blob: 36f68fe3e8c913399883e97ed6f13742458effa1 [file] [log] [blame]
/*
* Agere Systems Inc.
* 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
* http://www.agere.com
*
*------------------------------------------------------------------------------
*
* et131x_isr.c - File which contains the ISR, ISR handler, and related routines
* for processing interrupts from the device.
*
*------------------------------------------------------------------------------
*
* SOFTWARE LICENSE
*
* This software is provided subject to the following terms and conditions,
* which you should read carefully before using the software. Using this
* software indicates your acceptance of these terms and conditions. If you do
* not agree with these terms and conditions, do not use the software.
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
*
* Redistribution and use in source or binary forms, with or without
* modifications, are permitted provided that the following conditions are met:
*
* . Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following Disclaimer as comments in the code as
* well as in the documentation and/or other materials provided with the
* distribution.
*
* . Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following Disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* . Neither the name of Agere Systems Inc. nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Disclaimer
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include "et131x_version.h"
#include "et131x_defs.h"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/pci.h>
#include <asm/system.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/ioport.h>
#include "et1310_phy.h"
#include "et131x_adapter.h"
#include "et131x.h"
/*
* For interrupts, normal running is:
* rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
* watchdog_interrupt & txdma_xfer_done
*
* In both cases, when flow control is enabled for either Tx or bi-direction,
* we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
* buffer rings are running low.
*/
#define INT_MASK_DISABLE 0xffffffff
/* NOTE: Masking out MAC_STAT Interrupt for now...
* #define INT_MASK_ENABLE 0xfff6bf17
* #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
*/
#define INT_MASK_ENABLE 0xfffebf17
#define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
/**
* et131x_enable_interrupts - enable interrupt
* @adapter: et131x device
*
* Enable the appropriate interrupts on the ET131x according to our
* configuration
*/
void et131x_enable_interrupts(struct et131x_adapter *adapter)
{
u32 mask;
/* Enable all global interrupts */
if (adapter->FlowControl == TxOnly || adapter->FlowControl == Both)
mask = INT_MASK_ENABLE;
else
mask = INT_MASK_ENABLE_NO_FLOW;
adapter->CachedMaskValue = mask;
writel(mask, &adapter->regs->global.int_mask);
}
/**
* et131x_disable_interrupts - interrupt disable
* @adapter: et131x device
*
* Block all interrupts from the et131x device at the device itself
*/
void et131x_disable_interrupts(struct et131x_adapter *adapter)
{
/* Disable all global interrupts */
adapter->CachedMaskValue = INT_MASK_DISABLE;
writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
}
/**
* et131x_isr - The Interrupt Service Routine for the driver.
* @irq: the IRQ on which the interrupt was received.
* @dev_id: device-specific info (here a pointer to a net_device struct)
*
* Returns a value indicating if the interrupt was handled.
*/
irqreturn_t et131x_isr(int irq, void *dev_id)
{
bool handled = true;
struct net_device *netdev = (struct net_device *)dev_id;
struct et131x_adapter *adapter = NULL;
u32 status;
if (!netif_device_present(netdev)) {
handled = false;
goto out;
}
adapter = netdev_priv(netdev);
/* If the adapter is in low power state, then it should not
* recognize any interrupt
*/
/* Disable Device Interrupts */
et131x_disable_interrupts(adapter);
/* Get a copy of the value in the interrupt status register
* so we can process the interrupting section
*/
status = readl(&adapter->regs->global.int_status);
if (adapter->FlowControl == TxOnly ||
adapter->FlowControl == Both) {
status &= ~INT_MASK_ENABLE;
} else {
status &= ~INT_MASK_ENABLE_NO_FLOW;
}
/* Make sure this is our interrupt */
if (!status) {
handled = false;
et131x_enable_interrupts(adapter);
goto out;
}
/* This is our interrupt, so process accordingly */
if (status & ET_INTR_WATCHDOG) {
struct tcb *tcb = adapter->tx_ring.send_head;
if (tcb)
if (++tcb->stale > 1)
status |= ET_INTR_TXDMA_ISR;
if (adapter->rx_ring.UnfinishedReceives)
status |= ET_INTR_RXDMA_XFR_DONE;
else if (tcb == NULL)
writel(0, &adapter->regs->global.watchdog_timer);
status &= ~ET_INTR_WATCHDOG;
}
if (status == 0) {
/* This interrupt has in some way been "handled" by
* the ISR. Either it was a spurious Rx interrupt, or
* it was a Tx interrupt that has been filtered by
* the ISR.
