blob: cf4f241f210a69109257cdd242563c36cf258d0b [file] [log] [blame]
/*
comedi/drivers/ni_atmio16d.c
Hardware driver for National Instruments AT-MIO16D board
Copyright (C) 2000 Chris R. Baugher <baugher@enteract.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Driver: ni_atmio16d
Description: National Instruments AT-MIO-16D
Author: Chris R. Baugher <baugher@enteract.com>
Status: unknown
Devices: [National Instruments] AT-MIO-16 (atmio16), AT-MIO-16D (atmio16d)
*/
/*
* I must give credit here to Michal Dobes <dobes@tesnet.cz> who
* wrote the driver for Advantec's pcl812 boards. I used the interrupt
* handling code from his driver as an example for this one.
*
* Chris Baugher
* 5/1/2000
*
*/
#include <linux/interrupt.h>
#include "../comedidev.h"
#include <linux/ioport.h>
#include "8255.h"
/* Configuration and Status Registers */
#define COM_REG_1 0x00 /* wo 16 */
#define STAT_REG 0x00 /* ro 16 */
#define COM_REG_2 0x02 /* wo 16 */
/* Event Strobe Registers */
#define START_CONVERT_REG 0x08 /* wo 16 */
#define START_DAQ_REG 0x0A /* wo 16 */
#define AD_CLEAR_REG 0x0C /* wo 16 */
#define EXT_STROBE_REG 0x0E /* wo 16 */
/* Analog Output Registers */
#define DAC0_REG 0x10 /* wo 16 */
#define DAC1_REG 0x12 /* wo 16 */
#define INT2CLR_REG 0x14 /* wo 16 */
/* Analog Input Registers */
#define MUX_CNTR_REG 0x04 /* wo 16 */
#define MUX_GAIN_REG 0x06 /* wo 16 */
#define AD_FIFO_REG 0x16 /* ro 16 */
#define DMA_TC_INT_CLR_REG 0x16 /* wo 16 */
/* AM9513A Counter/Timer Registers */
#define AM9513A_DATA_REG 0x18 /* rw 16 */
#define AM9513A_COM_REG 0x1A /* wo 16 */
#define AM9513A_STAT_REG 0x1A /* ro 16 */
/* MIO-16 Digital I/O Registers */
#define MIO_16_DIG_IN_REG 0x1C /* ro 16 */
#define MIO_16_DIG_OUT_REG 0x1C /* wo 16 */
/* RTSI Switch Registers */
#define RTSI_SW_SHIFT_REG 0x1E /* wo 8 */
#define RTSI_SW_STROBE_REG 0x1F /* wo 8 */
/* DIO-24 Registers */
#define DIO_24_PORTA_REG 0x00 /* rw 8 */
#define DIO_24_PORTB_REG 0x01 /* rw 8 */
#define DIO_24_PORTC_REG 0x02 /* rw 8 */
#define DIO_24_CNFG_REG 0x03 /* wo 8 */
/* Command Register bits */
#define COMREG1_2SCADC 0x0001
#define COMREG1_1632CNT 0x0002
#define COMREG1_SCANEN 0x0008
#define COMREG1_DAQEN 0x0010
#define COMREG1_DMAEN 0x0020
#define COMREG1_CONVINTEN 0x0080
#define COMREG2_SCN2 0x0010
#define COMREG2_INTEN 0x0080
#define COMREG2_DOUTEN0 0x0100
#define COMREG2_DOUTEN1 0x0200
/* Status Register bits */
#define STAT_AD_OVERRUN 0x0100
#define STAT_AD_OVERFLOW 0x0200
#define STAT_AD_DAQPROG 0x0800
#define STAT_AD_CONVAVAIL 0x2000
#define STAT_AD_DAQSTOPINT 0x4000
/* AM9513A Counter/Timer defines */
#define CLOCK_1_MHZ 0x8B25
#define CLOCK_100_KHZ 0x8C25
#define CLOCK_10_KHZ 0x8D25
#define CLOCK_1_KHZ 0x8E25
#define CLOCK_100_HZ 0x8F25
/* Other miscellaneous defines */
#define ATMIO16D_SIZE 32 /* bus address range */
#define devpriv ((struct atmio16d_private *)dev->private)
#define ATMIO16D_TIMEOUT 10
struct atmio16_board_t {
const char *name;
int has_8255;
};
static const struct atmio16_board_t atmio16_boards[] = {
{
.name = "atmio16",
.has_8255 = 0,
},
{
.name = "atmio16d",
.has_8255 = 1,
},
};
#define n_atmio16_boards ARRAY_SIZE(atmio16_boards)
#define boardtype ((const struct atmio16_board_t *)dev->board_ptr)
