->port))
#define r_str(x) (parport_read_status((x)->port))
#define w_ctr(x, y) do { parport_write_control((x)->port, (y)); } while (0)
#define w_dtr(x, y) do { parport_write_data((x)->port, (y)); } while (0)
/* this defines which bits are to be used and which ones to be ignored */
static __u8 scan_mask_o; /* logical or of the output bits involved in the scan matrix */
static __u8 scan_mask_i; /* logical or of the input bits involved in the scan matrix */
typedef __u64 pmask_t;
enum input_type {
INPUT_TYPE_STD,
INPUT_TYPE_KBD,
};
enum input_state {
INPUT_ST_LOW,
INPUT_ST_RISING,
INPUT_ST_HIGH,
INPUT_ST_FALLING,
};
struct logical_input {
struct list_head list;
pmask_t mask;
pmask_t value;
enum input_type type;
enum input_state state;
__u8 rise_time, fall_time;
__u8 rise_timer, fall_timer, high_timer;
union {
struct { /* this structure is valid when type == INPUT_TYPE_STD */
void (*press_fct) (int);
void (*release_fct) (int);
int press_data;
int release_data;
} std;
struct { /* this structure is valid when type == INPUT_TYPE_KBD */
/* strings can be full-length (ie. non null-terminated) */
char press_str[sizeof(void *) + sizeof(int)];
char repeat_str[sizeof(void *) + sizeof(int)];
char release_str[sizeof(void *) + sizeof(int)];
} kbd;
} u;
};
LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
/* physical contacts history
* Physical contacts are a 45 bits string of 9 groups of 5 bits each.
* The 8 lower groups correspond to output bits 0 to 7, and the 9th group
* corresponds to the ground.
* Within each group, bits are stored in the same order as read on the port :
* BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
* So, each __u64 (or pmask_t) is represented like this :
* 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
* <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
*/
static pmask_t phys_read; /* what has just been read from the I/O ports */
static pmask_t phys_read_prev; /* previous phys_read */
static pmask_t phys_curr; /* stabilized phys_read (phys_read|phys_read_prev) */
static pmask_t phys_prev; /* previous phys_curr */
static char inputs_stable; /* 0 means that at least one logical signal needs be computed */
/* these variables are specific to the keypad */
static char keypad_buffer[KEYPAD_BUFFER];
static int keypad_buflen;
static int keypad_start;
static char keypressed;
static wait_queue_head_t keypad_read_wait;
/* lcd-specific variables */
static unsigned long int lcd_flags; /* contains the LCD config state */
static unsigned long int lcd_addr_x; /* contains the LCD X offset */
static unsigned long int lcd_addr_y; /* contains the LCD Y offset */
static char lcd_escape[LCD_ESCAPE_LEN + 1]; /* current escape sequence, 0 terminated */
static int lcd_escape_len = -1; /* not in escape state. >=0 = escape cmd len */
/*
* Bit masks to convert LCD signals to parallel port outputs.
* _d_ are values for data port, _c_ are for control port.
* [0] = signal OFF, [1] = signal ON, [2] = mask
*/
#define BIT_CLR 0
#define BIT_SET 1
#define BIT_MSK 2
#define BIT_STATES 3
/*
* one entry for each bit on the LCD
*/
#define LCD_BIT_E 0
#define LCD_BIT_RS 1
#define LCD_BIT_RW 2
#define LCD_BIT_BL 3
#define LCD_BIT_CL 4
#define LCD_BIT_DA 5
#define LCD_BITS 6
/*
* each bit can be either connected to a DATA or CTRL port
*/
#define LCD_PORT_C 0
#define LCD_PORT_D 1
#define LCD_PORTS 2
static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
/*
* LCD protocols
*/
#define LCD_PROTO_PARALLEL 0
#define LCD_PROTO_SERIAL 1
#define LCD_PROTO_TI_DA8XX_LCD 2
/*
* LCD character sets
*/
#define LCD_CHARSET_NORMAL 0
#define LCD_CHARSET_KS0074 1
/*
* LCD types
*/
#define LCD_TYPE_NONE 0
#define LCD_TYPE_OLD 1
#define LCD_TYPE_KS0074 2
#define LCD_TYPE_HANTRONIX 3
#define LCD_TYPE_NEXCOM 4
#define LCD_TYPE_CUSTOM 5
/*
* keypad types
*/
#define KEYPAD_TYPE_NONE 0
#define KEYPAD_TYPE_OLD 1
#define KEYPAD_TYPE_NEW 2
#define KEYPAD_TYPE_NEXCOM 3
/*
* panel profiles
*/
#define PANEL_PROFILE_CUSTOM 0
#define PANEL_PROFILE_OLD 1
#define PANEL_PROFILE_NEW 2
#define PANEL_PROFILE_HANTRONIX 3
#define PANEL_PROFILE_NEXCOM 4
#define PANEL_PROFILE_LARGE 5
/*
* Construct custom config from the kernel's configuration
*/
#define DEFAULT_PROFILE PANEL_PROFILE_LARGE
#define DEFAULT_PARPORT 0
#define DEFAULT_LCD LCD_TYPE_OLD
#define DEFAULT_KEYPAD KEYPAD_TYPE_OLD
#define DEFAULT_LCD_WIDTH 40
#define DEFAULT_LCD_BWIDTH 40
#define DEFAULT_LCD_HWIDTH 64
#define DEFAULT_LCD_HEIGHT 2
#define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
#define DEFAULT_LCD_PIN_E PIN_AUTOLF
#define DEFAULT_LCD_PIN_RS PIN_SELECP
#define DEFAULT_LCD_PIN_RW PIN_INITP
#define DEFAULT_LCD_PIN_SCL PIN_STROBE
#define DEFAULT_LCD_PIN_SDA PIN_D0
#define DEFAULT_LCD_PIN_BL PIN_NOT_SET
#define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
#ifdef CONFIG_PANEL_PROFILE
#undef DEFAULT_PROFILE
#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
#endif
#ifdef CONFIG_PANEL_PARPORT
#undef DEFAULT_PARPORT
#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
#endif
#if DEFAULT_PROFILE == 0 /* custom */
#ifdef CONFIG_PANEL_KEYPAD
#undef DEFAULT_KEYPAD
#define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
#endif
#ifdef CONFIG_PANEL_LCD
#undef DEFAULT_LCD
#define DEFAULT_LCD CONFIG_PANEL_LCD
#endif
#ifdef CONFIG_PANEL_LCD_WIDTH
#undef DEFAULT_LCD_WIDTH
#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
#endif
#ifdef CONFIG_PANEL_LCD_BWIDTH
#undef DEFAULT_LCD_BWIDTH
#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
#endif
#ifdef CONFIG_PANEL_LCD_HWIDTH
#undef DEFAULT_LCD_HWIDTH
#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
#endif
#ifdef CONFIG_PANEL_LCD_HEIGHT
#undef DEFAULT_LCD_HEIGHT
#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
#endif
#ifdef CONFIG_PANEL_LCD_PROTO
#undef DEFAULT_LCD_PROTO
#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
#endif
#ifdef CONFIG_PANEL_LCD_PIN_E
#undef DEFAULT_LCD_PIN_E
#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
#endif
#ifdef CONFIG_PANEL_LCD_PIN_RS
#undef DEFAULT_LCD_PIN_RS
#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
#endif
#ifdef CONFIG_PANEL_LCD_PIN_RW
#undef DEFAULT_LCD_PIN_RW
#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
#endif
#ifdef CONFIG_PANEL_LCD_PIN_SCL
#undef DEFAULT_LCD_PIN_SCL
#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
#endif
#ifdef CONFIG_PANEL_LCD_PIN_SDA
#undef DEFAULT_LCD_PIN_SDA
#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
#endif
#ifdef CONFIG_PANEL_LCD_PIN_BL
#undef DEFAULT_LCD_PIN_BL
#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
#endif
#ifdef CONFIG_PANEL_LCD_CHARSET
#undef DEFAULT_LCD_CHARSET
#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
#endif
#endif /* DEFAULT_PROFILE == 0 */
/* global variables */
static int keypad_open_cnt; /* #times opened */
static int lcd_open_cnt; /* #times opened */
static struct pardevice *pprt;
static int lcd_initialized;
static int keypad_initialized;
static int light_tempo;
static char lcd_must_clear;
static char lcd_left_shift;
static char init_in_progress;
static void (*lcd_write_cmd) (int);
static void (*lcd_write_data) (int);
static void (*lcd_clear_fast) (void);
static DEFINE_SPINLOCK(pprt_lock);
static struct timer_list scan_timer;
MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
static int parport = -1;
