blob: a6d9f29ff49cd0d97ecb7a4064ac1d4e9cf6d437 [file] [log] [blame]
/*
* Agere Systems Inc.
* 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
*
* Copyright * 2005 Agere Systems Inc.
* All rights reserved.
* http://www.agere.com
*
*------------------------------------------------------------------------------
*
* et1310_phy.c - Routines for configuring and accessing the PHY
*
*------------------------------------------------------------------------------
*
* SOFTWARE LICENSE
*
* This software is provided subject to the following terms and conditions,
* which you should read carefully before using the software. Using this
* software indicates your acceptance of these terms and conditions. If you do
* not agree with these terms and conditions, do not use the software.
*
* Copyright * 2005 Agere Systems Inc.
* All rights reserved.
*
* Redistribution and use in source or binary forms, with or without
* modifications, are permitted provided that the following conditions are met:
*
* . Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following Disclaimer as comments in the code as
* well as in the documentation and/or other materials provided with the
* distribution.
*
* . Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following Disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* . Neither the name of Agere Systems Inc. nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Disclaimer
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include "et131x_version.h"
#include "et131x_defs.h"
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/ioport.h>
#include <linux/random.h>
#include "et1310_phy.h"
#include "et131x_adapter.h"
#include "et1310_address_map.h"
#include "et1310_tx.h"
#include "et1310_rx.h"
#include "et131x.h"
/* Prototypes for functions with local scope */
static void et131x_xcvr_init(struct et131x_adapter *etdev);
/**
* PhyMiRead - Read from the PHY through the MII Interface on the MAC
* @etdev: pointer to our private adapter structure
* @xcvrAddr: the address of the transciever
* @xcvrReg: the register to read
* @value: pointer to a 16-bit value in which the value will be stored
*
* Returns 0 on success, errno on failure (as defined in errno.h)
*/
int PhyMiRead(struct et131x_adapter *etdev, u8 xcvrAddr,
u8 xcvrReg, u16 *value)
{
struct _MAC_t __iomem *mac = &etdev->regs->mac;
int status = 0;
u32 delay;
u32 miiAddr;
u32 miiCmd;
u32 miiIndicator;
/* Save a local copy of the registers we are dealing with so we can
* set them back
*/
miiAddr = readl(&mac->mii_mgmt_addr);
miiCmd = readl(&mac->mii_mgmt_cmd);
/* Stop the current operation */
writel(0, &mac->mii_mgmt_cmd);
/* Set up the register we need to read from on the correct PHY */
writel(MII_ADDR(xcvrAddr, xcvrReg), &mac->mii_mgmt_addr);
/* Kick the read cycle off */
delay = 0;
writel(0x1, &mac->mii_mgmt_cmd);
do {
udelay(50);
delay++;
miiIndicator = readl(&mac->mii_mgmt_indicator);
} while ((miiIndicator & MGMT_WAIT) && delay < 50);
/* If we hit the max delay, we could not read the register */
if (delay == 50) {
dev_warn(&etdev->pdev->dev,
"xcvrReg 0x%08x could not be read\n", xcvrReg);
dev_warn(&etdev->pdev->dev, "status is 0x%08x\n",
miiIndicator);
status = -EIO;
}
/* If we hit here we were able to read the register and we need to
* return the value to the caller */
*value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
/* Stop the read operation */
writel(0, &mac->mii_mgmt_cmd);
