blob: de5e82fec8781dd5d43416d6a58fdf63839fe2d2 [file] [log] [blame]
/*
comedi/drivers/das1800.c
Driver for Keitley das1700/das1800 series boards
Copyright (C) 2000 Frank Mori Hess <fmhess@users.sourceforge.net>
COMEDI - Linux Control and Measurement Device Interface
Copyright (C) 2000 David A. Schleef <ds@schleef.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
************************************************************************
*/
/*
Driver: das1800
Description: Keithley Metrabyte DAS1800 (& compatibles)
Author: Frank Mori Hess <fmhess@users.sourceforge.net>
Devices: [Keithley Metrabyte] DAS-1701ST (das-1701st),
DAS-1701ST-DA (das-1701st-da), DAS-1701/AO (das-1701ao),
DAS-1702ST (das-1702st), DAS-1702ST-DA (das-1702st-da),
DAS-1702HR (das-1702hr), DAS-1702HR-DA (das-1702hr-da),
DAS-1702/AO (das-1702ao), DAS-1801ST (das-1801st),
DAS-1801ST-DA (das-1801st-da), DAS-1801HC (das-1801hc),
DAS-1801AO (das-1801ao), DAS-1802ST (das-1802st),
DAS-1802ST-DA (das-1802st-da), DAS-1802HR (das-1802hr),
DAS-1802HR-DA (das-1802hr-da), DAS-1802HC (das-1802hc),
DAS-1802AO (das-1802ao)
Status: works
The waveform analog output on the 'ao' cards is not supported.
If you need it, send me (Frank Hess) an email.
Configuration options:
[0] - I/O port base address
[1] - IRQ (optional, required for timed or externally triggered conversions)
[2] - DMA0 (optional, requires irq)
[3] - DMA1 (optional, requires irq and dma0)
*/
/*
This driver supports the following Keithley boards:
das-1701st
das-1701st-da
das-1701ao
das-1702st
das-1702st-da
das-1702hr
das-1702hr-da
das-1702ao
das-1801st
das-1801st-da
das-1801hc
das-1801ao
das-1802st
das-1802st-da
das-1802hr
das-1802hr-da
das-1802hc
das-1802ao
Options:
[0] - base io address
[1] - irq (optional, required for timed or externally triggered conversions)
[2] - dma0 (optional, requires irq)
[3] - dma1 (optional, requires irq and dma0)
irq can be omitted, although the cmd interface will not work without it.
analog input cmd triggers supported:
start_src: TRIG_NOW | TRIG_EXT
scan_begin_src: TRIG_FOLLOW | TRIG_TIMER | TRIG_EXT
scan_end_src: TRIG_COUNT
convert_src: TRIG_TIMER | TRIG_EXT (TRIG_EXT requires scan_begin_src == TRIG_FOLLOW)
stop_src: TRIG_COUNT | TRIG_EXT | TRIG_NONE
scan_begin_src triggers TRIG_TIMER and TRIG_EXT use the card's
'burst mode' which limits the valid conversion time to 64 microseconds
(convert_arg <= 64000). This limitation does not apply if scan_begin_src
is TRIG_FOLLOW.
NOTES:
Only the DAS-1801ST has been tested by me.
Unipolar and bipolar ranges cannot be mixed in the channel/gain list.
TODO:
Make it automatically allocate irq and dma channels if they are not specified
Add support for analog out on 'ao' cards
read insn for analog out
*/
#include <linux/interrupt.h>
#include <linux/slab.h>
#include "../comedidev.h"
#include <linux/ioport.h>
#include <asm/dma.h>
#include "8253.h"
#include "comedi_fc.h"
/* misc. defines */
#define DAS1800_SIZE 16 /* uses 16 io addresses */
#define FIFO_SIZE 1024 /* 1024 sample fifo */
#define TIMER_BASE 200 /* 5 Mhz master clock */
#define UNIPOLAR 0x4 /* bit that determines whether input range is uni/bipolar */
#define DMA_BUF_SIZE 0x1ff00 /* size in bytes of dma buffers */
/* Registers for the das1800 */
#define DAS1800_FIFO 0x0
#define DAS1800_QRAM 0x0
#define DAS1800_DAC 0x0
#define DAS1800_SELECT 0x2
#define ADC 0x0
#define QRAM 0x1
#define DAC(a) (0x2 + a)
#define DAS1800_DIGITAL 0x3
#define DAS1800_CONTROL_A 0x4
#define FFEN 0x1
#define CGEN 0x4
#define CGSL 0x8
#define TGEN 0x10
#define TGSL 0x20
#define ATEN 0x80
#define DAS1800_CONTROL_B 0x5
#define DMA_CH5 0x1
#define DMA_CH6 0x2
#define DMA_CH7 0x3
#define DMA_CH5_CH6 0x5
#define DMA_CH6_CH7 0x6
#define DMA_CH7_CH5 0x7
#define DMA_ENABLED 0x3 /* mask used to determine if dma is enabled */
#define DMA_DUAL 0x4
#define IRQ3 0x8
#define IRQ5 0x10
#define IRQ7 0x18
#define IRQ10 0x28
#define IRQ11 0x30
#define IRQ15 0x38
#define FIMD 0x40
#define DAS1800_CONTROL_C 0X6
#define IPCLK 0x1
#define XPCLK 0x3
#define BMDE 0x4
#define CMEN 0x8
#define UQEN 0x10
#define SD 0x40
#define UB 0x80
#define DAS1800_STATUS 0x7
/* bits that prevent interrupt status bits (and CVEN) from being cleared on write */
#define CLEAR_INTR_MASK (CVEN_MASK | 0x1f)
#define INT 0x1
#define DMATC 0x2
#define CT0TC 0x8
#define OVF 0x10
#define FHF 0x20
#define FNE 0x40
#define CVEN_MASK 0x40 /* masks CVEN on write */
#define CVEN 0x80
#define DAS1800_BURST_LENGTH 0x8
#define DAS1800_BURST_RATE 0x9
#define DAS1800_QRAM_ADDRESS 0xa
#define DAS1800_COUNTER 0xc
#define IOBASE2 0x400 /* offset of additional ioports used on 'ao' cards */
enum {
das1701st, das1701st_da, das1702st, das1702st_da, das1702hr,
das1702hr_da,
das1701ao, das1702ao, das1801st, das1801st_da, das1802st, das1802st_da,
das1802hr, das1802hr_da, das1801hc, das1802hc, das1801ao, das1802ao
};
static int das1800_attach(struct comedi_device *dev,
struct comedi_devconfig *it);
static int das1800_detach(struct comedi_device *dev);
static int das1800_probe(struct comedi_device *dev);
static int das1800_cancel(struct comedi_device *dev,
struct comedi_subdevice *s);
static irqreturn_t das1800_interrupt(int irq, void *d);
static int das1800_ai_poll(struct comedi_device *dev,
struct comedi_subdevice *s);
static void das1800_ai_handler(struct comedi_device *dev);
static void das1800_handle_dma(struct comedi_device *dev,
struct comedi_subdevice *s, unsigned int status);
static void das1800_flush_dma(struct comedi_device *dev,
struct comedi_subdevice *s);
static void das1800_flush_dma_channel(struct comedi_device *dev,
struct comedi_subdevice *s,
unsigned int channel, uint16_t * buffer);
static void das1800_handle_fifo_half_full(struct comedi_device *dev,
struct comedi_subdevice *s);
static void das1800_handle_fifo_not_empty(struct comedi_device *dev,
struct comedi_subdevice *s);
static int das1800_ai_do_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd);
static int das1800_ai_do_cmd(struct comedi_device *dev,
struct comedi_subdevice *s);