/* function prototypes */
static int atmio16d_attach(struct comedi_device *dev,
struct comedi_devconfig *it);
static int atmio16d_detach(struct comedi_device *dev);
static irqreturn_t atmio16d_interrupt(int irq, void *d);
static int atmio16d_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd);
static int atmio16d_ai_cmd(struct comedi_device *dev,
struct comedi_subdevice *s);
static int atmio16d_ai_cancel(struct comedi_device *dev,
struct comedi_subdevice *s);
static void reset_counters(struct comedi_device *dev);
static void reset_atmio16d(struct comedi_device *dev);
/* main driver struct */
static struct comedi_driver driver_atmio16d = {
.driver_name = "atmio16",
.module = THIS_MODULE,
.attach = atmio16d_attach,
.detach = atmio16d_detach,
.board_name = &atmio16_boards[0].name,
.num_names = n_atmio16_boards,
.offset = sizeof(struct atmio16_board_t),
};
COMEDI_INITCLEANUP(driver_atmio16d);
/* range structs */
static const struct comedi_lrange range_atmio16d_ai_10_bipolar = { 4, {
BIP_RANGE
(10),
BIP_RANGE
(1),
BIP_RANGE
(0.1),
BIP_RANGE
(0.02)
}
};
static const struct comedi_lrange range_atmio16d_ai_5_bipolar = { 4, {
BIP_RANGE
(5),
BIP_RANGE
(0.5),
BIP_RANGE
(0.05),
BIP_RANGE
(0.01)
}
};
static const struct comedi_lrange range_atmio16d_ai_unipolar = { 4, {
UNI_RANGE
(10),
UNI_RANGE
(1),
UNI_RANGE
(0.1),
UNI_RANGE
(0.02)
}
};
/* private data struct */
struct atmio16d_private {
enum { adc_diff, adc_singleended } adc_mux;
enum { adc_bipolar10, adc_bipolar5, adc_unipolar10 } adc_range;
enum { adc_2comp, adc_straight } adc_coding;
enum { dac_bipolar, dac_unipolar } dac0_range, dac1_range;
enum { dac_internal, dac_external } dac0_reference, dac1_reference;
enum { dac_2comp, dac_straight } dac0_coding, dac1_coding;
const struct comedi_lrange *ao_range_type_list[2];
unsigned int ao_readback[2];
unsigned int com_reg_1_state; /* current state of command register 1 */
unsigned int com_reg_2_state; /* current state of command register 2 */
};
static void reset_counters(struct comedi_device *dev)
{
/* Counter 2 */
outw(0xFFC2, dev->iobase + AM9513A_COM_REG);
outw(0xFF02, dev->iobase + AM9513A_COM_REG);
outw(0x4, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0A, dev->iobase + AM9513A_COM_REG);
outw(0x3, dev->iobase + AM9513A_DATA_REG);
outw(0xFF42, dev->iobase + AM9513A_COM_REG);
outw(0xFF42, dev->iobase + AM9513A_COM_REG);
/* Counter 3 */
outw(0xFFC4, dev->iobase + AM9513A_COM_REG);
outw(0xFF03, dev->iobase + AM9513A_COM_REG);
outw(0x4, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0B, dev->iobase + AM9513A_COM_REG);
outw(0x3, dev->iobase + AM9513A_DATA_REG);
outw(0xFF44, dev->iobase + AM9513A_COM_REG);
outw(0xFF44, dev->iobase + AM9513A_COM_REG);
/* Counter 4 */
outw(0xFFC8, dev->iobase + AM9513A_COM_REG);
outw(0xFF04, dev->iobase + AM9513A_COM_REG);
outw(0x4, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0C, dev->iobase + AM9513A_COM_REG);
outw(0x3, dev->iobase + AM9513A_DATA_REG);
outw(0xFF48, dev->iobase + AM9513A_COM_REG);
outw(0xFF48, dev->iobase + AM9513A_COM_REG);
/* Counter 5 */
outw(0xFFD0, dev->iobase + AM9513A_COM_REG);
outw(0xFF05, dev->iobase + AM9513A_COM_REG);