/* set the registers we touched back to the state at which we entered
* this function
*/
writel(miiAddr, &mac->mii_mgmt_addr);
writel(miiCmd, &mac->mii_mgmt_cmd);
return status;
}
/**
* MiWrite - Write to a PHY register through the MII interface of the MAC
* @etdev: pointer to our private adapter structure
* @xcvrReg: the register to read
* @value: 16-bit value to write
*
* FIXME: one caller in netdev still
*
* Return 0 on success, errno on failure (as defined in errno.h)
*/
int MiWrite(struct et131x_adapter *etdev, u8 xcvrReg, u16 value)
{
struct _MAC_t __iomem *mac = &etdev->regs->mac;
int status = 0;
u8 xcvrAddr = etdev->Stats.xcvr_addr;
u32 delay;
u32 miiAddr;
u32 miiCmd;
u32 miiIndicator;
/* Save a local copy of the registers we are dealing with so we can
* set them back
*/
miiAddr = readl(&mac->mii_mgmt_addr);
miiCmd = readl(&mac->mii_mgmt_cmd);
/* Stop the current operation */
writel(0, &mac->mii_mgmt_cmd);
/* Set up the register we need to write to on the correct PHY */
writel(MII_ADDR(xcvrAddr, xcvrReg), &mac->mii_mgmt_addr);
/* Add the value to write to the registers to the mac */
writel(value, &mac->mii_mgmt_ctrl);
delay = 0;
do {
udelay(50);
delay++;
miiIndicator = readl(&mac->mii_mgmt_indicator);
} while ((miiIndicator & MGMT_BUSY) && delay < 100);
/* If we hit the max delay, we could not write the register */
if (delay == 100) {
u16 TempValue;
dev_warn(&etdev->pdev->dev,
"xcvrReg 0x%08x could not be written", xcvrReg);
dev_warn(&etdev->pdev->dev, "status is 0x%08x\n",
miiIndicator);
dev_warn(&etdev->pdev->dev, "command is 0x%08x\n",
readl(&mac->mii_mgmt_cmd));
MiRead(etdev, xcvrReg, &TempValue);
status = -EIO;
}
/* Stop the write operation */
writel(0, &mac->mii_mgmt_cmd);
/* set the registers we touched back to the state at which we entered
* this function
*/
writel(miiAddr, &mac->mii_mgmt_addr);
writel(miiCmd, &mac->mii_mgmt_cmd);
return status;
}
/**
* et131x_xcvr_find - Find the PHY ID
* @etdev: pointer to our private adapter structure
*
* Returns 0 on success, errno on failure (as defined in errno.h)
*/
int et131x_xcvr_find(struct et131x_adapter *etdev)
{
u8 xcvr_addr;
MI_IDR1_t idr1;
MI_IDR2_t idr2;
u32 xcvr_id;
/* We need to get xcvr id and address we just get the first one */
for (xcvr_addr = 0; xcvr_addr < 32; xcvr_addr++) {
/* Read the ID from the PHY */
PhyMiRead(etdev, xcvr_addr,
(u8) offsetof(MI_REGS_t, idr1),
&idr1.value);
PhyMiRead(etdev, xcvr_addr,
(u8) offsetof(MI_REGS_t, idr2),
&idr2.value);
xcvr_id = (u32) ((idr1.value << 16) | idr2.value);
if (idr1.value != 0 && idr1.value != 0xffff) {
etdev->Stats.xcvr_id = xcvr_id;
etdev->Stats.xcvr_addr = xcvr_addr;
return 0;
}
}
return -ENODEV;
}
void ET1310_PhyReset(struct et131x_adapter *etdev)
{
MiWrite(etdev, PHY_CONTROL, 0x8000);
}
/**
* ET1310_PhyPowerDown - PHY power control
* @etdev: device to control
* @down: true for off/false for back on
*
* one hundred, ten, one thousand megs
* How would you like to have your LAN accessed
* Can't you see that this code processed
* Phy power, phy power..
*/
void ET1310_PhyPowerDown(struct et131x_adapter *etdev, bool down)
{
u16 data;
MiRead(etdev, PHY_CONTROL, &data);
data &= ~0x0800; /* Power UP */
if (down) /* Power DOWN */
data |= 0x0800;
MiWrite(etdev, PHY_CONTROL, data);
}
/**
* ET130_PhyAutoNEg - autonegotiate control
* @etdev: device to control
* @enabe: autoneg on/off
*
* Set up the autonegotiation state according to whether we will be
* negotiating the state or forcing a speed.