static int das1800_ai_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int das1800_ao_winsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int das1800_di_rbits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int das1800_do_wbits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int das1800_set_frequency(struct comedi_device *dev);
static unsigned int burst_convert_arg(unsigned int convert_arg, int round_mode);
static unsigned int suggest_transfer_size(struct comedi_cmd *cmd);
/* analog input ranges */
static const struct comedi_lrange range_ai_das1801 = {
8,
{
RANGE(-5, 5),
RANGE(-1, 1),
RANGE(-0.1, 0.1),
RANGE(-0.02, 0.02),
RANGE(0, 5),
RANGE(0, 1),
RANGE(0, 0.1),
RANGE(0, 0.02),
}
};
static const struct comedi_lrange range_ai_das1802 = {
8,
{
RANGE(-10, 10),
RANGE(-5, 5),
RANGE(-2.5, 2.5),
RANGE(-1.25, 1.25),
RANGE(0, 10),
RANGE(0, 5),
RANGE(0, 2.5),
RANGE(0, 1.25),
}
};
struct das1800_board {
const char *name;
int ai_speed; /* max conversion period in nanoseconds */
int resolution; /* bits of ai resolution */
int qram_len; /* length of card's channel / gain queue */
int common; /* supports AREF_COMMON flag */
int do_n_chan; /* number of digital output channels */
int ao_ability; /* 0 == no analog out, 1 == basic analog out, 2 == waveform analog out */
int ao_n_chan; /* number of analog out channels */
const struct comedi_lrange *range_ai; /* available input ranges */
};
/* Warning: the maximum conversion speeds listed below are
* not always achievable depending on board setup (see
* user manual.)
*/
static const struct das1800_board das1800_boards[] = {
{
.name = "das-1701st",
.ai_speed = 6250,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 0,
.ao_n_chan = 0,
.range_ai = &range_ai_das1801,
},
{
.name = "das-1701st-da",
.ai_speed = 6250,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 1,
.ao_n_chan = 4,
.range_ai = &range_ai_das1801,
},
{
.name = "das-1702st",
.ai_speed = 6250,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 0,
.ao_n_chan = 0,
.range_ai = &range_ai_das1802,
},
{
.name = "das-1702st-da",
.ai_speed = 6250,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 1,
.ao_n_chan = 4,
.range_ai = &range_ai_das1802,
},
{
.name = "das-1702hr",
.ai_speed = 20000,
.resolution = 16,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 0,
.ao_n_chan = 0,
.range_ai = &range_ai_das1802,
},
{
.name = "das-1702hr-da",
.ai_speed = 20000,
.resolution = 16,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 1,
.ao_n_chan = 2,
.range_ai = &range_ai_das1802,
},
{
.name = "das-1701ao",
.ai_speed = 6250,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 2,
.ao_n_chan = 2,
.range_ai = &range_ai_das1801,
},
{
.name = "das-1702ao",
.ai_speed = 6250,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 2,
.ao_n_chan = 2,
.range_ai = &range_ai_das1802,
},
{
.name = "das-1801st",
.ai_speed = 3000,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 0,
.ao_n_chan = 0,
.range_ai = &range_ai_das1801,
},
{
.name = "das-1801st-da",
.ai_speed = 3000,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 0,
.ao_n_chan = 4,
.range_ai = &range_ai_das1801,
},
{
.name = "das-1802st",
.ai_speed = 3000,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 0,
.ao_n_chan = 0,
.range_ai = &range_ai_das1802,
},
{
.name = "das-1802st-da",
.ai_speed = 3000,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 1,
.ao_n_chan = 4,
.range_ai = &range_ai_das1802,
},
{
.name = "das-1802hr",
.ai_speed = 10000,
.resolution = 16,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 0,
.ao_n_chan = 0,
.range_ai = &range_ai_das1802,
},
{
.name = "das-1802hr-da",
.ai_speed = 10000,
.resolution = 16,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 1,
.ao_n_chan = 2,
.range_ai = &range_ai_das1802,
},
{
.name = "das-1801hc",
.ai_speed = 3000,
.resolution = 12,
.qram_len = 64,
.common = 0,
.do_n_chan = 8,
.ao_ability = 1,
.ao_n_chan = 2,
.range_ai = &range_ai_das1801,
},
{
.name = "das-1802hc",
.ai_speed = 3000,
.resolution = 12,
.qram_len = 64,
.common = 0,
.do_n_chan = 8,
.ao_ability = 1,
.ao_n_chan = 2,
.range_ai = &range_ai_das1802,
},
{
.name = "das-1801ao",
.ai_speed = 3000,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 2,
.ao_n_chan = 2,
.range_ai = &range_ai_das1801,
},
{
.name = "das-1802ao",
.ai_speed = 3000,
.resolution = 12,
.qram_len = 256,
.common = 1,
.do_n_chan = 4,
.ao_ability = 2,
.ao_n_chan = 2,
.range_ai = &range_ai_das1802,
},
};
/*
* Useful for shorthand access to the particular board structure
*/
#define thisboard ((const struct das1800_board *)dev->board_ptr)
struct das1800_private {
volatile unsigned int count; /* number of data points left to be taken */
unsigned int divisor1; /* value to load into board's counter 1 for timed conversions */
unsigned int divisor2; /* value to load into board's counter 2 for timed conversions */
int do_bits; /* digital output bits */
int irq_dma_bits; /* bits for control register b */
/* dma bits for control register b, stored so that dma can be
* turned on and off */
int dma_bits;
unsigned int dma0; /* dma channels used */
unsigned int dma1;
volatile unsigned int dma_current; /* dma channel currently in use */
uint16_t *ai_buf0; /* pointers to dma buffers */
uint16_t *ai_buf1;
uint16_t *dma_current_buf; /* pointer to dma buffer currently being used */
unsigned int dma_transfer_size; /* size of transfer currently used, in bytes */
unsigned long iobase2; /* secondary io address used for analog out on 'ao' boards */
short ao_update_bits; /* remembers the last write to the 'update' dac */
};
#define devpriv ((struct das1800_private *)dev->private)
/* analog out range for boards with basic analog out */
static const struct comedi_lrange range_ao_1 = {
1,
{
RANGE(-10, 10),
}
};
/* analog out range for 'ao' boards */
/*
static const struct comedi_lrange range_ao_2 = {
2,
{
RANGE(-10, 10),
RANGE(-5, 5),
}
};
*/
static struct comedi_driver driver_das1800 = {
.driver_name = "das1800",
.module = THIS_MODULE,
.attach = das1800_attach,
.detach = das1800_detach,
.num_names = ARRAY_SIZE(das1800_boards),
.board_name = &das1800_boards[0].name,
.offset = sizeof(struct das1800_board),
};
/*
* A convenient macro that defines init_module() and cleanup_module(),
* as necessary.