outw(0x4, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0D, dev->iobase + AM9513A_COM_REG);
outw(0x3, dev->iobase + AM9513A_DATA_REG);
outw(0xFF50, dev->iobase + AM9513A_COM_REG);
outw(0xFF50, dev->iobase + AM9513A_COM_REG);
outw(0, dev->iobase + AD_CLEAR_REG);
}
static void reset_atmio16d(struct comedi_device *dev)
{
int i;
/* now we need to initialize the board */
outw(0, dev->iobase + COM_REG_1);
outw(0, dev->iobase + COM_REG_2);
outw(0, dev->iobase + MUX_GAIN_REG);
/* init AM9513A timer */
outw(0xFFFF, dev->iobase + AM9513A_COM_REG);
outw(0xFFEF, dev->iobase + AM9513A_COM_REG);
outw(0xFF17, dev->iobase + AM9513A_COM_REG);
outw(0xF000, dev->iobase + AM9513A_DATA_REG);
for (i = 1; i <= 5; ++i) {
outw(0xFF00 + i, dev->iobase + AM9513A_COM_REG);
outw(0x0004, dev->iobase + AM9513A_DATA_REG);
outw(0xFF08 + i, dev->iobase + AM9513A_COM_REG);
outw(0x3, dev->iobase + AM9513A_DATA_REG);
}
outw(0xFF5F, dev->iobase + AM9513A_COM_REG);
/* timer init done */
outw(0, dev->iobase + AD_CLEAR_REG);
outw(0, dev->iobase + INT2CLR_REG);
/* select straight binary mode for Analog Input */
devpriv->com_reg_1_state |= 1;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
devpriv->adc_coding = adc_straight;
/* zero the analog outputs */
outw(2048, dev->iobase + DAC0_REG);
outw(2048, dev->iobase + DAC1_REG);
}
static irqreturn_t atmio16d_interrupt(int irq, void *d)
{
struct comedi_device *dev = d;
struct comedi_subdevice *s = dev->subdevices + 0;
#ifdef DEBUG1
printk(KERN_DEBUG "atmio16d_interrupt!\n");
#endif
comedi_buf_put(s->async, inw(dev->iobase + AD_FIFO_REG));
comedi_event(dev, s);
return IRQ_HANDLED;
}
static int atmio16d_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
int err = 0, tmp;
#ifdef DEBUG1
printk(KERN_DEBUG "atmio16d_ai_cmdtest\n");
#endif
/* make sure triggers are valid */
tmp = cmd->start_src;
cmd->start_src &= TRIG_NOW;
if (!cmd->start_src || tmp != cmd->start_src)
err++;
tmp = cmd->scan_begin_src;
cmd->scan_begin_src &= TRIG_FOLLOW | TRIG_TIMER;
if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
err++;
tmp = cmd->convert_src;
cmd->convert_src &= TRIG_TIMER;
if (!cmd->convert_src || tmp != cmd->convert_src)
err++;
tmp = cmd->scan_end_src;
cmd->scan_end_src &= TRIG_COUNT;
if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
err++;
tmp = cmd->stop_src;
cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
if (!cmd->stop_src || tmp != cmd->stop_src)
err++;
if (err)
return 1;
/* step 2: make sure trigger sources are unique & mutually compatible */
/* note that mutual compatibility is not an issue here */
if (cmd->scan_begin_src != TRIG_FOLLOW &&
cmd->scan_begin_src != TRIG_EXT &&
cmd->scan_begin_src != TRIG_TIMER)
err++;
if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
err++;
if (err)
return 2;
/* step 3: make sure arguments are trivially compatible */
if (cmd->start_arg != 0) {
cmd->start_arg = 0;
err++;
}
if (cmd->scan_begin_src == TRIG_FOLLOW) {
/* internal trigger */
if (cmd->scan_begin_arg != 0) {
cmd->scan_begin_arg = 0;
err++;
}
} else {
#if 0
/* external trigger */
/* should be level/edge, hi/lo specification here */
if (cmd->scan_begin_arg != 0) {
cmd->scan_begin_arg = 0;
err++;
}
#endif
}
if (cmd->convert_arg < 10000) {