*/
static void ET1310_PhyAutoNeg(struct et131x_adapter *etdev, bool enable)
{
u16 data;
MiRead(etdev, PHY_CONTROL, &data);
data &= ~0x1000; /* Autonegotiation OFF */
if (enable)
data |= 0x1000; /* Autonegotiation ON */
MiWrite(etdev, PHY_CONTROL, data);
}
/**
* ET130_PhyDuplexMode - duplex control
* @etdev: device to control
* @duplex: duplex on/off
*
* Set up the duplex state on the PHY
*/
static void ET1310_PhyDuplexMode(struct et131x_adapter *etdev, u16 duplex)
{
u16 data;
MiRead(etdev, PHY_CONTROL, &data);
data &= ~0x100; /* Set Half Duplex */
if (duplex == TRUEPHY_DUPLEX_FULL)
data |= 0x100; /* Set Full Duplex */
MiWrite(etdev, PHY_CONTROL, data);
}
/**
* ET130_PhySpeedSelect - speed control
* @etdev: device to control
* @duplex: duplex on/off
*
* Set the speed of our PHY.
*/
static void ET1310_PhySpeedSelect(struct et131x_adapter *etdev, u16 speed)
{
u16 data;
static const u16 bits[3] = {0x0000, 0x2000, 0x0040};
/* Read the PHY control register */
MiRead(etdev, PHY_CONTROL, &data);
/* Clear all Speed settings (Bits 6, 13) */
data &= ~0x2040;
/* Write back the new speed */
MiWrite(etdev, PHY_CONTROL, data | bits[speed]);
}
/**
* ET1310_PhyLinkStatus - read link state
* @etdev: device to read
* @link_status: reported link state
* @autoneg: reported autonegotiation state (complete/incomplete/disabled)
* @linkspeed: returnedlink speed in use
* @duplex_mode: reported half/full duplex state
* @mdi_mdix: not yet working
* @masterslave: report whether we are master or slave
* @polarity: link polarity
*
* I can read your lan like a magazine
* I see if your up
* I know your link speed
* I see all the setting that you'd rather keep
*/
static void ET1310_PhyLinkStatus(struct et131x_adapter *etdev,
u8 *link_status,
u32 *autoneg,
u32 *linkspeed,
u32 *duplex_mode,
u32 *mdi_mdix,
u32 *masterslave, u32 *polarity)
{
u16 mistatus = 0;
u16 is1000BaseT = 0;
u16 vmi_phystatus = 0;
u16 control = 0;
MiRead(etdev, PHY_STATUS, &mistatus);
MiRead(etdev, PHY_1000_STATUS, &is1000BaseT);
MiRead(etdev, PHY_PHY_STATUS, &vmi_phystatus);
MiRead(etdev, PHY_CONTROL, &control);
*link_status = (vmi_phystatus & 0x0040) ? 1 : 0;
*autoneg = (control & 0x1000) ? ((vmi_phystatus & 0x0020) ?
TRUEPHY_ANEG_COMPLETE :
TRUEPHY_ANEG_NOT_COMPLETE) :
TRUEPHY_ANEG_DISABLED;
*linkspeed = (vmi_phystatus & 0x0300) >> 8;
*duplex_mode = (vmi_phystatus & 0x0080) >> 7;
/* NOTE: Need to complete this */
*mdi_mdix = 0;
*masterslave = (is1000BaseT & 0x4000) ?
TRUEPHY_CFG_MASTER : TRUEPHY_CFG_SLAVE;
*polarity = (vmi_phystatus & 0x0400) ?