*/
COMEDI_INITCLEANUP(driver_das1800);
static int das1800_init_dma(struct comedi_device *dev, unsigned int dma0,
unsigned int dma1)
{
unsigned long flags;
/* need an irq to do dma */
if (dev->irq && dma0) {
/* encode dma0 and dma1 into 2 digit hexadecimal for switch */
switch ((dma0 & 0x7) | (dma1 << 4)) {
case 0x5: /* dma0 == 5 */
devpriv->dma_bits |= DMA_CH5;
break;
case 0x6: /* dma0 == 6 */
devpriv->dma_bits |= DMA_CH6;
break;
case 0x7: /* dma0 == 7 */
devpriv->dma_bits |= DMA_CH7;
break;
case 0x65: /* dma0 == 5, dma1 == 6 */
devpriv->dma_bits |= DMA_CH5_CH6;
break;
case 0x76: /* dma0 == 6, dma1 == 7 */
devpriv->dma_bits |= DMA_CH6_CH7;
break;
case 0x57: /* dma0 == 7, dma1 == 5 */
devpriv->dma_bits |= DMA_CH7_CH5;
break;
default:
printk(" only supports dma channels 5 through 7\n"
" Dual dma only allows the following combinations:\n"
" dma 5,6 / 6,7 / or 7,5\n");
return -EINVAL;
break;
}
if (request_dma(dma0, driver_das1800.driver_name)) {
printk(" failed to allocate dma channel %i\n", dma0);
return -EINVAL;
}
devpriv->dma0 = dma0;
devpriv->dma_current = dma0;
if (dma1) {
if (request_dma(dma1, driver_das1800.driver_name)) {
printk(" failed to allocate dma channel %i\n",
dma1);
return -EINVAL;
}
devpriv->dma1 = dma1;
}
devpriv->ai_buf0 = kmalloc(DMA_BUF_SIZE, GFP_KERNEL | GFP_DMA);
if (devpriv->ai_buf0 == NULL)
return -ENOMEM;
devpriv->dma_current_buf = devpriv->ai_buf0;
if (dma1) {
devpriv->ai_buf1 =
kmalloc(DMA_BUF_SIZE, GFP_KERNEL | GFP_DMA);
if (devpriv->ai_buf1 == NULL)
return -ENOMEM;
}
flags = claim_dma_lock();
disable_dma(devpriv->dma0);
set_dma_mode(devpriv->dma0, DMA_MODE_READ);
if (dma1) {
disable_dma(devpriv->dma1);
set_dma_mode(devpriv->dma1, DMA_MODE_READ);
}
release_dma_lock(flags);
}
return 0;
}
static int das1800_attach(struct comedi_device *dev,
struct comedi_devconfig *it)
{
struct comedi_subdevice *s;
unsigned long iobase = it->options[0];
unsigned int irq = it->options[1];
unsigned int dma0 = it->options[2];
unsigned int dma1 = it->options[3];
unsigned long iobase2;
int board;
int retval;
/* allocate and initialize dev->private */
if (alloc_private(dev, sizeof(struct das1800_private)) < 0)
return -ENOMEM;
printk("comedi%d: %s: io 0x%lx", dev->minor, driver_das1800.driver_name,
iobase);
if (irq) {
printk(", irq %u", irq);
if (dma0) {
printk(", dma %u", dma0);
if (dma1)
printk(" and %u", dma1);
}
}
printk("\n");
if (iobase == 0) {
printk(" io base address required\n");
return -EINVAL;
}
/* check if io addresses are available */
if (!request_region(iobase, DAS1800_SIZE, driver_das1800.driver_name)) {
printk
(" I/O port conflict: failed to allocate ports 0x%lx to 0x%lx\n",
iobase, iobase + DAS1800_SIZE - 1);
return -EIO;
}
dev->iobase = iobase;
board = das1800_probe(dev);
if (board < 0) {
printk(" unable to determine board type\n");
return -ENODEV;
}
dev->board_ptr = das1800_boards + board;
dev->board_name = thisboard->name;
/* if it is an 'ao' board with fancy analog out then we need extra io ports */
if (thisboard->ao_ability == 2) {
iobase2 = iobase + IOBASE2;
if (!request_region(iobase2, DAS1800_SIZE,
driver_das1800.driver_name)) {
printk
(" I/O port conflict: failed to allocate ports 0x%lx to 0x%lx\n",
iobase2, iobase2 + DAS1800_SIZE - 1);
return -EIO;
}
devpriv->iobase2 = iobase2;
}
/* grab our IRQ */
if (irq) {
if (request_irq(irq, das1800_interrupt, 0,
driver_das1800.driver_name, dev)) {
printk(" unable to allocate irq %u\n", irq);
return -EINVAL;
}
}
dev->irq = irq;
/* set bits that tell card which irq to use */
switch (irq) {
case 0:
break;
case 3:
devpriv->irq_dma_bits |= 0x8;
break;
case 5:
devpriv->irq_dma_bits |= 0x10;
break;
case 7:
devpriv->irq_dma_bits |= 0x18;
break;
case 10:
devpriv->irq_dma_bits |= 0x28;
break;
case 11:
devpriv->irq_dma_bits |= 0x30;
break;
case 15:
devpriv->irq_dma_bits |= 0x38;
break;
default:
printk(" irq out of range\n");
return -EINVAL;
break;
}
retval = das1800_init_dma(dev, dma0, dma1);
if (retval < 0)
return retval;
if (devpriv->ai_buf0 == NULL) {
devpriv->ai_buf0 =
kmalloc(FIFO_SIZE * sizeof(uint16_t), GFP_KERNEL);
if (devpriv->ai_buf0 == NULL)
return -ENOMEM;
}
if (alloc_subdevices(dev, 4) < 0)
return -ENOMEM;
/* analog input subdevice */
s = dev->subdevices + 0;
dev->read_subdev = s;
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_GROUND | SDF_CMD_READ;
if (thisboard->common)
s->subdev_flags |= SDF_COMMON;
s->n_chan = thisboard->qram_len;