*/
et131x_enable_interrupts(adapter);
goto out;
}
/* We need to save the interrupt status value for use in our
* DPC. We will clear the software copy of that in that
* routine.
*/
adapter->Stats.InterruptStatus = status;
/* Schedule the ISR handler as a bottom-half task in the
* kernel's tq_immediate queue, and mark the queue for
* execution
*/
schedule_work(&adapter->task);
out:
return IRQ_RETVAL(handled);
}
/**
* et131x_isr_handler - The ISR handler
* @p_adapter, a pointer to the device's private adapter structure
*
* scheduled to run in a deferred context by the ISR. This is where the ISR's
* work actually gets done.
*/
void et131x_isr_handler(struct work_struct *work)
{
struct et131x_adapter *etdev =
container_of(work, struct et131x_adapter, task);
u32 status = etdev->Stats.InterruptStatus;
ADDRESS_MAP_t __iomem *iomem = etdev->regs;
/*
* These first two are by far the most common. Once handled, we clear
* their two bits in the status word. If the word is now zero, we
* exit.
*/
/* Handle all the completed Transmit interrupts */
if (status & ET_INTR_TXDMA_ISR)
et131x_handle_send_interrupt(etdev);
/* Handle all the completed Receives interrupts */
if (status & ET_INTR_RXDMA_XFR_DONE)
et131x_handle_recv_interrupt(etdev);
status &= 0xffffffd7;
if (status) {
/* Handle the TXDMA Error interrupt */
if (status & ET_INTR_TXDMA_ERR) {
u32 txdma_err;
/* Following read also clears the register (COR) */
txdma_err = readl(&iomem->txdma.TxDmaError);
dev_warn(&etdev->pdev->dev,
"TXDMA_ERR interrupt, error = %d\n",
txdma_err);
}
/* Handle Free Buffer Ring 0 and 1 Low interrupt */
if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
/*
* This indicates the number of unused buffers in
* RXDMA free buffer ring 0 is <= the limit you
* programmed. Free buffer resources need to be
* returned. Free buffers are consumed as packets
* are passed from the network to the host. The host
* becomes aware of the packets from the contents of
* the packet status ring. This ring is queried when
* the packet done interrupt occurs. Packets are then
* passed to the OS. When the OS is done with the
* packets the resources can be returned to the
* ET1310 for re-use. This interrupt is one method of
* returning resources.
*/
/* If the user has flow control on, then we will
* send a pause packet, otherwise just exit
*/
if (etdev->FlowControl == TxOnly ||
etdev->FlowControl == Both) {
u32 pm_csr;
/* Tell the device to send a pause packet via
* the back pressure register (bp req and
* bp xon/xoff)
*/
pm_csr = readl(&iomem->global.pm_csr);
if ((pm_csr & ET_PM_PHY_SW_COMA) == 0)
writel(3, &iomem->txmac.bp_ctrl);
}
}
/* Handle Packet Status Ring Low Interrupt */
if (status & ET_INTR_RXDMA_STAT_LOW) {
/*
* Same idea as with the two Free Buffer Rings.
* Packets going from the network to the host each
* consume a free buffer resource and a packet status
* resource. These resoures are passed to the OS.
* When the OS is done with the resources, they need
* to be returned to the ET1310. This is one method
* of returning the resources.
*/
}
/* Handle RXDMA Error Interrupt */
if (status & ET_INTR_RXDMA_ERR) {
/*
* The rxdma_error interrupt is sent when a time-out
* on a request issued by the JAGCore has occurred or
* a completion is returned with an un-successful
* status. In both cases the request is considered
* complete. The JAGCore will automatically re-try the
* request in question. Normally information on events
* like these are sent to the host using the "Advanced
* Error Reporting" capability. This interrupt is
* another way of getting similar information. The
* only thing required is to clear the interrupt by
* reading the ISR in the global resources. The
* JAGCore will do a re-try on the request. Normally
* you should never see this interrupt. If you start
* to see this interrupt occurring frequently then
* something bad has occurred. A reset might be the
* thing to do.