TRUEPHY_POLARITY_INVERTED : TRUEPHY_POLARITY_NORMAL;
}
static void ET1310_PhyAndOrReg(struct et131x_adapter *etdev,
u16 regnum, u16 andMask, u16 orMask)
{
u16 reg;
MiRead(etdev, regnum, &reg);
reg &= andMask;
reg |= orMask;
MiWrite(etdev, regnum, reg);
}
/* Still used from _mac for BIT_READ */
void ET1310_PhyAccessMiBit(struct et131x_adapter *etdev, u16 action,
u16 regnum, u16 bitnum, u8 *value)
{
u16 reg;
u16 mask = 0x0001 << bitnum;
/* Read the requested register */
MiRead(etdev, regnum, &reg);
switch (action) {
case TRUEPHY_BIT_READ:
*value = (reg & mask) >> bitnum;
break;
case TRUEPHY_BIT_SET:
MiWrite(etdev, regnum, reg | mask);
break;
case TRUEPHY_BIT_CLEAR:
MiWrite(etdev, regnum, reg & ~mask);
break;
default:
break;
}
}
void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter *etdev,
u16 duplex)
{
u16 data;
/* Read the PHY 1000 Base-T Control Register */
MiRead(etdev, PHY_1000_CONTROL, &data);
/* Clear Bits 8,9 */
data &= ~0x0300;
switch (duplex) {
case TRUEPHY_ADV_DUPLEX_NONE:
/* Duplex already cleared, do nothing */
break;
case TRUEPHY_ADV_DUPLEX_FULL:
/* Set Bit 9 */
data |= 0x0200;
break;
case TRUEPHY_ADV_DUPLEX_HALF:
/* Set Bit 8 */
data |= 0x0100;
break;
case TRUEPHY_ADV_DUPLEX_BOTH:
default:
data |= 0x0300;
break;
}
/* Write back advertisement */
MiWrite(etdev, PHY_1000_CONTROL, data);
}
static void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *etdev,
u16 duplex)
{
u16 data;
/* Read the Autonegotiation Register (10/100) */
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
/* Clear bits 7,8 */
data &= ~0x0180;
switch (duplex) {
case TRUEPHY_ADV_DUPLEX_NONE:
/* Duplex already cleared, do nothing */
break;
case TRUEPHY_ADV_DUPLEX_FULL:
/* Set Bit 8 */
data |= 0x0100;
break;
case TRUEPHY_ADV_DUPLEX_HALF:
/* Set Bit 7 */
data |= 0x0080;
break;
case TRUEPHY_ADV_DUPLEX_BOTH:
default:
/* Set Bits 7,8 */
data |= 0x0180;
break;
}
/* Write back advertisement */
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
}
static void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *etdev,
u16 duplex)
{
u16 data;
/* Read the Autonegotiation Register (10/100) */
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
/* Clear bits 5,6 */
data &= ~0x0060;
switch (duplex) {
case TRUEPHY_ADV_DUPLEX_NONE:
/* Duplex already cleared, do nothing */
break;
case TRUEPHY_ADV_DUPLEX_FULL:
/* Set Bit 6 */
data |= 0x0040;
break;
case TRUEPHY_ADV_DUPLEX_HALF:
/* Set Bit 5 */
data |= 0x0020;
break;
case TRUEPHY_ADV_DUPLEX_BOTH:
default:
/* Set Bits 5,6 */
data |= 0x0060;
break;
}
/* Write back advertisement */
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
}
/**
* et131x_setphy_normal - Set PHY for normal operation.
* @etdev: pointer to our private adapter structure
*
* Used by Power Management to force the PHY into 10 Base T half-duplex mode,
* when going to D3 in WOL mode. Also used during initialization to set the
* PHY for normal operation.
*/
void et131x_setphy_normal(struct et131x_adapter *etdev)
{
/* Make sure the PHY is powered up */
ET1310_PhyPowerDown(etdev, 0);
et131x_xcvr_init(etdev);
}
/**
* et131x_xcvr_init - Init the phy if we are setting it into force mode
* @etdev: pointer to our private adapter structure
*
*/
static void et131x_xcvr_init(struct et131x_adapter *etdev)
{
MI_IMR_t imr;
MI_ISR_t isr;
MI_LCR2_t lcr2;
/* Zero out the adapter structure variable representing BMSR */
etdev->Bmsr.value = 0;
MiRead(etdev, (u8) offsetof(MI_REGS_t, isr), &isr.value);
MiRead(etdev, (u8) offsetof(MI_REGS_t, imr), &imr.value);
/* Set the link status interrupt only. Bad behavior when link status
* and auto neg are set, we run into a nested interrupt problem
*/
imr.bits.int_en = 0x1;
imr.bits.link_status = 0x1;
imr.bits.autoneg_status = 0x1;
MiWrite(etdev, (u8) offsetof(MI_REGS_t, imr), imr.value);
/* Set the LED behavior such that LED 1 indicates speed (off =
* 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
* link and activity (on for link, blink off for activity).
*
* NOTE: Some customizations have been added here for specific
* vendors; The LED behavior is now determined by vendor data in the
* EEPROM. However, the above description is the default.