s->len_chanlist = thisboard->qram_len;
s->maxdata = (1 << thisboard->resolution) - 1;
s->range_table = thisboard->range_ai;
s->do_cmd = das1800_ai_do_cmd;
s->do_cmdtest = das1800_ai_do_cmdtest;
s->insn_read = das1800_ai_rinsn;
s->poll = das1800_ai_poll;
s->cancel = das1800_cancel;
/* analog out */
s = dev->subdevices + 1;
if (thisboard->ao_ability == 1) {
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = thisboard->ao_n_chan;
s->maxdata = (1 << thisboard->resolution) - 1;
s->range_table = &range_ao_1;
s->insn_write = das1800_ao_winsn;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* di */
s = dev->subdevices + 2;
s->type = COMEDI_SUBD_DI;
s->subdev_flags = SDF_READABLE;
s->n_chan = 4;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = das1800_di_rbits;
/* do */
s = dev->subdevices + 3;
s->type = COMEDI_SUBD_DO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = thisboard->do_n_chan;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = das1800_do_wbits;
das1800_cancel(dev, dev->read_subdev);
/* initialize digital out channels */
outb(devpriv->do_bits, dev->iobase + DAS1800_DIGITAL);
/* initialize analog out channels */
if (thisboard->ao_ability == 1) {
/* select 'update' dac channel for baseAddress + 0x0 */
outb(DAC(thisboard->ao_n_chan - 1),
dev->iobase + DAS1800_SELECT);
outw(devpriv->ao_update_bits, dev->iobase + DAS1800_DAC);
}
return 0;
};
static int das1800_detach(struct comedi_device *dev)
{
/* only free stuff if it has been allocated by _attach */
if (dev->iobase)
release_region(dev->iobase, DAS1800_SIZE);
if (dev->irq)
free_irq(dev->irq, dev);
if (dev->private) {
if (devpriv->iobase2)
release_region(devpriv->iobase2, DAS1800_SIZE);
if (devpriv->dma0)
free_dma(devpriv->dma0);
if (devpriv->dma1)
free_dma(devpriv->dma1);
kfree(devpriv->ai_buf0);
kfree(devpriv->ai_buf1);
}
printk("comedi%d: %s: remove\n", dev->minor,
driver_das1800.driver_name);
return 0;
};
/* probes and checks das-1800 series board type
*/
static int das1800_probe(struct comedi_device *dev)
{
int id;
int board;
id = (inb(dev->iobase + DAS1800_DIGITAL) >> 4) & 0xf; /* get id bits */
board = ((struct das1800_board *)dev->board_ptr) - das1800_boards;
switch (id) {
case 0x3:
if (board == das1801st_da || board == das1802st_da ||
board == das1701st_da || board == das1702st_da) {
printk(" Board model: %s\n",
das1800_boards[board].name);
return board;
}
printk
(" Board model (probed, not recommended): das-1800st-da series\n");
return das1801st;
break;
case 0x4:
if (board == das1802hr_da || board == das1702hr_da) {
printk(" Board model: %s\n",
das1800_boards[board].name);
return board;
}
printk
(" Board model (probed, not recommended): das-1802hr-da\n");
return das1802hr;
break;
case 0x5:
if (board == das1801ao || board == das1802ao ||
board == das1701ao || board == das1702ao) {
printk(" Board model: %s\n",
das1800_boards[board].name);
return board;
}
printk
(" Board model (probed, not recommended): das-1800ao series\n");
return das1801ao;
break;
case 0x6:
if (board == das1802hr || board == das1702hr) {
printk(" Board model: %s\n",
das1800_boards[board].name);
return board;
}
printk(" Board model (probed, not recommended): das-1802hr\n");
return das1802hr;
break;
case 0x7:
if (board == das1801st || board == das1802st ||
board == das1701st || board == das1702st) {
printk(" Board model: %s\n",
das1800_boards[board].name);
return board;
}
printk
(" Board model (probed, not recommended): das-1800st series\n");
return das1801st;
break;
case 0x8:
if (board == das1801hc || board == das1802hc) {
printk(" Board model: %s\n",
das1800_boards[board].name);
return board;
}
printk
(" Board model (probed, not recommended): das-1800hc series\n");
return das1801hc;
break;
default:
printk
(" Board model: probe returned 0x%x (unknown, please report)\n",
id);
return board;
break;
}
return -1;
}
static int das1800_ai_poll(struct comedi_device *dev,
struct comedi_subdevice *s)
{
unsigned long flags;
/* prevent race with interrupt handler */
spin_lock_irqsave(&dev->spinlock, flags);
das1800_ai_handler(dev);
spin_unlock_irqrestore(&dev->spinlock, flags);
return s->async->buf_write_count - s->async->buf_read_count;
}
static irqreturn_t das1800_interrupt(int irq, void *d)
{
struct comedi_device *dev = d;
unsigned int status;
if (dev->attached == 0) {
comedi_error(dev, "premature interrupt");
return IRQ_HANDLED;
}
/* Prevent race with das1800_ai_poll() on multi processor systems.