cmd->convert_arg = 10000;
err++;
}
#if 0
if (cmd->convert_arg > SLOWEST_TIMER) {
cmd->convert_arg = SLOWEST_TIMER;
err++;
}
#endif
if (cmd->scan_end_arg != cmd->chanlist_len) {
cmd->scan_end_arg = cmd->chanlist_len;
err++;
}
if (cmd->stop_src == TRIG_COUNT) {
/* any count is allowed */
} else {
/* TRIG_NONE */
if (cmd->stop_arg != 0) {
cmd->stop_arg = 0;
err++;
}
}
if (err)
return 3;
return 0;
}
static int atmio16d_ai_cmd(struct comedi_device *dev,
struct comedi_subdevice *s)
{
struct comedi_cmd *cmd = &s->async->cmd;
unsigned int timer, base_clock;
unsigned int sample_count, tmp, chan, gain;
int i;
#ifdef DEBUG1
printk(KERN_DEBUG "atmio16d_ai_cmd\n");
#endif
/* This is slowly becoming a working command interface. *
* It is still uber-experimental */
reset_counters(dev);
s->async->cur_chan = 0;
/* check if scanning multiple channels */
if (cmd->chanlist_len < 2) {
devpriv->com_reg_1_state &= ~COMREG1_SCANEN;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
} else {
devpriv->com_reg_1_state |= COMREG1_SCANEN;
devpriv->com_reg_2_state |= COMREG2_SCN2;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
outw(devpriv->com_reg_2_state, dev->iobase + COM_REG_2);
}
/* Setup the Mux-Gain Counter */
for (i = 0; i < cmd->chanlist_len; ++i) {
chan = CR_CHAN(cmd->chanlist[i]);
gain = CR_RANGE(cmd->chanlist[i]);
outw(i, dev->iobase + MUX_CNTR_REG);
tmp = chan | (gain << 6);
if (i == cmd->scan_end_arg - 1)
tmp |= 0x0010; /* set LASTONE bit */
outw(tmp, dev->iobase + MUX_GAIN_REG);
}
/* Now program the sample interval timer */
/* Figure out which clock to use then get an
* appropriate timer value */
if (cmd->convert_arg < 65536000) {
base_clock = CLOCK_1_MHZ;
timer = cmd->convert_arg / 1000;
} else if (cmd->convert_arg < 655360000) {
base_clock = CLOCK_100_KHZ;
timer = cmd->convert_arg / 10000;
} else if (cmd->convert_arg <= 0xffffffff /* 6553600000 */) {
base_clock = CLOCK_10_KHZ;
timer = cmd->convert_arg / 100000;
} else if (cmd->convert_arg <= 0xffffffff /* 65536000000 */) {
base_clock = CLOCK_1_KHZ;
timer = cmd->convert_arg / 1000000;
}
outw(0xFF03, dev->iobase + AM9513A_COM_REG);
outw(base_clock, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0B, dev->iobase + AM9513A_COM_REG);
outw(0x2, dev->iobase + AM9513A_DATA_REG);
outw(0xFF44, dev->iobase + AM9513A_COM_REG);
outw(0xFFF3, dev->iobase + AM9513A_COM_REG);
outw(timer, dev->iobase + AM9513A_DATA_REG);
outw(0xFF24, dev->iobase + AM9513A_COM_REG);
/* Now figure out how many samples to get */
/* and program the sample counter */
sample_count = cmd->stop_arg * cmd->scan_end_arg;
outw(0xFF04, dev->iobase + AM9513A_COM_REG);
outw(0x1025, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0C, dev->iobase + AM9513A_COM_REG);
if (sample_count < 65536) {
/* use only Counter 4 */
outw(sample_count, dev->iobase + AM9513A_DATA_REG);
outw(0xFF48, dev->iobase + AM9513A_COM_REG);
outw(0xFFF4, dev->iobase + AM9513A_COM_REG);
outw(0xFF28, dev->iobase + AM9513A_COM_REG);
devpriv->com_reg_1_state &= ~COMREG1_1632CNT;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
} else {
/* Counter 4 and 5 are needed */
tmp = sample_count & 0xFFFF;
if (tmp)
outw(tmp - 1, dev->iobase + AM9513A_DATA_REG);