module_param(parport, int, 0000);
MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
static int lcd_height = -1;
module_param(lcd_height, int, 0000);
MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
static int lcd_width = -1;
module_param(lcd_width, int, 0000);
MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
static int lcd_bwidth = -1; /* internal buffer width (usually 40) */
module_param(lcd_bwidth, int, 0000);
MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
static int lcd_hwidth = -1; /* hardware buffer width (usually 64) */
module_param(lcd_hwidth, int, 0000);
MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
static int lcd_enabled = -1;
module_param(lcd_enabled, int, 0000);
MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
static int keypad_enabled = -1;
module_param(keypad_enabled, int, 0000);
MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
static int lcd_type = -1;
module_param(lcd_type, int, 0000);
MODULE_PARM_DESC(lcd_type,
"LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
static int lcd_proto = -1;
module_param(lcd_proto, int, 0000);
MODULE_PARM_DESC(lcd_proto, "LCD communication: 0=parallel (//), 1=serial,"
"2=TI LCD Interface");
static int lcd_charset = -1;
module_param(lcd_charset, int, 0000);
MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
static int keypad_type = -1;
module_param(keypad_type, int, 0000);
MODULE_PARM_DESC(keypad_type,
"Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
static int profile = DEFAULT_PROFILE;
module_param(profile, int, 0000);
MODULE_PARM_DESC(profile,
"1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; 4=16x2 nexcom; default=40x2, old kp");
/*
* These are the parallel port pins the LCD control signals are connected to.
* Set this to 0 if the signal is not used. Set it to its opposite value
* (negative) if the signal is negated. -MAXINT is used to indicate that the
* pin has not been explicitly specified.
*
* WARNING! no check will be performed about collisions with keypad !
*/
static int lcd_e_pin = PIN_NOT_SET;
module_param(lcd_e_pin, int, 0000);
MODULE_PARM_DESC(lcd_e_pin,
"# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
static int lcd_rs_pin = PIN_NOT_SET;
module_param(lcd_rs_pin, int, 0000);
MODULE_PARM_DESC(lcd_rs_pin,
"# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
static int lcd_rw_pin = PIN_NOT_SET;
module_param(lcd_rw_pin, int, 0000);
MODULE_PARM_DESC(lcd_rw_pin,
"# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
static int lcd_bl_pin = PIN_NOT_SET;
module_param(lcd_bl_pin, int, 0000);
MODULE_PARM_DESC(lcd_bl_pin,
"# of the // port pin connected to LCD backlight, with polarity (-17..17)");
static int lcd_da_pin = PIN_NOT_SET;
module_param(lcd_da_pin, int, 0000);
MODULE_PARM_DESC(lcd_da_pin,
"# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
static int lcd_cl_pin = PIN_NOT_SET;
module_param(lcd_cl_pin, int, 0000);
MODULE_PARM_DESC(lcd_cl_pin,
"# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
static unsigned char *lcd_char_conv;
/* for some LCD drivers (ks0074) we need a charset conversion table. */
static unsigned char lcd_char_conv_ks0074[256] = {
/* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
};
char old_keypad_profile[][4][9] = {
{"S0", "Left\n", "Left\n", ""},
{"S1", "Down\n", "Down\n", ""},
{"S2", "Up\n", "Up\n", ""},
{"S3", "Right\n", "Right\n", ""},
{"S4", "Esc\n", "Esc\n", ""},
{"S5", "Ret\n", "Ret\n", ""},
{"", "", "", ""}
};
/* signals, press, repeat, release */
char new_keypad_profile[][4][9] = {
{"S0", "Left\n", "Left\n", ""},
{"S1", "Down\n", "Down\n", ""},
{"S2", "Up\n", "Up\n", ""},
{"S3", "Right\n", "Right\n", ""},
{"S4s5", "", "Esc\n", "Esc\n"},
{"s4S5", "", "Ret\n", "Ret\n"},
{"S4S5", "Help\n", "", ""},
/* add new signals above this line */
{"", "", "", ""}
};
/* signals, press, repeat, release */
char nexcom_keypad_profile[][4][9] = {
{"a-p-e-", "Down\n", "Down\n", ""},
{"a-p-E-", "Ret\n", "Ret\n", ""},
{"a-P-E-", "Esc\n", "Esc\n", ""},
{"a-P-e-", "Up\n", "Up\n", ""},
/* add new signals above this line */
{"", "", "", ""}
};
static char (*keypad_profile)[4][9] = old_keypad_profile;
/* FIXME: this should be converted to a bit array containing signals states */
static struct {
unsigned char e; /* parallel LCD E (data latch on falling edge) */
unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
unsigned char cl; /* serial LCD clock (latch on rising edge) */
unsigned char da; /* serial LCD data */
} bits;
static void init_scan_timer(void);
/* sets data port bits according to current signals values */
static int set_data_bits(void)
{
int val, bit;
val = r_dtr(pprt);
for (bit = 0; bit < LCD_BITS; bit++)
val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
| lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
| lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
| lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
| lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
| lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
w_dtr(pprt, val);
return val;
}
/* sets ctrl port bits according to current signals values */
static int set_ctrl_bits(void)
{
int val, bit;
val = r_ctr(pprt);
for (bit = 0; bit < LCD_BITS; bit++)
val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
| lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
| lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
| lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
| lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
| lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
w_ctr(pprt, val);
return val;
}
/* sets ctrl & data port bits according to current signals values */
static void panel_set_bits(void)
{
set_data_bits();
set_ctrl_bits();
}
/*
* Converts a parallel port pin (from -25 to 25) to data and control ports
* masks, and data and control port bits. The signal will be considered
* unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
*
* Result will be used this way :
* out(dport, in(dport) & d_val[2] | d_val[signal_state])
* out(cport, in(cport) & c_val[2] | c_val[signal_state])
*/
void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
{
int d_bit, c_bit, inv;
d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
d_val[2] = c_val[2] = 0xFF;
if (pin == 0)
return;
inv = (pin < 0);
if (inv)
pin = -pin;
d_bit = c_bit = 0;
switch (pin) {
case PIN_STROBE: /* strobe, inverted */
c_bit = PNL_PSTROBE;
inv = !inv;
break;
case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
d_bit = 1 << (pin - 2);
break;
case PIN_AUTOLF: /* autofeed, inverted */
c_bit = PNL_PAUTOLF;
inv = !inv;
break;
case PIN_INITP: /* init, direct */
c_bit = PNL_PINITP;
break;
case PIN_SELECP: /* select_in, inverted */
c_bit = PNL_PSELECP;
inv = !inv;
break;
default: /* unknown pin, ignore */
break;
}
if (c_bit) {
c_val[2] &= ~c_bit;
c_val[!inv] = c_bit;
} else if (d_bit) {
d_val[2] &= ~d_bit;
d_val[!inv] = d_bit;
}
}
/* sleeps that many milliseconds with a reschedule */
static void long_sleep(int ms)
{
if (in_interrupt())
mdelay(ms);
else {
current->state = TASK_INTERRUPTIBLE;
schedule_timeout((ms * HZ + 999) / 1000);
}
}
/* send a serial byte to the LCD panel. The caller is responsible for locking if needed. */
static void lcd_send_serial(int byte)
{
int bit;
/* the data bit is set on D0, and the clock on STROBE.