*/
if ((etdev->eepromData[1] & 0x4) == 0) {
MiRead(etdev, (u8) offsetof(MI_REGS_t, lcr2),
&lcr2.value);
if ((etdev->eepromData[1] & 0x8) == 0)
lcr2.bits.led_tx_rx = 0x3;
else
lcr2.bits.led_tx_rx = 0x4;
lcr2.bits.led_link = 0xa;
MiWrite(etdev, (u8) offsetof(MI_REGS_t, lcr2),
lcr2.value);
}
/* Determine if we need to go into a force mode and set it */
if (etdev->AiForceSpeed == 0 && etdev->AiForceDpx == 0) {
if (etdev->RegistryFlowControl == TxOnly ||
etdev->RegistryFlowControl == Both)
ET1310_PhyAccessMiBit(etdev,
TRUEPHY_BIT_SET, 4, 11, NULL);
else
ET1310_PhyAccessMiBit(etdev,
TRUEPHY_BIT_CLEAR, 4, 11, NULL);
if (etdev->RegistryFlowControl == Both)
ET1310_PhyAccessMiBit(etdev,
TRUEPHY_BIT_SET, 4, 10, NULL);
else
ET1310_PhyAccessMiBit(etdev,
TRUEPHY_BIT_CLEAR, 4, 10, NULL);
/* Set the phy to autonegotiation */
ET1310_PhyAutoNeg(etdev, true);
/* NOTE - Do we need this? */
ET1310_PhyAccessMiBit(etdev, TRUEPHY_BIT_SET, 0, 9, NULL);
return;
}
ET1310_PhyAutoNeg(etdev, false);
/* Set to the correct force mode. */
if (etdev->AiForceDpx != 1) {
if (etdev->RegistryFlowControl == TxOnly ||
etdev->RegistryFlowControl == Both)
ET1310_PhyAccessMiBit(etdev,
TRUEPHY_BIT_SET, 4, 11, NULL);
else
ET1310_PhyAccessMiBit(etdev,
TRUEPHY_BIT_CLEAR, 4, 11, NULL);
if (etdev->RegistryFlowControl == Both)
ET1310_PhyAccessMiBit(etdev,
TRUEPHY_BIT_SET, 4, 10, NULL);
else
ET1310_PhyAccessMiBit(etdev,
TRUEPHY_BIT_CLEAR, 4, 10, NULL);
} else {
ET1310_PhyAccessMiBit(etdev, TRUEPHY_BIT_CLEAR, 4, 10, NULL);
ET1310_PhyAccessMiBit(etdev, TRUEPHY_BIT_CLEAR, 4, 11, NULL);
}
ET1310_PhyPowerDown(etdev, 1);
switch (etdev->AiForceSpeed) {
case 10:
/* First we need to turn off all other advertisement */
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
if (etdev->AiForceDpx == 1) {
/* Set our advertise values accordingly */
ET1310_PhyAdvertise10BaseT(etdev,
TRUEPHY_ADV_DUPLEX_HALF);
} else if (etdev->AiForceDpx == 2) {
/* Set our advertise values accordingly */
ET1310_PhyAdvertise10BaseT(etdev,
TRUEPHY_ADV_DUPLEX_FULL);
} else {
/* Disable autoneg */
ET1310_PhyAutoNeg(etdev, false);
/* Disable rest of the advertisements */
ET1310_PhyAdvertise10BaseT(etdev,
TRUEPHY_ADV_DUPLEX_NONE);
/* Force 10 Mbps */
ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_10MBPS);
/* Force Full duplex */
ET1310_PhyDuplexMode(etdev, TRUEPHY_DUPLEX_FULL);
}
break;
case 100:
/* first we need to turn off all other advertisement */
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
if (etdev->AiForceDpx == 1) {
/* Set our advertise values accordingly */
ET1310_PhyAdvertise100BaseT(etdev,
TRUEPHY_ADV_DUPLEX_HALF);
/* Set speed */
ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_100MBPS);
} else if (etdev->AiForceDpx == 2) {
/* Set our advertise values accordingly */
ET1310_PhyAdvertise100BaseT(etdev,
TRUEPHY_ADV_DUPLEX_FULL);
} else {
/* Disable autoneg */
ET1310_PhyAutoNeg(etdev, false);
/* Disable other advertisement */
ET1310_PhyAdvertise100BaseT(etdev,
TRUEPHY_ADV_DUPLEX_NONE);
/* Force 100 Mbps */
ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_100MBPS);
/* Force Full duplex */