else
outw(0xFFFF, dev->iobase + AM9513A_DATA_REG);
outw(0xFF48, dev->iobase + AM9513A_COM_REG);
outw(0, dev->iobase + AM9513A_DATA_REG);
outw(0xFF28, dev->iobase + AM9513A_COM_REG);
outw(0xFF05, dev->iobase + AM9513A_COM_REG);
outw(0x25, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0D, dev->iobase + AM9513A_COM_REG);
tmp = sample_count & 0xFFFF;
if ((tmp == 0) || (tmp == 1)) {
outw((sample_count >> 16) & 0xFFFF,
dev->iobase + AM9513A_DATA_REG);
} else {
outw(((sample_count >> 16) & 0xFFFF) + 1,
dev->iobase + AM9513A_DATA_REG);
}
outw(0xFF70, dev->iobase + AM9513A_COM_REG);
devpriv->com_reg_1_state |= COMREG1_1632CNT;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
}
/* Program the scan interval timer ONLY IF SCANNING IS ENABLED */
/* Figure out which clock to use then get an
* appropriate timer value */
if (cmd->chanlist_len > 1) {
if (cmd->scan_begin_arg < 65536000) {
base_clock = CLOCK_1_MHZ;
timer = cmd->scan_begin_arg / 1000;
} else if (cmd->scan_begin_arg < 655360000) {
base_clock = CLOCK_100_KHZ;
timer = cmd->scan_begin_arg / 10000;
} else if (cmd->scan_begin_arg < 0xffffffff /* 6553600000 */) {
base_clock = CLOCK_10_KHZ;
timer = cmd->scan_begin_arg / 100000;
} else if (cmd->scan_begin_arg < 0xffffffff /* 65536000000 */) {
base_clock = CLOCK_1_KHZ;
timer = cmd->scan_begin_arg / 1000000;
}
outw(0xFF02, dev->iobase + AM9513A_COM_REG);
outw(base_clock, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0A, dev->iobase + AM9513A_COM_REG);
outw(0x2, dev->iobase + AM9513A_DATA_REG);
outw(0xFF42, dev->iobase + AM9513A_COM_REG);
outw(0xFFF2, dev->iobase + AM9513A_COM_REG);
outw(timer, dev->iobase + AM9513A_DATA_REG);
outw(0xFF22, dev->iobase + AM9513A_COM_REG);
}
/* Clear the A/D FIFO and reset the MUX counter */
outw(0, dev->iobase + AD_CLEAR_REG);
outw(0, dev->iobase + MUX_CNTR_REG);
outw(0, dev->iobase + INT2CLR_REG);
/* enable this acquisition operation */
devpriv->com_reg_1_state |= COMREG1_DAQEN;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
/* enable interrupts for conversion completion */
devpriv->com_reg_1_state |= COMREG1_CONVINTEN;
devpriv->com_reg_2_state |= COMREG2_INTEN;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
outw(devpriv->com_reg_2_state, dev->iobase + COM_REG_2);
/* apply a trigger. this starts the counters! */
outw(0, dev->iobase + START_DAQ_REG);
return 0;
}
/* This will cancel a running acquisition operation */
static int atmio16d_ai_cancel(struct comedi_device *dev,
struct comedi_subdevice *s)
{
reset_atmio16d(dev);
return 0;
}
/* Mode 0 is used to get a single conversion on demand */
static int atmio16d_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int i, t;
int chan;
int gain;
int status;
#ifdef DEBUG1
printk(KERN_DEBUG "atmio16d_ai_insn_read\n");
#endif
chan = CR_CHAN(insn->chanspec);
gain = CR_RANGE(insn->chanspec);
/* reset the Analog input circuitry */
/* outw( 0, dev->iobase+AD_CLEAR_REG ); */
/* reset the Analog Input MUX Counter to 0 */
/* outw( 0, dev->iobase+MUX_CNTR_REG ); */
/* set the Input MUX gain */
outw(chan | (gain << 6), dev->iobase + MUX_GAIN_REG);
for (i = 0; i < insn->n; i++) {
/* start the conversion */
outw(0, dev->iobase + START_CONVERT_REG);