* Also protects indirect addressing in das1800_ai_handler */
spin_lock(&dev->spinlock);
status = inb(dev->iobase + DAS1800_STATUS);
/* if interrupt was not caused by das-1800 */
if (!(status & INT)) {
spin_unlock(&dev->spinlock);
return IRQ_NONE;
}
/* clear the interrupt status bit INT */
outb(CLEAR_INTR_MASK & ~INT, dev->iobase + DAS1800_STATUS);
/* handle interrupt */
das1800_ai_handler(dev);
spin_unlock(&dev->spinlock);
return IRQ_HANDLED;
}
/* the guts of the interrupt handler, that is shared with das1800_ai_poll */
static void das1800_ai_handler(struct comedi_device *dev)
{
struct comedi_subdevice *s = dev->subdevices + 0; /* analog input subdevice */
struct comedi_async *async = s->async;
struct comedi_cmd *cmd = &async->cmd;
unsigned int status = inb(dev->iobase + DAS1800_STATUS);
async->events = 0;
/* select adc for base address + 0 */
outb(ADC, dev->iobase + DAS1800_SELECT);
/* dma buffer full */
if (devpriv->irq_dma_bits & DMA_ENABLED) {
/* look for data from dma transfer even if dma terminal count hasn't happened yet */
das1800_handle_dma(dev, s, status);
} else if (status & FHF) { /* if fifo half full */
das1800_handle_fifo_half_full(dev, s);
} else if (status & FNE) { /* if fifo not empty */
das1800_handle_fifo_not_empty(dev, s);
}
async->events |= COMEDI_CB_BLOCK;
/* if the card's fifo has overflowed */
if (status & OVF) {
/* clear OVF interrupt bit */
outb(CLEAR_INTR_MASK & ~OVF, dev->iobase + DAS1800_STATUS);
comedi_error(dev, "DAS1800 FIFO overflow");
das1800_cancel(dev, s);
async->events |= COMEDI_CB_ERROR | COMEDI_CB_EOA;
comedi_event(dev, s);
return;
}
/* stop taking data if appropriate */
/* stop_src TRIG_EXT */
if (status & CT0TC) {
/* clear CT0TC interrupt bit */
outb(CLEAR_INTR_MASK & ~CT0TC, dev->iobase + DAS1800_STATUS);
/* make sure we get all remaining data from board before quitting */
if (devpriv->irq_dma_bits & DMA_ENABLED)
das1800_flush_dma(dev, s);
else
das1800_handle_fifo_not_empty(dev, s);
das1800_cancel(dev, s); /* disable hardware conversions */
async->events |= COMEDI_CB_EOA;
} else if (cmd->stop_src == TRIG_COUNT && devpriv->count == 0) { /* stop_src TRIG_COUNT */
das1800_cancel(dev, s); /* disable hardware conversions */
async->events |= COMEDI_CB_EOA;
}
comedi_event(dev, s);
return;
}
static void das1800_handle_dma(struct comedi_device *dev,
struct comedi_subdevice *s, unsigned int status)
{
unsigned long flags;
const int dual_dma = devpriv->irq_dma_bits & DMA_DUAL;
flags = claim_dma_lock();
das1800_flush_dma_channel(dev, s, devpriv->dma_current,
devpriv->dma_current_buf);
/* re-enable dma channel */
set_dma_addr(devpriv->dma_current,
virt_to_bus(devpriv->dma_current_buf));
set_dma_count(devpriv->dma_current, devpriv->dma_transfer_size);
enable_dma(devpriv->dma_current);
release_dma_lock(flags);
if (status & DMATC) {
/* clear DMATC interrupt bit */
outb(CLEAR_INTR_MASK & ~DMATC, dev->iobase + DAS1800_STATUS);
/* switch dma channels for next time, if appropriate */
if (dual_dma) {
/* read data from the other channel next time */
if (devpriv->dma_current == devpriv->dma0) {
devpriv->dma_current = devpriv->dma1;
devpriv->dma_current_buf = devpriv->ai_buf1;
} else {
devpriv->dma_current = devpriv->dma0;
devpriv->dma_current_buf = devpriv->ai_buf0;
}
}
}
return;
}
static inline uint16_t munge_bipolar_sample(const struct comedi_device *dev,
uint16_t sample)
{
sample += 1 << (thisboard->resolution - 1);
return sample;
}
static void munge_data(struct comedi_device *dev, uint16_t * array,
unsigned int num_elements)
{
unsigned int i;
int unipolar;
/* see if card is using a unipolar or bipolar range so we can munge data correctly */
unipolar = inb(dev->iobase + DAS1800_CONTROL_C) & UB;
/* convert to unsigned type if we are in a bipolar mode */
if (!unipolar) {
for (i = 0; i < num_elements; i++) {
array[i] = munge_bipolar_sample(dev, array[i]);
}
}
}
/* Utility function used by das1800_flush_dma() and das1800_handle_dma().
* Assumes dma lock is held */
static void das1800_flush_dma_channel(struct comedi_device *dev,
struct comedi_subdevice *s,
unsigned int channel, uint16_t * buffer)
{
unsigned int num_bytes, num_samples;
struct comedi_cmd *cmd = &s->async->cmd;
disable_dma(channel);
/* clear flip-flop to make sure 2-byte registers
* get set correctly */
clear_dma_ff(channel);
/* figure out how many points to read */
num_bytes = devpriv->dma_transfer_size - get_dma_residue(channel);
num_samples = num_bytes / sizeof(short);
/* if we only need some of the points */
if (cmd->stop_src == TRIG_COUNT && devpriv->count < num_samples)
num_samples = devpriv->count;
munge_data(dev, buffer, num_samples);
cfc_write_array_to_buffer(s, buffer, num_bytes);
if (s->async->cmd.stop_src == TRIG_COUNT)
devpriv->count -= num_samples;
return;
}
/* flushes remaining data from board when external trigger has stopped aquisition
* and we are using dma transfers */
static void das1800_flush_dma(struct comedi_device *dev,
struct comedi_subdevice *s)
{
unsigned long flags;
const int dual_dma = devpriv->irq_dma_bits & DMA_DUAL;
flags = claim_dma_lock();
das1800_flush_dma_channel(dev, s, devpriv->dma_current,
devpriv->dma_current_buf);
if (dual_dma) {
/* switch to other channel and flush it */
if (devpriv->dma_current == devpriv->dma0) {
devpriv->dma_current = devpriv->dma1;
devpriv->dma_current_buf = devpriv->ai_buf1;
} else {
devpriv->dma_current = devpriv->dma0;
devpriv->dma_current_buf = devpriv->ai_buf0;
}
das1800_flush_dma_channel(dev, s, devpriv->dma_current,
devpriv->dma_current_buf);
}
release_dma_lock(flags);
/* get any remaining samples in fifo */
das1800_handle_fifo_not_empty(dev, s);
return;
}
static void das1800_handle_fifo_half_full(struct comedi_device *dev,
struct comedi_subdevice *s)
{
int numPoints = 0; /* number of points to read */
struct comedi_cmd *cmd = &s->async->cmd;
numPoints = FIFO_SIZE / 2;
/* if we only need some of the points */
if (cmd->stop_src == TRIG_COUNT && devpriv->count < numPoints)
numPoints = devpriv->count;
insw(dev->iobase + DAS1800_FIFO, devpriv->ai_buf0, numPoints);
munge_data(dev, devpriv->ai_buf0, numPoints);
cfc_write_array_to_buffer(s, devpriv->ai_buf0,
numPoints * sizeof(devpriv->ai_buf0[0]));
if (cmd->stop_src == TRIG_COUNT)
devpriv->count -= numPoints;
return;
}
static void das1800_handle_fifo_not_empty(struct comedi_device *dev,
struct comedi_subdevice *s)
{
short dpnt;
int unipolar;
struct comedi_cmd *cmd = &s->async->cmd;