* LCD reads D0 on STROBE's rising edge.
*/
for (bit = 0; bit < 8; bit++) {
bits.cl = BIT_CLR; /* CLK low */
panel_set_bits();
bits.da = byte & 1;
panel_set_bits();
udelay(2); /* maintain the data during 2 us before CLK up */
bits.cl = BIT_SET; /* CLK high */
panel_set_bits();
udelay(1); /* maintain the strobe during 1 us */
byte >>= 1;
}
}
/* turn the backlight on or off */
static void lcd_backlight(int on)
{
if (lcd_bl_pin == PIN_NONE)
return;
/* The backlight is activated by seting the AUTOFEED line to +5V */
spin_lock(&pprt_lock);
bits.bl = on;
panel_set_bits();
spin_unlock(&pprt_lock);
}
/* send a command to the LCD panel in serial mode */
static void lcd_write_cmd_s(int cmd)
{
spin_lock(&pprt_lock);
lcd_send_serial(0x1F); /* R/W=W, RS=0 */
lcd_send_serial(cmd & 0x0F);
lcd_send_serial((cmd >> 4) & 0x0F);
udelay(40); /* the shortest command takes at least 40 us */
spin_unlock(&pprt_lock);
}
/* send data to the LCD panel in serial mode */
static void lcd_write_data_s(int data)
{
spin_lock(&pprt_lock);
lcd_send_serial(0x5F); /* R/W=W, RS=1 */
lcd_send_serial(data & 0x0F);
lcd_send_serial((data >> 4) & 0x0F);
udelay(40); /* the shortest data takes at least 40 us */
spin_unlock(&pprt_lock);
}
/* send a command to the LCD panel in 8 bits parallel mode */
static void lcd_write_cmd_p8(int cmd)
{
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, cmd);
udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET;
bits.rs = BIT_CLR;
bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(120); /* the shortest command takes at least 120 us */
spin_unlock(&pprt_lock);
}
/* send data to the LCD panel in 8 bits parallel mode */
static void lcd_write_data_p8(int data)
{
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, data);
udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET;
bits.rs = BIT_SET;
bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(45); /* the shortest data takes at least 45 us */
spin_unlock(&pprt_lock);
}
/* send a command to the TI LCD panel */
static void lcd_write_cmd_tilcd(int cmd)
{
spin_lock(&pprt_lock);
/* present the data to the control port */
w_ctr(pprt, cmd);
udelay(60);
spin_unlock(&pprt_lock);
}
/* send data to the TI LCD panel */
static void lcd_write_data_tilcd(int data)
{
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, data);
udelay(60);
spin_unlock(&pprt_lock);
}
static void lcd_gotoxy(void)
{
lcd_write_cmd(0x80 /* set DDRAM address */
| (lcd_addr_y ? lcd_hwidth : 0)
/* we force the cursor to stay at the end of the line if it wants to go farther */
| ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
(lcd_hwidth - 1) : lcd_bwidth - 1));
}
static void lcd_print(char c)
{
if (lcd_addr_x < lcd_bwidth) {
if (lcd_char_conv != NULL)
c = lcd_char_conv[(unsigned char)c];
lcd_write_data(c);
lcd_addr_x++;
}
/* prevents the cursor from wrapping onto the next line */
if (lcd_addr_x == lcd_bwidth)
lcd_gotoxy();
}
/* fills the display with spaces and resets X/Y */
static void lcd_clear_fast_s(void)
{
int pos;
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
spin_lock(&pprt_lock);
for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
lcd_send_serial(0x5F); /* R/W=W, RS=1 */
lcd_send_serial(' ' & 0x0F);
lcd_send_serial((' ' >> 4) & 0x0F);
udelay(40); /* the shortest data takes at least 40 us */
}
spin_unlock(&pprt_lock);
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
}
/* fills the display with spaces and resets X/Y */
static void lcd_clear_fast_p8(void)
{
int pos;
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
spin_lock(&pprt_lock);
for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
/* present the data to the data port */
w_dtr(pprt, ' ');
udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET;
bits.rs = BIT_SET;
bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(45); /* the shortest data takes at least 45 us */
}
spin_unlock(&pprt_lock);
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
}
/* fills the display with spaces and resets X/Y */
static void lcd_clear_fast_tilcd(void)
{
int pos;
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
spin_lock(&pprt_lock);
for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
/* present the data to the data port */
w_dtr(pprt, ' ');
udelay(60);
}
spin_unlock(&pprt_lock);
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
}
/* clears the display and resets X/Y */
static void lcd_clear_display(void)
{
lcd_write_cmd(0x01); /* clear display */
lcd_addr_x = lcd_addr_y = 0;
/* we must wait a few milliseconds (15) */
long_sleep(15);
}
static void lcd_init_display(void)
{
lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
| LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
long_sleep(20); /* wait 20 ms after power-up for the paranoid */
lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
long_sleep(10);
lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
long_sleep(10);
lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
long_sleep(10);
lcd_write_cmd(0x30 /* set font height and lines number */
| ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
| ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
);
long_sleep(10);
lcd_write_cmd(0x08); /* display off, cursor off, blink off */
long_sleep(10);
lcd_write_cmd(0x08 /* set display mode */
| ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
| ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
| ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
);
lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
long_sleep(10);
lcd_write_cmd(0x06); /* entry mode set : increment, cursor shifting */
lcd_clear_display();
}
/*
* These are the file operation function for user access to /dev/lcd
* This function can also be called from inside the kernel, by
* setting file and ppos to NULL.