/* wait for it to finish */
for (t = 0; t < ATMIO16D_TIMEOUT; t++) {
/* check conversion status */
status = inw(dev->iobase + STAT_REG);
#ifdef DEBUG1
printk(KERN_DEBUG "status=%x\n", status);
#endif
if (status & STAT_AD_CONVAVAIL) {
/* read the data now */
data[i] = inw(dev->iobase + AD_FIFO_REG);
/* change to two's complement if need be */
if (devpriv->adc_coding == adc_2comp)
data[i] ^= 0x800;
break;
}
if (status & STAT_AD_OVERFLOW) {
printk(KERN_INFO "atmio16d: a/d FIFO overflow\n");
outw(0, dev->iobase + AD_CLEAR_REG);
return -ETIME;
}
}
/* end waiting, now check if it timed out */
if (t == ATMIO16D_TIMEOUT) {
printk(KERN_INFO "atmio16d: timeout\n");
return -ETIME;
}
}
return i;
}
static int atmio16d_ao_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int i;
#ifdef DEBUG1
printk(KERN_DEBUG "atmio16d_ao_insn_read\n");
#endif
for (i = 0; i < insn->n; i++)
data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
return i;
}
static int atmio16d_ao_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int i;
int chan;
int d;
#ifdef DEBUG1
printk(KERN_DEBUG "atmio16d_ao_insn_write\n");
#endif
chan = CR_CHAN(insn->chanspec);
for (i = 0; i < insn->n; i++) {
d = data[i];
switch (chan) {
case 0:
if (devpriv->dac0_coding == dac_2comp)
d ^= 0x800;
outw(d, dev->iobase + DAC0_REG);
break;
case 1:
if (devpriv->dac1_coding == dac_2comp)
d ^= 0x800;
outw(d, dev->iobase + DAC1_REG);
break;
default:
return -EINVAL;
}
devpriv->ao_readback[chan] = data[i];
}
return i;
}
static int atmio16d_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
if (insn->n != 2)
return -EINVAL;
if (data[0]) {
s->state &= ~data[0];
s->state |= (data[0] | data[1]);
outw(s->state, dev->iobase + MIO_16_DIG_OUT_REG);
}
data[1] = inw(dev->iobase + MIO_16_DIG_IN_REG);
return 2;
}
static int atmio16d_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
int i;
int mask;
for (i = 0; i < insn->n; i++) {
mask = (CR_CHAN(insn->chanspec) < 4) ? 0x0f : 0xf0;
s->io_bits &= ~mask;
if (data[i])
s->io_bits |= mask;
}
devpriv->com_reg_2_state &= ~(COMREG2_DOUTEN0 | COMREG2_DOUTEN1);
if (s->io_bits & 0x0f)
devpriv->com_reg_2_state |= COMREG2_DOUTEN0;
if (s->io_bits & 0xf0)
devpriv->com_reg_2_state |= COMREG2_DOUTEN1;
outw(devpriv->com_reg_2_state, dev->iobase + COM_REG_2);
return i;
}
/*
options[0] - I/O port
options[1] - MIO irq
0 == no irq
N == irq N {3,4,5,6,7,9,10,11,12,14,15}
options[2] - DIO irq
0 == no irq
N == irq N {3,4,5,6,7,9}
options[3] - DMA1 channel
0 == no DMA
N == DMA N {5,6,7}
options[4] - DMA2 channel
0 == no DMA
N == DMA N {5,6,7}
options[5] - a/d mux
0=differential, 1=single
options[6] - a/d range
0=bipolar10, 1=bipolar5, 2=unipolar10
options[7] - dac0 range
0=bipolar, 1=unipolar
options[8] - dac0 reference
0=internal, 1=external
options[9] - dac0 coding
0=2's comp, 1=straight binary
options[10] - dac1 range
options[11] - dac1 reference
options[12] - dac1 coding
*/
static int atmio16d_attach(struct comedi_device *dev,
struct comedi_devconfig *it)
{
unsigned int irq;
unsigned long iobase;
int ret;
struct comedi_subdevice *s;
/* make sure the address range is free and allocate it */
iobase = it->options[0];
printk(KERN_INFO "comedi%d: atmio16d: 0x%04lx ", dev->minor, iobase);