unipolar = inb(dev->iobase + DAS1800_CONTROL_C) & UB;
while (inb(dev->iobase + DAS1800_STATUS) & FNE) {
if (cmd->stop_src == TRIG_COUNT && devpriv->count == 0)
break;
dpnt = inw(dev->iobase + DAS1800_FIFO);
/* convert to unsigned type if we are in a bipolar mode */
if (!unipolar) ;
dpnt = munge_bipolar_sample(dev, dpnt);
cfc_write_to_buffer(s, dpnt);
if (cmd->stop_src == TRIG_COUNT)
devpriv->count--;
}
return;
}
static int das1800_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
outb(0x0, dev->iobase + DAS1800_STATUS); /* disable conversions */
outb(0x0, dev->iobase + DAS1800_CONTROL_B); /* disable interrupts and dma */
outb(0x0, dev->iobase + DAS1800_CONTROL_A); /* disable and clear fifo and stop triggering */
if (devpriv->dma0)
disable_dma(devpriv->dma0);
if (devpriv->dma1)
disable_dma(devpriv->dma1);
return 0;
}
/* test analog input cmd */
static int das1800_ai_do_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
int err = 0;
int tmp;
unsigned int tmp_arg;
int i;
int unipolar;
/* step 1: make sure trigger sources are trivially valid */
tmp = cmd->start_src;
cmd->start_src &= TRIG_NOW | TRIG_EXT;
if (!cmd->start_src || tmp != cmd->start_src)
err++;
tmp = cmd->scan_begin_src;
cmd->scan_begin_src &= TRIG_FOLLOW | TRIG_TIMER | TRIG_EXT;
if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
err++;
tmp = cmd->convert_src;
cmd->convert_src &= TRIG_TIMER | TRIG_EXT;
if (!cmd->convert_src || tmp != cmd->convert_src)
err++;
tmp = cmd->scan_end_src;
cmd->scan_end_src &= TRIG_COUNT;
if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
err++;
tmp = cmd->stop_src;
cmd->stop_src &= TRIG_COUNT | TRIG_EXT | TRIG_NONE;
if (!cmd->stop_src || tmp != cmd->stop_src)
err++;
if (err)
return 1;
/* step 2: make sure trigger sources are unique and mutually compatible */
/* uniqueness check */
if (cmd->start_src != TRIG_NOW && cmd->start_src != TRIG_EXT)
err++;
if (cmd->scan_begin_src != TRIG_FOLLOW &&
cmd->scan_begin_src != TRIG_TIMER &&
cmd->scan_begin_src != TRIG_EXT)
err++;
if (cmd->convert_src != TRIG_TIMER && cmd->convert_src != TRIG_EXT)
err++;
if (cmd->stop_src != TRIG_COUNT &&
cmd->stop_src != TRIG_NONE && cmd->stop_src != TRIG_EXT)
err++;
/* compatibility check */
if (cmd->scan_begin_src != TRIG_FOLLOW &&
cmd->convert_src != TRIG_TIMER)
err++;
if (err)
return 2;
/* step 3: make sure arguments are trivially compatible */
if (cmd->start_arg != 0) {
cmd->start_arg = 0;
err++;
}
if (cmd->convert_src == TRIG_TIMER) {
if (cmd->convert_arg < thisboard->ai_speed) {
cmd->convert_arg = thisboard->ai_speed;
err++;
}
}
if (!cmd->chanlist_len) {
cmd->chanlist_len = 1;
err++;
}
if (cmd->scan_end_arg != cmd->chanlist_len) {
cmd->scan_end_arg = cmd->chanlist_len;
err++;
}
switch (cmd->stop_src) {
case TRIG_COUNT:
if (!cmd->stop_arg) {
cmd->stop_arg = 1;
err++;
}
break;
case TRIG_NONE:
if (cmd->stop_arg != 0) {
cmd->stop_arg = 0;
err++;
}
break;
default:
break;
}
if (err)
return 3;
/* step 4: fix up any arguments */
if (cmd->convert_src == TRIG_TIMER) {
/* if we are not in burst mode */
if (cmd->scan_begin_src == TRIG_FOLLOW) {
tmp_arg = cmd->convert_arg;
/* calculate counter values that give desired timing */
i8253_cascade_ns_to_timer_2div(TIMER_BASE,
&(devpriv->divisor1),
&(devpriv->divisor2),
&(cmd->convert_arg),
cmd->
flags & TRIG_ROUND_MASK);
if (tmp_arg != cmd->convert_arg)
err++;
}
/* if we are in burst mode */
else {
/* check that convert_arg is compatible */
tmp_arg = cmd->convert_arg;
cmd->convert_arg =
burst_convert_arg(cmd->convert_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp_arg != cmd->convert_arg)
err++;
if (cmd->scan_begin_src == TRIG_TIMER) {
/* if scans are timed faster than conversion rate allows */
if (cmd->convert_arg * cmd->chanlist_len >
cmd->scan_begin_arg) {
cmd->scan_begin_arg =
cmd->convert_arg *
cmd->chanlist_len;
err++;
}
tmp_arg = cmd->scan_begin_arg;
/* calculate counter values that give desired timing */
i8253_cascade_ns_to_timer_2div(TIMER_BASE,
&(devpriv->
divisor1),
&(devpriv->
divisor2),
&(cmd->
scan_begin_arg),
cmd->
flags &
TRIG_ROUND_MASK);
if (tmp_arg != cmd->scan_begin_arg)
err++;
}
}
}
if (err)
return 4;
/* make sure user is not trying to mix unipolar and bipolar ranges */
if (cmd->chanlist) {
unipolar = CR_RANGE(cmd->chanlist[0]) & UNIPOLAR;
for (i = 1; i < cmd->chanlist_len; i++) {
if (unipolar != (CR_RANGE(cmd->chanlist[i]) & UNIPOLAR)) {
comedi_error(dev,
"unipolar and bipolar ranges cannot be mixed in the chanlist");
err++;
break;
}
}
}
if (err)
return 5;
return 0;
}
/* analog input cmd interface */
/* first, some utility functions used in the main ai_do_cmd() */
/* returns appropriate bits for control register a, depending on command */
static int control_a_bits(struct comedi_cmd cmd)
{
int control_a;
control_a = FFEN; /* enable fifo */
if (cmd.stop_src == TRIG_EXT) {
control_a |= ATEN;
}
switch (cmd.start_src) {
case TRIG_EXT:
control_a |= TGEN | CGSL;
break;
case TRIG_NOW:
control_a |= CGEN;
break;
default:
break;
}
return control_a;
}
/* returns appropriate bits for control register c, depending on command */
static int control_c_bits(struct comedi_cmd cmd)
{
int control_c;
int aref;
/* set clock source to internal or external, select analog reference,
* select unipolar / bipolar
*/
aref = CR_AREF(cmd.chanlist[0]);
control_c = UQEN; /* enable upper qram addresses */
if (aref != AREF_DIFF)
control_c |= SD;
if (aref == AREF_COMMON)
control_c |= CMEN;
/* if a unipolar range was selected */
if (CR_RANGE(cmd.chanlist[0]) & UNIPOLAR)
control_c |= UB;
switch (cmd.scan_begin_src) {
case TRIG_FOLLOW: /* not in burst mode */
switch (cmd.convert_src) {
case TRIG_TIMER:
/* trig on cascaded counters */
control_c |= IPCLK;
break;
case TRIG_EXT:
/* trig on falling edge of external trigger */
control_c |= XPCLK;
break;
default:
break;
}
break;
case TRIG_TIMER:
/* burst mode with internal pacer clock */
control_c |= BMDE | IPCLK;
break;
case TRIG_EXT:
/* burst mode with external trigger */
control_c |= BMDE | XPCLK;
break;
default:
break;
}
return control_c;
}
/* sets up counters */
static int setup_counters(struct comedi_device *dev, struct comedi_cmd cmd)
{
/* setup cascaded counters for conversion/scan frequency */
switch (cmd.scan_begin_src) {
case TRIG_FOLLOW: /* not in burst mode */
if (cmd.convert_src == TRIG_TIMER) {
/* set conversion frequency */
i8253_cascade_ns_to_timer_2div(TIMER_BASE,
&(devpriv->divisor1),
&(devpriv->divisor2),
&(cmd.convert_arg),
cmd.