*
*/
static ssize_t lcd_write(struct file *file,
const char *buf, size_t count, loff_t *ppos)
{
const char *tmp = buf;
char c;
for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
schedule(); /* let's be a little nice with other processes that need some CPU */
if (ppos == NULL && file == NULL)
c = *tmp; /* let's not use get_user() from the kernel ! */
else if (get_user(c, tmp))
return -EFAULT;
/* first, we'll test if we're in escape mode */
if ((c != '\n') && lcd_escape_len >= 0) { /* yes, let's add this char to the buffer */
lcd_escape[lcd_escape_len++] = c;
lcd_escape[lcd_escape_len] = 0;
} else {
lcd_escape_len = -1; /* aborts any previous escape sequence */
switch (c) {
case LCD_ESCAPE_CHAR: /* start of an escape sequence */
lcd_escape_len = 0;
lcd_escape[lcd_escape_len] = 0;
break;
case '\b': /* go back one char and clear it */
if (lcd_addr_x > 0) {
if (lcd_addr_x < lcd_bwidth) /* check if we're not at the end of the line */
lcd_write_cmd(0x10); /* back one char */
lcd_addr_x--;
}
lcd_write_data(' '); /* replace with a space */
lcd_write_cmd(0x10); /* back one char again */
break;
case '\014': /* quickly clear the display */
lcd_clear_fast();
break;
case '\n': /* flush the remainder of the current line and go to the
beginning of the next line */
for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
lcd_write_data(' ');
lcd_addr_x = 0;
lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
lcd_gotoxy();
break;
case '\r': /* go to the beginning of the same line */
lcd_addr_x = 0;
lcd_gotoxy();
break;
case '\t': /* print a space instead of the tab */
lcd_print(' ');
break;
default: /* simply print this char */
lcd_print(c);
break;
}
}
/* now we'll see if we're in an escape mode and if the current
escape sequence can be understood.
*/
if (lcd_escape_len >= 2) { /* minimal length for an escape command */
int processed = 0; /* 1 means the command has been processed */
if (!strcmp(lcd_escape, "[2J")) { /* Clear the display */
lcd_clear_fast(); /* clear display */
processed = 1;
} else if (!strcmp(lcd_escape, "[H")) { /* Cursor to home */
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
processed = 1;
}
/* codes starting with ^[[L */
else if ((lcd_escape_len >= 3) &&
(lcd_escape[0] == '[') && (lcd_escape[1] == 'L')) { /* LCD special codes */
char *esc = lcd_escape + 2;
int oldflags = lcd_flags;
/* check for display mode flags */
switch (*esc) {
case 'D': /* Display ON */
lcd_flags |= LCD_FLAG_D;
processed = 1;
break;
case 'd': /* Display OFF */
lcd_flags &= ~LCD_FLAG_D;
processed = 1;
break;
case 'C': /* Cursor ON */
lcd_flags |= LCD_FLAG_C;
processed = 1;
break;
case 'c': /* Cursor OFF */
lcd_flags &= ~LCD_FLAG_C;
processed = 1;
break;
case 'B': /* Blink ON */
lcd_flags |= LCD_FLAG_B;
processed = 1;
break;
case 'b': /* Blink OFF */
lcd_flags &= ~LCD_FLAG_B;
processed = 1;
break;
case '+': /* Back light ON */
lcd_flags |= LCD_FLAG_L;
processed = 1;
break;
case '-': /* Back light OFF */
lcd_flags &= ~LCD_FLAG_L;
processed = 1;
break;
case '*': /* flash back light using the keypad timer */
if (scan_timer.function != NULL) {
if (light_tempo == 0
&& ((lcd_flags & LCD_FLAG_L)
== 0))
lcd_backlight(1);
light_tempo = FLASH_LIGHT_TEMPO;
}
processed = 1;
break;
case 'f': /* Small Font */
lcd_flags &= ~LCD_FLAG_F;
processed = 1;
break;
case 'F': /* Large Font */
lcd_flags |= LCD_FLAG_F;
processed = 1;
break;
case 'n': /* One Line */
lcd_flags &= ~LCD_FLAG_N;
processed = 1;
break;
case 'N': /* Two Lines */
lcd_flags |= LCD_FLAG_N;
break;
case 'l': /* Shift Cursor Left */
if (lcd_addr_x > 0) {
if (lcd_addr_x < lcd_bwidth)
lcd_write_cmd(0x10); /* back one char if not at end of line */
lcd_addr_x--;
}
processed = 1;
break;
case 'r': /* shift cursor right */
if (lcd_addr_x < lcd_width) {
if (lcd_addr_x < (lcd_bwidth - 1))
lcd_write_cmd(0x14); /* allow the cursor to pass the end of the line */
lcd_addr_x++;
}
processed = 1;
break;
case 'L': /* shift display left */
lcd_left_shift++;
lcd_write_cmd(0x18);
processed = 1;
break;
case 'R': /* shift display right */
lcd_left_shift--;
lcd_write_cmd(0x1C);
processed = 1;
break;
case 'k':{ /* kill end of line */
int x;
for (x = lcd_addr_x; x < lcd_bwidth; x++)
lcd_write_data(' ');
lcd_gotoxy(); /* restore cursor position */
processed = 1;
break;
}
case 'I': /* reinitialize display */
lcd_init_display();
lcd_left_shift = 0;
processed = 1;
break;
case 'G': /* Generator : LGcxxxxx...xx; */ {
/* must have <c> between '0' and '7', representing the numerical
* ASCII code of the redefined character, and <xx...xx> a sequence
* of 16 hex digits representing 8 bytes for each character. Most
* LCDs will only use 5 lower bits of the 7 first bytes.