if (!request_region(iobase, ATMIO16D_SIZE, "ni_atmio16d")) {
printk("I/O port conflict\n");
return -EIO;
}
dev->iobase = iobase;
/* board name */
dev->board_name = boardtype->name;
ret = alloc_subdevices(dev, 4);
if (ret < 0)
return ret;
ret = alloc_private(dev, sizeof(struct atmio16d_private));
if (ret < 0)
return ret;
/* reset the atmio16d hardware */
reset_atmio16d(dev);
/* check if our interrupt is available and get it */
irq = it->options[1];
if (irq) {
ret = request_irq(irq, atmio16d_interrupt, 0, "atmio16d", dev);
if (ret < 0) {
printk(KERN_INFO "failed to allocate irq %u\n", irq);
return ret;
}
dev->irq = irq;
printk(KERN_INFO "( irq = %u )\n", irq);
} else {
printk(KERN_INFO "( no irq )");
}
/* set device options */
devpriv->adc_mux = it->options[5];
devpriv->adc_range = it->options[6];
devpriv->dac0_range = it->options[7];
devpriv->dac0_reference = it->options[8];
devpriv->dac0_coding = it->options[9];
devpriv->dac1_range = it->options[10];
devpriv->dac1_reference = it->options[11];
devpriv->dac1_coding = it->options[12];
/* setup sub-devices */
s = dev->subdevices + 0;
dev->read_subdev = s;
/* ai subdevice */
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_CMD_READ;
s->n_chan = (devpriv->adc_mux ? 16 : 8);
s->len_chanlist = 16;
s->insn_read = atmio16d_ai_insn_read;
s->do_cmdtest = atmio16d_ai_cmdtest;
s->do_cmd = atmio16d_ai_cmd;
s->cancel = atmio16d_ai_cancel;
s->maxdata = 0xfff; /* 4095 decimal */
switch (devpriv->adc_range) {
case adc_bipolar10:
s->range_table = &range_atmio16d_ai_10_bipolar;
break;
case adc_bipolar5:
s->range_table = &range_atmio16d_ai_5_bipolar;
break;
case adc_unipolar10:
s->range_table = &range_atmio16d_ai_unipolar;
break;
}
/* ao subdevice */
s++;
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 2;
s->insn_read = atmio16d_ao_insn_read;
s->insn_write = atmio16d_ao_insn_write;
s->maxdata = 0xfff; /* 4095 decimal */
s->range_table_list = devpriv->ao_range_type_list;
switch (devpriv->dac0_range) {
case dac_bipolar:
devpriv->ao_range_type_list[0] = &range_bipolar10;
break;
case dac_unipolar:
devpriv->ao_range_type_list[0] = &range_unipolar10;
break;
}
switch (devpriv->dac1_range) {
case dac_bipolar:
devpriv->ao_range_type_list[1] = &range_bipolar10;
break;
case dac_unipolar:
devpriv->ao_range_type_list[1] = &range_unipolar10;
break;
}
/* Digital I/O */
s++;
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 8;
s->insn_bits = atmio16d_dio_insn_bits;
s->insn_config = atmio16d_dio_insn_config;
s->maxdata = 1;
s->range_table = &range_digital;
/* 8255 subdevice */
s++;
if (boardtype->has_8255)
subdev_8255_init(dev, s, NULL, dev->iobase);
else
s->type = COMEDI_SUBD_UNUSED;
/* don't yet know how to deal with counter/timers */
#if 0
s++;
/* do */
s->type = COMEDI_SUBD_TIMER;
s->n_chan = 0;
s->maxdata = 0
#endif
printk("\n");
return 0;
}
static int atmio16d_detach(struct comedi_device *dev)
{
printk(KERN_INFO "comedi%d: atmio16d: remove\n", dev->minor);
if (dev->subdevices && boardtype->has_8255)
subdev_8255_cleanup(dev, dev->subdevices + 3);
if (dev->irq)
free_irq(dev->irq, dev);
reset_atmio16d(dev);
if (dev->iobase)
release_region(dev->iobase, ATMIO16D_SIZE);
return 0;
}