flags & TRIG_ROUND_MASK);
if (das1800_set_frequency(dev) < 0) {
return -1;
}
}
break;
case TRIG_TIMER: /* in burst mode */
/* set scan frequency */
i8253_cascade_ns_to_timer_2div(TIMER_BASE, &(devpriv->divisor1),
&(devpriv->divisor2),
&(cmd.scan_begin_arg),
cmd.flags & TRIG_ROUND_MASK);
if (das1800_set_frequency(dev) < 0) {
return -1;
}
break;
default:
break;
}
/* setup counter 0 for 'about triggering' */
if (cmd.stop_src == TRIG_EXT) {
/* load counter 0 in mode 0 */
i8254_load(dev->iobase + DAS1800_COUNTER, 0, 0, 1, 0);
}
return 0;
}
/* sets up dma */
static void setup_dma(struct comedi_device *dev, struct comedi_cmd cmd)
{
unsigned long lock_flags;
const int dual_dma = devpriv->irq_dma_bits & DMA_DUAL;
if ((devpriv->irq_dma_bits & DMA_ENABLED) == 0)
return;
/* determine a reasonable dma transfer size */
devpriv->dma_transfer_size = suggest_transfer_size(&cmd);
lock_flags = claim_dma_lock();
disable_dma(devpriv->dma0);
/* clear flip-flop to make sure 2-byte registers for
* count and address get set correctly */
clear_dma_ff(devpriv->dma0);
set_dma_addr(devpriv->dma0, virt_to_bus(devpriv->ai_buf0));
/* set appropriate size of transfer */
set_dma_count(devpriv->dma0, devpriv->dma_transfer_size);
devpriv->dma_current = devpriv->dma0;
devpriv->dma_current_buf = devpriv->ai_buf0;
enable_dma(devpriv->dma0);
/* set up dual dma if appropriate */
if (dual_dma) {
disable_dma(devpriv->dma1);
/* clear flip-flop to make sure 2-byte registers for
* count and address get set correctly */
clear_dma_ff(devpriv->dma1);
set_dma_addr(devpriv->dma1, virt_to_bus(devpriv->ai_buf1));
/* set appropriate size of transfer */
set_dma_count(devpriv->dma1, devpriv->dma_transfer_size);
enable_dma(devpriv->dma1);
}
release_dma_lock(lock_flags);
return;
}
/* programs channel/gain list into card */
static void program_chanlist(struct comedi_device *dev, struct comedi_cmd cmd)
{
int i, n, chan_range;
unsigned long irq_flags;
const int range_mask = 0x3; /* masks unipolar/bipolar bit off range */
const int range_bitshift = 8;
n = cmd.chanlist_len;
/* spinlock protects indirect addressing */
spin_lock_irqsave(&dev->spinlock, irq_flags);
outb(QRAM, dev->iobase + DAS1800_SELECT); /* select QRAM for baseAddress + 0x0 */
outb(n - 1, dev->iobase + DAS1800_QRAM_ADDRESS); /*set QRAM address start */
/* make channel / gain list */
for (i = 0; i < n; i++) {
chan_range =
CR_CHAN(cmd.
chanlist[i]) | ((CR_RANGE(cmd.chanlist[i]) &
range_mask) << range_bitshift);
outw(chan_range, dev->iobase + DAS1800_QRAM);
}
outb(n - 1, dev->iobase + DAS1800_QRAM_ADDRESS); /*finish write to QRAM */
spin_unlock_irqrestore(&dev->spinlock, irq_flags);
return;
}
/* analog input do_cmd */
static int das1800_ai_do_cmd(struct comedi_device *dev,
struct comedi_subdevice *s)
{
int ret;
int control_a, control_c;
struct comedi_async *async = s->async;
struct comedi_cmd cmd = async->cmd;
if (!dev->irq) {
comedi_error(dev,
"no irq assigned for das-1800, cannot do hardware conversions");
return -1;
}
/* disable dma on TRIG_WAKE_EOS, or TRIG_RT
* (because dma in handler is unsafe at hard real-time priority) */
if (cmd.flags & (TRIG_WAKE_EOS | TRIG_RT)) {
devpriv->irq_dma_bits &= ~DMA_ENABLED;
} else {
devpriv->irq_dma_bits |= devpriv->dma_bits;
}
/* interrupt on end of conversion for TRIG_WAKE_EOS */
if (cmd.flags & TRIG_WAKE_EOS) {
/* interrupt fifo not empty */
devpriv->irq_dma_bits &= ~FIMD;
} else {
/* interrupt fifo half full */
devpriv->irq_dma_bits |= FIMD;
}
/* determine how many conversions we need */
if (cmd.stop_src == TRIG_COUNT) {
devpriv->count = cmd.stop_arg * cmd.chanlist_len;
}
das1800_cancel(dev, s);
/* determine proper bits for control registers */
control_a = control_a_bits(cmd);
control_c = control_c_bits(cmd);
/* setup card and start */
program_chanlist(dev, cmd);
ret = setup_counters(dev, cmd);
if (ret < 0) {
comedi_error(dev, "Error setting up counters");
return ret;
}
setup_dma(dev, cmd);
outb(control_c, dev->iobase + DAS1800_CONTROL_C);
/* set conversion rate and length for burst mode */
if (control_c & BMDE) {
/* program conversion period with number of microseconds minus 1 */
outb(cmd.convert_arg / 1000 - 1,
dev->iobase + DAS1800_BURST_RATE);
outb(cmd.chanlist_len - 1, dev->iobase + DAS1800_BURST_LENGTH);
}
outb(devpriv->irq_dma_bits, dev->iobase + DAS1800_CONTROL_B); /* enable irq/dma */
outb(control_a, dev->iobase + DAS1800_CONTROL_A); /* enable fifo and triggering */
outb(CVEN, dev->iobase + DAS1800_STATUS); /* enable conversions */
return 0;
}
/* read analog input */
static int das1800_ai_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int i, n;
int chan, range, aref, chan_range;
int timeout = 1000;
short dpnt;
int conv_flags = 0;
unsigned long irq_flags;
/* set up analog reference and unipolar / bipolar mode */
aref = CR_AREF(insn->chanspec);
conv_flags |= UQEN;
if (aref != AREF_DIFF)
conv_flags |= SD;
if (aref == AREF_COMMON)
conv_flags |= CMEN;
/* if a unipolar range was selected */
if (CR_RANGE(insn->chanspec) & UNIPOLAR)
conv_flags |= UB;
outb(conv_flags, dev->iobase + DAS1800_CONTROL_C); /* software conversion enabled */
outb(CVEN, dev->iobase + DAS1800_STATUS); /* enable conversions */