*/
unsigned char cgbytes[8];
unsigned char cgaddr;
int cgoffset;
int shift;
char value;
int addr;
if (strchr(esc, ';') == NULL)
break;
esc++;
cgaddr = *(esc++) - '0';
if (cgaddr > 7) {
processed = 1;
break;
}
cgoffset = 0;
shift = 0;
value = 0;
while (*esc && cgoffset < 8) {
shift ^= 4;
if (*esc >= '0' && *esc <= '9')
value |= (*esc - '0') << shift;
else if (*esc >= 'A' && *esc <= 'Z')
value |= (*esc - 'A' + 10) << shift;
else if (*esc >= 'a' && *esc <= 'z')
value |= (*esc - 'a' + 10) << shift;
else {
esc++;
continue;
}
if (shift == 0) {
cgbytes[cgoffset++] = value;
value = 0;
}
esc++;
}
lcd_write_cmd(0x40 | (cgaddr * 8));
for (addr = 0; addr < cgoffset; addr++)
lcd_write_data(cgbytes[addr]);
lcd_gotoxy(); /* ensures that we stop writing to CGRAM */
processed = 1;
break;
}
case 'x': /* gotoxy : LxXXX[yYYY]; */
case 'y': /* gotoxy : LyYYY[xXXX]; */
if (strchr(esc, ';') == NULL)
break;
while (*esc) {
if (*esc == 'x') {
esc++;
lcd_addr_x = 0;
while (isdigit(*esc)) {
lcd_addr_x =
lcd_addr_x *
10 + (*esc -
'0');
esc++;
}
} else if (*esc == 'y') {
esc++;
lcd_addr_y = 0;
while (isdigit(*esc)) {
lcd_addr_y =
lcd_addr_y *
10 + (*esc -
'0');
esc++;
}
} else
break;
}
lcd_gotoxy();
processed = 1;
break;
} /* end of switch */
/* Check wether one flag was changed */
if (oldflags != lcd_flags) {
/* check wether one of B,C,D flags was changed */
if ((oldflags ^ lcd_flags) &
(LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
/* set display mode */
lcd_write_cmd(0x08 |
((lcd_flags & LCD_FLAG_D) ? 4 : 0) |
((lcd_flags & LCD_FLAG_C) ? 2 : 0) |
((lcd_flags & LCD_FLAG_B) ? 1 : 0));
/* check wether one of F,N flags was changed */
else if ((oldflags ^ lcd_flags) &
(LCD_FLAG_F | LCD_FLAG_N))
lcd_write_cmd(0x30 |
((lcd_flags & LCD_FLAG_F) ? 4 : 0) |
((lcd_flags & LCD_FLAG_N) ? 8 : 0));
/* check wether L flag was changed */
else if ((oldflags ^ lcd_flags) &
(LCD_FLAG_L)) {
if (lcd_flags & (LCD_FLAG_L))
lcd_backlight(1);
else if (light_tempo == 0) /* switch off the light only when the tempo lighting is gone */
lcd_backlight(0);
}
}
}
/* LCD special escape codes */
/* flush the escape sequence if it's been processed or if it is
getting too long. */
if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
lcd_escape_len = -1;
} /* escape codes */
}
return tmp - buf;
}
static int lcd_open(struct inode *inode, struct file *file)
{
if (lcd_open_cnt)
return -EBUSY; /* open only once at a time */
if (file->f_mode & FMODE_READ) /* device is write-only */
return -EPERM;
if (lcd_must_clear) {
lcd_clear_display();
lcd_must_clear = 0;
}
lcd_open_cnt++;
return 0;
}
static int lcd_release(struct inode *inode, struct file *file)
{
lcd_open_cnt--;
return 0;
}
static struct file_operations lcd_fops = {
.write = lcd_write,
.open = lcd_open,
.release = lcd_release,
};
static struct miscdevice lcd_dev = {
LCD_MINOR,
"lcd",
&lcd_fops
};
/* public function usable from the kernel for any purpose */
void panel_lcd_print(char *s)
{
if (lcd_enabled && lcd_initialized)
lcd_write(NULL, s, strlen(s), NULL);
}
/* initialize the LCD driver */
void lcd_init(void)
{
switch (lcd_type) {
case LCD_TYPE_OLD: /* parallel mode, 8 bits */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0)
lcd_charset = LCD_CHARSET_NORMAL;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = PIN_STROBE;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = PIN_AUTOLF;
if (lcd_width < 0)
lcd_width = 40;
if (lcd_bwidth < 0)
lcd_bwidth = 40;
if (lcd_hwidth < 0)
lcd_hwidth = 64;
if (lcd_height < 0)
lcd_height = 2;
break;
case LCD_TYPE_KS0074: /* serial mode, ks0074 */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_SERIAL;
if (lcd_charset < 0)
lcd_charset = LCD_CHARSET_KS0074;
if (lcd_bl_pin == PIN_NOT_SET)
lcd_bl_pin = PIN_AUTOLF;
if (lcd_cl_pin == PIN_NOT_SET)
lcd_cl_pin = PIN_STROBE;
if (lcd_da_pin == PIN_NOT_SET)
lcd_da_pin = PIN_D0;
if (lcd_width < 0)
lcd_width = 16;
if (lcd_bwidth < 0)
lcd_bwidth = 40;
if (lcd_hwidth < 0)
lcd_hwidth = 16;
if (lcd_height < 0)
lcd_height = 2;
break;
case LCD_TYPE_NEXCOM: /* parallel mode, 8 bits, generic */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0)
lcd_charset = LCD_CHARSET_NORMAL;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = PIN_AUTOLF;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = PIN_SELECP;
if (lcd_rw_pin == PIN_NOT_SET)
lcd_rw_pin = PIN_INITP;
if (lcd_width < 0)
lcd_width = 16;
if (lcd_bwidth < 0)
lcd_bwidth = 40;
if (lcd_hwidth < 0)
lcd_hwidth = 64;
if (lcd_height < 0)
lcd_height = 2;
break;
case LCD_TYPE_CUSTOM: /* customer-defined */
if (lcd_proto < 0)
lcd_proto = DEFAULT_LCD_PROTO;
if (lcd_charset < 0)
lcd_charset = DEFAULT_LCD_CHARSET;
/* default geometry will be set later */
break;
case LCD_TYPE_HANTRONIX: /* parallel mode, 8 bits, hantronix-like */
default:
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0)
lcd_charset = LCD_CHARSET_NORMAL;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = PIN_STROBE;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = PIN_SELECP;
if (lcd_width < 0)
lcd_width = 16;
if (lcd_bwidth < 0)
lcd_bwidth = 40;
if (lcd_hwidth < 0)
lcd_hwidth = 64;
if (lcd_height < 0)
lcd_height = 2;
break;
}
/* this is used to catch wrong and default values */
if (lcd_width <= 0)
lcd_width = DEFAULT_LCD_WIDTH;
if (lcd_bwidth <= 0)
lcd_bwidth = DEFAULT_LCD_BWIDTH;
if (lcd_hwidth <= 0)
lcd_hwidth = DEFAULT_LCD_HWIDTH;
if (lcd_height <= 0)
lcd_height = DEFAULT_LCD_HEIGHT;
if (lcd_proto == LCD_PROTO_SERIAL) { /* SERIAL */
lcd_write_cmd = lcd_write_cmd_s;
lcd_write_data = lcd_write_data_s;
lcd_clear_fast = lcd_clear_fast_s;
if (lcd_cl_pin == PIN_NOT_SET)
lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
if (lcd_da_pin == PIN_NOT_SET)
lcd_da_pin = DEFAULT_LCD_PIN_SDA;
} else if (lcd_proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
lcd_write_cmd = lcd_write_cmd_p8;
lcd_write_data = lcd_write_data_p8;
lcd_clear_fast = lcd_clear_fast_p8;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = DEFAULT_LCD_PIN_E;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = DEFAULT_LCD_PIN_RS;
if (lcd_rw_pin == PIN_NOT_SET)
lcd_rw_pin = DEFAULT_LCD_PIN_RW;
} else {
lcd_write_cmd = lcd_write_cmd_tilcd;
lcd_write_data = lcd_write_data_tilcd;
lcd_clear_fast = lcd_clear_fast_tilcd;
}
if (lcd_bl_pin == PIN_NOT_SET)
lcd_bl_pin = DEFAULT_LCD_PIN_BL;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = PIN_NONE;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = PIN_NONE;
if (lcd_rw_pin == PIN_NOT_SET)
lcd_rw_pin = PIN_NONE;
if (lcd_bl_pin == PIN_NOT_SET)
lcd_bl_pin = PIN_NONE;
if (lcd_cl_pin == PIN_NOT_SET)
lcd_cl_pin = PIN_NONE;
if (lcd_da_pin == PIN_NOT_SET)
lcd_da_pin = PIN_NONE;
if (lcd_charset < 0)
lcd_charset = DEFAULT_LCD_CHARSET;
if (lcd_charset == LCD_CHARSET_KS0074)
lcd_char_conv = lcd_char_conv_ks0074;
else
lcd_char_conv = NULL;
if (lcd_bl_pin != PIN_NONE)
init_scan_timer();
pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
lcd_bits[LCD_PORT_C][LCD_BIT_E]);
pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
/* before this line, we must NOT send anything to the display.