ET1310_PhyDuplexMode(etdev, TRUEPHY_DUPLEX_FULL);
}
break;
case 1000:
/* first we need to turn off all other advertisement */
ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
/* set our advertise values accordingly */
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_FULL);
break;
}
ET1310_PhyPowerDown(etdev, 0);
}
void et131x_Mii_check(struct et131x_adapter *etdev,
MI_BMSR_t bmsr, MI_BMSR_t bmsr_ints)
{
u8 link_status;
u32 autoneg_status;
u32 speed;
u32 duplex;
u32 mdi_mdix;
u32 masterslave;
u32 polarity;
unsigned long flags;
if (bmsr_ints.bits.link_status) {
if (bmsr.bits.link_status) {
etdev->PoMgmt.TransPhyComaModeOnBoot = 20;
/* Update our state variables and indicate the
* connected state
*/
spin_lock_irqsave(&etdev->Lock, flags);
etdev->MediaState = NETIF_STATUS_MEDIA_CONNECT;
etdev->Flags &= ~fMP_ADAPTER_LINK_DETECTION;
spin_unlock_irqrestore(&etdev->Lock, flags);
netif_carrier_on(etdev->netdev);
} else {
dev_warn(&etdev->pdev->dev,
"Link down - cable problem ?\n");
if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
/* NOTE - Is there a way to query this without
* TruePHY?
* && TRU_QueryCoreType(etdev->hTruePhy, 0) == EMI_TRUEPHY_A13O) {
*/
u16 Register18;
MiRead(etdev, 0x12, &Register18);
MiWrite(etdev, 0x12, Register18 | 0x4);
MiWrite(etdev, 0x10, Register18 | 0x8402);
MiWrite(etdev, 0x11, Register18 | 511);
MiWrite(etdev, 0x12, Register18);
}
/* For the first N seconds of life, we are in "link
* detection" When we are in this state, we should
* only report "connected". When the LinkDetection
* Timer expires, we can report disconnected (handled
* in the LinkDetectionDPC).
*/
if (!(etdev->Flags & fMP_ADAPTER_LINK_DETECTION) ||
(etdev->MediaState == NETIF_STATUS_MEDIA_DISCONNECT)) {
spin_lock_irqsave(&etdev->Lock, flags);
etdev->MediaState =
NETIF_STATUS_MEDIA_DISCONNECT;
spin_unlock_irqrestore(&etdev->Lock,
flags);
netif_carrier_off(etdev->netdev);
}
etdev->linkspeed = 0;
etdev->duplex_mode = 0;
/* Free the packets being actively sent & stopped */
et131x_free_busy_send_packets(etdev);
/* Re-initialize the send structures */
et131x_init_send(etdev);
/* Reset the RFD list and re-start RU */
et131x_reset_recv(etdev);
/*
* Bring the device back to the state it was during
* init prior to autonegotiation being complete. This
* way, when we get the auto-neg complete interrupt,
* we can complete init by calling ConfigMacREGS2.
*/
et131x_soft_reset(etdev);
/* Setup ET1310 as per the documentation */
et131x_adapter_setup(etdev);
/* Setup the PHY into coma mode until the cable is
* plugged back in
*/
if (etdev->RegistryPhyComa == 1)
EnablePhyComa(etdev);
}
}
if (bmsr_ints.bits.auto_neg_complete ||
(etdev->AiForceDpx == 3 && bmsr_ints.bits.link_status)) {
if (bmsr.bits.auto_neg_complete || etdev->AiForceDpx == 3) {
ET1310_PhyLinkStatus(etdev,
&link_status, &autoneg_status,
&speed, &duplex, &mdi_mdix,
&masterslave, &polarity);
etdev->linkspeed = speed;
etdev->duplex_mode = duplex;
etdev->PoMgmt.TransPhyComaModeOnBoot = 20;
if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
/*
* NOTE - Is there a way to query this without
* TruePHY?