*/
/* TRAP();*/
dev_warn(&etdev->pdev->dev,
"RxDMA_ERR interrupt, error %x\n",
readl(&iomem->txmac.tx_test));
}
/* Handle the Wake on LAN Event */
if (status & ET_INTR_WOL) {
/*
* This is a secondary interrupt for wake on LAN.
* The driver should never see this, if it does,
* something serious is wrong. We will TRAP the
* message when we are in DBG mode, otherwise we
* will ignore it.
*/
dev_err(&etdev->pdev->dev, "WAKE_ON_LAN interrupt\n");
}
/* Handle the PHY interrupt */
if (status & ET_INTR_PHY) {
u32 pm_csr;
MI_BMSR_t BmsrInts, BmsrData;
MI_ISR_t myIsr;
/* If we are in coma mode when we get this interrupt,
* we need to disable it.
*/
pm_csr = readl(&iomem->global.pm_csr);
if (pm_csr & ET_PM_PHY_SW_COMA) {
/*
* Check to see if we are in coma mode and if
* so, disable it because we will not be able
* to read PHY values until we are out.
*/
DisablePhyComa(etdev);
}
/* Read the PHY ISR to clear the reason for the
* interrupt.
*/
MiRead(etdev, (uint8_t) offsetof(MI_REGS_t, isr),
&myIsr.value);
if (!etdev->ReplicaPhyLoopbk) {
MiRead(etdev,
(uint8_t) offsetof(MI_REGS_t, bmsr),
&BmsrData.value);
BmsrInts.value =
etdev->Bmsr.value ^ BmsrData.value;
etdev->Bmsr.value = BmsrData.value;
/* Do all the cable in / cable out stuff */
et131x_Mii_check(etdev, BmsrData, BmsrInts);
}
}
/* Let's move on to the TxMac */
if (status & ET_INTR_TXMAC) {
u32 err = readl(&iomem->txmac.err);
/*
* When any of the errors occur and TXMAC generates
* an interrupt to report these errors, it usually
* means that TXMAC has detected an error in the data
* stream retrieved from the on-chip Tx Q. All of
* these errors are catastrophic and TXMAC won't be
* able to recover data when these errors occur. In
* a nutshell, the whole Tx path will have to be reset
* and re-configured afterwards.
*/
dev_warn(&etdev->pdev->dev,
"TXMAC interrupt, error 0x%08x\n",
err);
/* If we are debugging, we want to see this error,
* otherwise we just want the device to be reset and
* continue
*/
}
/* Handle RXMAC Interrupt */
if (status & ET_INTR_RXMAC) {
/*
* These interrupts are catastrophic to the device,
* what we need to do is disable the interrupts and
* set the flag to cause us to reset so we can solve
* this issue.
*/
/* MP_SET_FLAG( etdev,
fMP_ADAPTER_HARDWARE_ERROR); */
dev_warn(&etdev->pdev->dev,
"RXMAC interrupt, error 0x%08x. Requesting reset\n",
readl(&iomem->rxmac.err_reg));
dev_warn(&etdev->pdev->dev,
"Enable 0x%08x, Diag 0x%08x\n",
readl(&iomem->rxmac.ctrl),
readl(&iomem->rxmac.rxq_diag));
/*
* If we are debugging, we want to see this error,
* otherwise we just want the device to be reset and
* continue
*/
}
/* Handle MAC_STAT Interrupt */
if (status & ET_INTR_MAC_STAT) {
/*
* This means at least one of the un-masked counters
* in the MAC_STAT block has rolled over. Use this
* to maintain the top, software managed bits of the
* counter(s).
*/
HandleMacStatInterrupt(etdev);
}
/* Handle SLV Timeout Interrupt */
if (status & ET_INTR_SLV_TIMEOUT) {
/*
* This means a timeout has occured on a read or
* write request to one of the JAGCore registers. The
* Global Resources block has terminated the request
* and on a read request, returned a "fake" value.
* The most likely reasons are: Bad Address or the
* addressed module is in a power-down state and
* can't respond.
*/
}
}
et131x_enable_interrupts(etdev);
}