* Since lcd_init_display() needs to write data, we have to
* enable mark the LCD initialized just before.
*/
lcd_initialized = 1;
lcd_init_display();
/* display a short message */
#ifdef CONFIG_PANEL_CHANGE_MESSAGE
#ifdef CONFIG_PANEL_BOOT_MESSAGE
panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
#endif
#else
panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
PANEL_VERSION);
#endif
lcd_addr_x = lcd_addr_y = 0;
lcd_must_clear = 1; /* clear the display on the next device opening */
lcd_gotoxy();
}
/*
* These are the file operation function for user access to /dev/keypad
*/
static ssize_t keypad_read(struct file *file,
char *buf, size_t count, loff_t *ppos)
{
unsigned i = *ppos;
char *tmp = buf;
if (keypad_buflen == 0) {
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
interruptible_sleep_on(&keypad_read_wait);
if (signal_pending(current))
return -EINTR;
}
for (; count-- > 0 && (keypad_buflen > 0); ++i, ++tmp, --keypad_buflen) {
put_user(keypad_buffer[keypad_start], tmp);
keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
}
*ppos = i;
return tmp - buf;
}
static int keypad_open(struct inode *inode, struct file *file)
{
if (keypad_open_cnt)
return -EBUSY; /* open only once at a time */
if (file->f_mode & FMODE_WRITE) /* device is read-only */
return -EPERM;
keypad_buflen = 0; /* flush the buffer on opening */
keypad_open_cnt++;
return 0;
}
static int keypad_release(struct inode *inode, struct file *file)
{
keypad_open_cnt--;
return 0;
}
static struct file_operations keypad_fops = {
.read = keypad_read, /* read */
.open = keypad_open, /* open */
.release = keypad_release, /* close */
};
static struct miscdevice keypad_dev = {
KEYPAD_MINOR,
"keypad",
&keypad_fops
};
static void keypad_send_key(char *string, int max_len)
{
if (init_in_progress)
return;
/* send the key to the device only if a process is attached to it. */
if (keypad_open_cnt > 0) {
while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
keypad_buffer[(keypad_start + keypad_buflen++) %
KEYPAD_BUFFER] = *string++;
}
wake_up_interruptible(&keypad_read_wait);
}
}
/* this function scans all the bits involving at least one logical signal, and puts the
* results in the bitfield "phys_read" (one bit per established contact), and sets
* "phys_read_prev" to "phys_read".
*
* Note: to debounce input signals, we will only consider as switched a signal which is
* stable across 2 measures. Signals which are different between two reads will be kept
* as they previously were in their logical form (phys_prev). A signal which has just
* switched will have a 1 in (phys_read ^ phys_read_prev).
*/
static void phys_scan_contacts(void)
{
int bit, bitval;
char oldval;
char bitmask;
char gndmask;
phys_prev = phys_curr;
phys_read_prev = phys_read;
phys_read = 0; /* flush all signals */
oldval = r_dtr(pprt) | scan_mask_o; /* keep track of old value, with all outputs disabled */
w_dtr(pprt, oldval & ~scan_mask_o); /* activate all keyboard outputs (active low) */
bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* will have a 1 for each bit set to gnd */
w_dtr(pprt, oldval); /* disable all matrix signals */
/* now that all outputs are cleared, the only active input bits are
* directly connected to the ground
*/
gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* 1 for each grounded input */
phys_read |= (pmask_t) gndmask << 40; /* grounded inputs are signals 40-44 */
if (bitmask != gndmask) {
/* since clearing the outputs changed some inputs, we know that some
* input signals are currently tied to some outputs. So we'll scan them.
*/
for (bit = 0; bit < 8; bit++) {
bitval = 1 << bit;
if (!(scan_mask_o & bitval)) /* skip unused bits */
continue;
w_dtr(pprt, oldval & ~bitval); /* enable this output */
bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
phys_read |= (pmask_t) bitmask << (5 * bit);
}
w_dtr(pprt, oldval); /* disable all outputs */
}
/* this is easy: use old bits when they are flapping, use new ones when stable */
phys_curr =
(phys_prev & (phys_read ^ phys_read_prev)) | (phys_read &
~(phys_read ^
phys_read_prev));
}
static void panel_process_inputs(void)
{
struct list_head *item;
struct logical_input *input;
#if 0
printk(KERN_DEBUG
"entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
phys_prev, phys_curr);
#endif
keypressed = 0;
inputs_stable = 1;
list_for_each(item, &logical_inputs) {
input = list_entry(item, struct logical_input, list);
switch (input->state) {
case INPUT_ST_LOW:
if ((phys_curr & input->mask) != input->value)
break;
/* if all needed ones were already set previously, this means that
* this logical signal has been activated by the releasing of
* another combined signal, so we don't want to match.
* eg: AB -(release B)-> A -(release A)-> 0 : don't match A.
*/
if ((phys_prev & input->mask) == input->value)
break;
input->rise_timer = 0;
input->state = INPUT_ST_RISING;
/* no break here, fall through */
case INPUT_ST_RISING:
if ((phys_curr & input->mask) != input->value) {
input->state = INPUT_ST_LOW;
break;
}
if (input->rise_timer < input->rise_time) {
inputs_stable = 0;
input->rise_timer++;
break;
}
input->high_timer = 0;
input->state = INPUT_ST_HIGH;
/* no break here, fall through */
case INPUT_ST_HIGH:
#if 0
/* FIXME:
* this is an invalid test. It tries to catch transitions from single-key
* to multiple-key, but doesn't take into account the contacts polarity.