* && TRU_QueryCoreType(etdev->hTruePhy, 0)== EMI_TRUEPHY_A13O) {
*/
u16 Register18;
MiRead(etdev, 0x12, &Register18);
MiWrite(etdev, 0x12, Register18 | 0x4);
MiWrite(etdev, 0x10, Register18 | 0x8402);
MiWrite(etdev, 0x11, Register18 | 511);
MiWrite(etdev, 0x12, Register18);
}
ConfigFlowControl(etdev);
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS &&
etdev->RegistryJumboPacket > 2048)
ET1310_PhyAndOrReg(etdev, 0x16, 0xcfff,
0x2000);
SetRxDmaTimer(etdev);
ConfigMACRegs2(etdev);
}
}
}
/*
* The routines which follow provide low-level access to the PHY, and are used
* primarily by the routines above (although there are a few places elsewhere
* in the driver where this level of access is required).
*/
static const u16 ConfigPhy[25][2] = {
/* Reg Value Register */
/* Addr */
{0x880B, 0x0926}, /* AfeIfCreg4B1000Msbs */
{0x880C, 0x0926}, /* AfeIfCreg4B100Msbs */
{0x880D, 0x0926}, /* AfeIfCreg4B10Msbs */
{0x880E, 0xB4D3}, /* AfeIfCreg4B1000Lsbs */
{0x880F, 0xB4D3}, /* AfeIfCreg4B100Lsbs */
{0x8810, 0xB4D3}, /* AfeIfCreg4B10Lsbs */
{0x8805, 0xB03E}, /* AfeIfCreg3B1000Msbs */
{0x8806, 0xB03E}, /* AfeIfCreg3B100Msbs */
{0x8807, 0xFF00}, /* AfeIfCreg3B10Msbs */
{0x8808, 0xE090}, /* AfeIfCreg3B1000Lsbs */
{0x8809, 0xE110}, /* AfeIfCreg3B100Lsbs */
{0x880A, 0x0000}, /* AfeIfCreg3B10Lsbs */
{0x300D, 1}, /* DisableNorm */
{0x280C, 0x0180}, /* LinkHoldEnd */
{0x1C21, 0x0002}, /* AlphaM */
{0x3821, 6}, /* FfeLkgTx0 */
{0x381D, 1}, /* FfeLkg1g4 */
{0x381E, 1}, /* FfeLkg1g5 */
{0x381F, 1}, /* FfeLkg1g6 */
{0x3820, 1}, /* FfeLkg1g7 */
{0x8402, 0x01F0}, /* Btinact */
{0x800E, 20}, /* LftrainTime */
{0x800F, 24}, /* DvguardTime */
{0x8010, 46}, /* IdlguardTime */
{0, 0}
};
/* condensed version of the phy initialization routine */
void ET1310_PhyInit(struct et131x_adapter *etdev)
{
u16 data, index;
if (etdev == NULL)
return;
/* get the identity (again ?) */
MiRead(etdev, PHY_ID_1, &data);
MiRead(etdev, PHY_ID_2, &data);
/* what does this do/achieve ? */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
/* read modem register 0402, should I do something with the return
data ? */
MiWrite(etdev, PHY_INDEX_REG, 0x0402);
MiRead(etdev, PHY_DATA_REG, &data);
/* what does this do/achieve ? */
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
/* get the identity (again ?) */
MiRead(etdev, PHY_ID_1, &data);
MiRead(etdev, PHY_ID_2, &data);
/* what does this achieve ? */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
/* read modem register 0402, should I do something with
the return data? */
MiWrite(etdev, PHY_INDEX_REG, 0x0402);
MiRead(etdev, PHY_DATA_REG, &data);
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
/* what does this achieve (should return 0x1040) */
MiRead(etdev, PHY_CONTROL, &data);
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
MiWrite(etdev, PHY_CONTROL, 0x1840);
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0007);
/* here the writing of the array starts.... */
index = 0;
while (ConfigPhy[index][0] != 0x0000) {
/* write value */
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
MiWrite(etdev, PHY_DATA_REG, ConfigPhy[index][1]);
/* read it back */
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
MiRead(etdev, PHY_DATA_REG, &data);
/* do a check on the value read back ? */
index++;
}
/* here the writing of the array ends... */
MiRead(etdev, PHY_CONTROL, &data); /* 0x1840 */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data);/* should read 0007 */
MiWrite(etdev, PHY_CONTROL, 0x1040);
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
}