outb(0x0, dev->iobase + DAS1800_CONTROL_A); /* reset fifo */
outb(FFEN, dev->iobase + DAS1800_CONTROL_A);
chan = CR_CHAN(insn->chanspec);
/* mask of unipolar/bipolar bit from range */
range = CR_RANGE(insn->chanspec) & 0x3;
chan_range = chan | (range << 8);
spin_lock_irqsave(&dev->spinlock, irq_flags);
outb(QRAM, dev->iobase + DAS1800_SELECT); /* select QRAM for baseAddress + 0x0 */
outb(0x0, dev->iobase + DAS1800_QRAM_ADDRESS); /* set QRAM address start */
outw(chan_range, dev->iobase + DAS1800_QRAM);
outb(0x0, dev->iobase + DAS1800_QRAM_ADDRESS); /*finish write to QRAM */
outb(ADC, dev->iobase + DAS1800_SELECT); /* select ADC for baseAddress + 0x0 */
for (n = 0; n < insn->n; n++) {
/* trigger conversion */
outb(0, dev->iobase + DAS1800_FIFO);
for (i = 0; i < timeout; i++) {
if (inb(dev->iobase + DAS1800_STATUS) & FNE)
break;
}
if (i == timeout) {
comedi_error(dev, "timeout");
n = -ETIME;
goto exit;
}
dpnt = inw(dev->iobase + DAS1800_FIFO);
/* shift data to offset binary for bipolar ranges */
if ((conv_flags & UB) == 0)
dpnt += 1 << (thisboard->resolution - 1);
data[n] = dpnt;
}
exit:
spin_unlock_irqrestore(&dev->spinlock, irq_flags);
return n;
}
/* writes to an analog output channel */
static int das1800_ao_winsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int chan = CR_CHAN(insn->chanspec);
/* int range = CR_RANGE(insn->chanspec); */
int update_chan = thisboard->ao_n_chan - 1;
short output;
unsigned long irq_flags;
/* card expects two's complement data */
output = data[0] - (1 << (thisboard->resolution - 1));
/* if the write is to the 'update' channel, we need to remember its value */
if (chan == update_chan)
devpriv->ao_update_bits = output;
/* write to channel */
spin_lock_irqsave(&dev->spinlock, irq_flags);
outb(DAC(chan), dev->iobase + DAS1800_SELECT); /* select dac channel for baseAddress + 0x0 */
outw(output, dev->iobase + DAS1800_DAC);
/* now we need to write to 'update' channel to update all dac channels */
if (chan != update_chan) {
outb(DAC(update_chan), dev->iobase + DAS1800_SELECT); /* select 'update' channel for baseAddress + 0x0 */
outw(devpriv->ao_update_bits, dev->iobase + DAS1800_DAC);
}
spin_unlock_irqrestore(&dev->spinlock, irq_flags);
return 1;
}
/* reads from digital input channels */
static int das1800_di_rbits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
data[1] = inb(dev->iobase + DAS1800_DIGITAL) & 0xf;
data[0] = 0;
return 2;
}
/* writes to digital output channels */
static int das1800_do_wbits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
unsigned int wbits;
/* only set bits that have been masked */
data[0] &= (1 << s->n_chan) - 1;
wbits = devpriv->do_bits;
wbits &= ~data[0];
wbits |= data[0] & data[1];
devpriv->do_bits = wbits;
outb(devpriv->do_bits, dev->iobase + DAS1800_DIGITAL);
data[1] = devpriv->do_bits;
return 2;
}
/* loads counters with divisor1, divisor2 from private structure */
static int das1800_set_frequency(struct comedi_device *dev)
{
int err = 0;
/* counter 1, mode 2 */
if (i8254_load(dev->iobase + DAS1800_COUNTER, 0, 1, devpriv->divisor1,
2))
err++;
/* counter 2, mode 2 */
if (i8254_load(dev->iobase + DAS1800_COUNTER, 0, 2, devpriv->divisor2,
2))
err++;
if (err)
return -1;
return 0;
}
/* converts requested conversion timing to timing compatible with
* hardware, used only when card is in 'burst mode'
*/
static unsigned int burst_convert_arg(unsigned int convert_arg, int round_mode)
{
unsigned int micro_sec;
/* in burst mode, the maximum conversion time is 64 microseconds */
if (convert_arg > 64000)
convert_arg = 64000;
/* the conversion time must be an integral number of microseconds */
switch (round_mode) {
case TRIG_ROUND_NEAREST:
default:
micro_sec = (convert_arg + 500) / 1000;
break;
case TRIG_ROUND_DOWN:
micro_sec = convert_arg / 1000;
break;
case TRIG_ROUND_UP:
micro_sec = (convert_arg - 1) / 1000 + 1;
break;
}
/* return number of nanoseconds */
return micro_sec * 1000;
}
/* utility function that suggests a dma transfer size based on the conversion period 'ns' */
static unsigned int suggest_transfer_size(struct comedi_cmd *cmd)
{
unsigned int size = DMA_BUF_SIZE;
static const int sample_size = 2; /* size in bytes of one sample from board */
unsigned int fill_time = 300000000; /* target time in nanoseconds for filling dma buffer */
unsigned int max_size; /* maximum size we will allow for a transfer */
/* make dma buffer fill in 0.3 seconds for timed modes */
switch (cmd->scan_begin_src) {
case TRIG_FOLLOW: /* not in burst mode */
if (cmd->convert_src == TRIG_TIMER)
size = (fill_time / cmd->convert_arg) * sample_size;
break;
case TRIG_TIMER:
size = (fill_time / (cmd->scan_begin_arg * cmd->chanlist_len)) *
sample_size;
break;
default:
size = DMA_BUF_SIZE;
break;
}
/* set a minimum and maximum size allowed */
max_size = DMA_BUF_SIZE;
/* if we are taking limited number of conversions, limit transfer size to that */
if (cmd->stop_src == TRIG_COUNT &&
cmd->stop_arg * cmd->chanlist_len * sample_size < max_size)
max_size = cmd->stop_arg * cmd->chanlist_len * sample_size;
if (size > max_size)
size = max_size;
if (size < sample_size)
size = sample_size;
return size;
}