* The only solution to the problem is to parse keys from the most complex
* to the simplest combinations, and mark them as 'caught' once a combination
* matches, then unmatch it for all other ones.
*/
/* try to catch dangerous transitions cases :
* someone adds a bit, so this signal was a false
* positive resulting from a transition. We should invalidate
* the signal immediately and not call the release function.
* eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
*/
if (((phys_prev & input->mask) == input->value)
&& ((phys_curr & input->mask) > input->value)) {
input->state = INPUT_ST_LOW; /* invalidate */
break;
}
#endif
if ((phys_curr & input->mask) == input->value) {
if ((input->type == INPUT_TYPE_STD)
&& (input->high_timer == 0)) {
input->high_timer++;
if (input->u.std.press_fct != NULL)
input->u.std.press_fct(input->u.
std.
press_data);
} else if (input->type == INPUT_TYPE_KBD) {
keypressed = 1; /* will turn on the light */
if (input->high_timer == 0) {
if (input->u.kbd.press_str[0])
keypad_send_key(input->
u.kbd.
press_str,
sizeof
(input->
u.kbd.
press_str));
}
if (input->u.kbd.repeat_str[0]) {
if (input->high_timer >=
KEYPAD_REP_START) {
input->high_timer -=
KEYPAD_REP_DELAY;
keypad_send_key(input->
u.kbd.
repeat_str,
sizeof
(input->
u.kbd.
repeat_str));
}
inputs_stable = 0; /* we will need to come back here soon */
}
if (input->high_timer < 255)
input->high_timer++;
}
break;
} else {
/* else signal falling down. Let's fall through. */
input->state = INPUT_ST_FALLING;
input->fall_timer = 0;
}
/* no break here, fall through */
case INPUT_ST_FALLING:
#if 0
/* FIXME !!! same comment as above */
if (((phys_prev & input->mask) == input->value)
&& ((phys_curr & input->mask) > input->value)) {
input->state = INPUT_ST_LOW; /* invalidate */
break;
}
#endif
if ((phys_curr & input->mask) == input->value) {
if (input->type == INPUT_TYPE_KBD) {
keypressed = 1; /* will turn on the light */
if (input->u.kbd.repeat_str[0]) {
if (input->high_timer >= KEYPAD_REP_START)
input->high_timer -= KEYPAD_REP_DELAY;
keypad_send_key(input->u.kbd.repeat_str,
sizeof(input->u.kbd.repeat_str));
inputs_stable = 0; /* we will need to come back here soon */
}
if (input->high_timer < 255)
input->high_timer++;
}
input->state = INPUT_ST_HIGH;
break;
} else if (input->fall_timer >= input->fall_time) {
/* call release event */
if (input->type == INPUT_TYPE_STD) {
if (input->u.std.release_fct != NULL)
input->u.std.release_fct(input->u.std.release_data);
} else if (input->type == INPUT_TYPE_KBD) {
if (input->u.kbd.release_str[0])
keypad_send_key(input->u.kbd.release_str,
sizeof(input->u.kbd.release_str));
}
input->state = INPUT_ST_LOW;
break;
} else {
input->fall_timer++;
inputs_stable = 0;
break;
}
}
}
}
static void panel_scan_timer(void)
{
if (keypad_enabled && keypad_initialized) {
if (spin_trylock(&pprt_lock)) {
phys_scan_contacts();
spin_unlock(&pprt_lock); /* no need for the parport anymore */
}
if (!inputs_stable || phys_curr != phys_prev)
panel_process_inputs();
}
if (lcd_enabled && lcd_initialized) {
if (keypressed) {
if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
lcd_backlight(1);
light_tempo = FLASH_LIGHT_TEMPO;
} else if (light_tempo > 0) {
light_tempo--;
if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
lcd_backlight(0);
}
}
mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
}
static void init_scan_timer(void)
{
if (scan_timer.function != NULL)
return; /* already started */
init_timer(&scan_timer);
scan_timer.expires = jiffies + INPUT_POLL_TIME;
scan_timer.data = 0;
scan_timer.function = (void *)&panel_scan_timer;
add_timer(&scan_timer);
}
/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
* if <omask> or <imask> are non-null, they will be or'ed with the bits corresponding
* to out and in bits respectively.
* returns 1 if ok, 0 if error (in which case, nothing is written).
*/
static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
char *imask, char *omask)
{
static char sigtab[10] = "EeSsPpAaBb";
char im, om;
pmask_t m, v;
om = im = m = v = 0ULL;
while (*name) {
int in, out, bit, neg;
for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name); in++)
;
if (in >= sizeof(sigtab))
return 0; /* input name not found */
neg = (in & 1); /* odd (lower) names are negated */
in >>= 1;
im |= (1 << in);
name++;
if (isdigit(*name)) {
out = *name - '0';
om |= (1 << out);
} else if (*name == '-')
out = 8;
else
return 0; /* unknown bit name */
bit = (out * 5) + in;
m |= 1ULL << bit;
if (!neg)
v |= 1ULL << bit;
name++;
}
*mask = m;
*value = v;
if (imask)
*imask |= im;
if (omask)
*omask |= om;
return 1;
}
/* tries to bind a key to the signal name <name>. The key will send the
* strings <press>, <repeat>, <release> for these respective events.
* Returns the pointer to the new key if ok, NULL if the key could not be bound.
*/
static struct logical_input *panel_bind_key(char *name, char *press,
char *repeat, char *release)
{
struct logical_input *key;
key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
if (!key) {
printk(KERN_ERR "panel: not enough memory\n");
return NULL;
}
if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
&scan_mask_o))
return NULL;
key->type = INPUT_TYPE_KBD;
key->state = INPUT_ST_LOW;
key->rise_time = 1;
key->fall_time = 1;
#if 0
printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
key->value);
#endif
strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
strncpy(key->u.kbd.release_str, release,
sizeof(key->u.kbd.release_str));
list_add(&key->list, &logical_inputs);
return key;
}
#if 0
/* tries to bind a callback function to the signal name <name>. The function
* <press_fct> will be called with the <press_data> arg when the signal is
* activated, and so on for <release_fct>/<release_data>
* Returns the pointer to the new signal if ok, NULL if the signal could not be bound.
*/
static struct logical_input *panel_bind_callback(char *name,
void (*press_fct) (int),
int press_data,
void (*release_fct) (int),
int release_data)
{
struct logical_input *callback;
callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
if (!callback) {
printk(KERN_ERR "panel: not enough memory\n");
return NULL;
}
memset(callback, 0, sizeof(struct logical_input));
if (!input_name2mask(name, &callback->mask, &callback->value,
&scan_mask_i, &scan_mask_o))
return NULL;
callback->type = INPUT_TYPE_STD;
callback->state = INPUT_ST_LOW;
callback->rise_time = 1;
callback->fall_time = 1;
callback->u.std.press_fct = press_fct;
callback->u.std.press_data = press_data;
callback->u.std.release_fct = release_fct;
callback->u.std.release_data = release_data;
list_add(&callback->list, &logical_inputs);
return callback;
}
#endif
static void keypad_init(void)
{
int keynum;
init_waitqueue_head(&keypad_read_wait);
keypad_buflen = 0; /* flushes any eventual noisy keystroke */
/* Let's create all known keys */
for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
panel_bind_key(keypad_profile[keynum][0],
keypad_profile[keynum][1],
keypad_profile[keynum][2],
keypad_profile[keynum][3]);
}
init_scan_timer();
keypad_initialized = 1;
}
/**************************************************/
/* device initialization */
/**************************************************/
static int panel_notify_sys(struct notifier_block *this, unsigned long code,
void *unused)
{
if (lcd_enabled && lcd_initialized) {
switch (code) {
case SYS_DOWN:
panel_lcd_print
("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
break;
case SYS_HALT:
panel_lcd_print
("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
break;
case SYS_POWER_OFF:
panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
break;
default:
break;
}
}
return NOTIFY_DONE;
}
static struct notifier_block panel_notifier = {
panel_notify_sys,
NULL,
0
};
static void panel_attach(struct parport *port)
{
if (port->number != parport)
return;
if (pprt) {
printk(KERN_ERR
"panel_attach(): port->number=%d parport=%d, already registered !\n",
port->number, parport);
return;
}
pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
NULL,
/*PARPORT_DEV_EXCL */
0, (void *)&pprt);
if (parport_claim(pprt)) {
printk(KERN_ERR
"Panel: could not claim access to parport%d. Aborting.\n",
parport);
return;
}
/* must init LCD first, just in case an IRQ from the keypad is generated at keypad init */
if (lcd_enabled) {
lcd_init();
misc_register(&lcd_dev);
}
if (keypad_enabled) {
keypad_init();
misc_register(&keypad_dev);
}
}
static void panel_detach(struct parport *port)
{
if (port->number != parport)
return;
if (!pprt) {
printk(KERN_ERR
"panel_detach(): port->number=%d parport=%d, nothing to unregister.\n",
port->number, parport);
return;
}
if (keypad_enabled && keypad_initialized) {
misc_deregister(&keypad_dev);
keypad_initialized = 0;
}
if (lcd_enabled && lcd_initialized) {
misc_deregister(&lcd_dev);
lcd_initialized = 0;
}
parport_release(pprt);
parport_unregister_device(pprt);
pprt = NULL;
}
static struct parport_driver panel_driver = {
.name = "panel",
.attach = panel_attach,
.detach = panel_detach,
};
/* init function */
int panel_init(void)
{
/* for backwards compatibility */
if (keypad_type < 0)
keypad_type = keypad_enabled;
if (lcd_type < 0)
lcd_type = lcd_enabled;
if (parport < 0)
parport = DEFAULT_PARPORT;
/* take care of an eventual profile */
switch (profile) {
case PANEL_PROFILE_CUSTOM: /* custom profile */
if (keypad_type < 0)
keypad_type = DEFAULT_KEYPAD;
if (lcd_type < 0)
lcd_type = DEFAULT_LCD;
break;
case PANEL_PROFILE_OLD: /* 8 bits, 2*16, old keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_OLD;
if (lcd_type < 0)
lcd_type = LCD_TYPE_OLD;
if (lcd_width < 0)
lcd_width = 16;
if (lcd_hwidth < 0)
lcd_hwidth = 16;
break;
case PANEL_PROFILE_NEW: /* serial, 2*16, new keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NEW;
if (lcd_type < 0)
lcd_type = LCD_TYPE_KS0074;
break;
case PANEL_PROFILE_HANTRONIX: /* 8 bits, 2*16 hantronix-like, no keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NONE;
if (lcd_type < 0)
lcd_type = LCD_TYPE_HANTRONIX;
break;
case PANEL_PROFILE_NEXCOM: /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NEXCOM;
if (lcd_type < 0)
lcd_type = LCD_TYPE_NEXCOM;
break;
case PANEL_PROFILE_LARGE: /* 8 bits, 2*40, old keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_OLD;
if (lcd_type < 0)
lcd_type = LCD_TYPE_OLD;
break;
}
lcd_enabled = (lcd_type > 0);
keypad_enabled = (keypad_type > 0);
switch (keypad_type) {
case KEYPAD_TYPE_OLD:
keypad_profile = old_keypad_profile;
break;
case KEYPAD_TYPE_NEW:
keypad_profile = new_keypad_profile;
break;
case KEYPAD_TYPE_NEXCOM:
keypad_profile = nexcom_keypad_profile;
break;
default:
keypad_profile = NULL;
break;
}
/* tells various subsystems about the fact that we are initializing */
init_in_progress = 1;
if (parport_register_driver(&panel_driver)) {
printk(KERN_ERR
"Panel: could not register with parport. Aborting.\n");
return -EIO;
}
if (!lcd_enabled && !keypad_enabled) {
/* no device enabled, let's release the parport */
if (pprt) {
parport_release(pprt);
parport_unregister_device(pprt);
pprt = NULL;
}
parport_unregister_driver(&panel_driver);
printk(KERN_ERR "Panel driver version " PANEL_VERSION
" disabled.\n");
return -ENODEV;
}
register_reboot_notifier(&panel_notifier);
if (pprt)
printk(KERN_INFO "Panel driver version " PANEL_VERSION
" registered on parport%d (io=0x%lx).\n", parport,
pprt->port->base);
else
printk(KERN_INFO "Panel driver version " PANEL_VERSION
" not yet registered\n");
/* tells various subsystems about the fact that initialization is finished */
init_in_progress = 0;
return 0;
}
static int __init panel_init_module(void)
{
return panel_init();
}
static void __exit panel_cleanup_module(void)
{
unregister_reboot_notifier(&panel_notifier);
if (scan_timer.function != NULL)
del_timer(&scan_timer);
if (pprt != NULL) {
if (keypad_enabled) {
misc_deregister(&keypad_dev);
keypad_initialized = 0;
}
if (lcd_enabled) {
panel_lcd_print("\x0cLCD driver " PANEL_VERSION
"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
misc_deregister(&lcd_dev);
lcd_initialized = 0;
}
/* TODO: free all input signals */
parport_release(pprt);
parport_unregister_device(pprt);
pprt = NULL;
}
parport_unregister_driver(&panel_driver);
}
module_init(panel_init_module);
module_exit(panel_cleanup_module);
MODULE_AUTHOR("Willy Tarreau");
MODULE_LICENSE("GPL");
/*
* Local variables:
* c-indent-level: 4
* tab-width: 8
* End:
*/